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Abstract

When risk tolerance is varied from small to large values in a parametric programming study using CEV as the
maxim and, a family of maximum value solutions are obtained that can be compactly summarized in policy region
tabulations (in the discrete case) or asset allocation tabulations (in the continuous case). This gives the decision
analyst an awareness of the full spectrum of solutions, from the one appropriate for the ultra-risk-averse decision
maker, to the one appropriate for the risk neutral decision maker. When the interval of uncertainty from the least
square risk tolerance estimation procedure is compared to the policy region tabulation or asset allocation tabulation,
one obtains the solutions that are most preferred by the decision maker whose risk tolerance has just been
estimated. From these solutions, all optimal in a neighborhood of the estimated risk tolerance, a final solution can be
selected with complete awareness of what nearby optimal solutions would be like. In addition, for decision analyses
involving an information option, parametric analysis reveals that the risk-averse CEVSI evaluation of information can
be substantially greater than the risk neutral EVSI evaluation, which may lead to acquisition of information in cases
where the risk neutral decision maker would pass it by. Hence use of EVSI for buy decisions about information may
result in serious underutilization of information, leading to much greater downside risk than would be the case if
CEVSI were used for those very same information buy decisions.

Keywords: Risk tolerance; Least square risk tolerance estimation;
Parametric programming; Exponential utility; Certainty equivalent
values; Value profiles; Maximal value frontier; EVPI and CEVPI; EVSI
and CEVSI; Policy region tabulation; Asset allocation tabulation

Introduction
The use of exponential utility for the risk-averse decision analyses

has been the default utility function family for many years by all
manufacturers of computer software for this purpose. Later in this
paper, it is shown that the reason for this selection is because it is only
in this case that the traditional EVPI and EVSI values of information
concepts from risk neutral theory can be extended in an unambiguous
way to the risk-averse case (yielding the corresponding CEVPI and
CEVSI concepts defined below). The key to this situation is the “delta-
property” that the exponential utility possesses, presented by Howard
Raiffa [1] and proved by Ronald Howard [2]. In particular, one has
that the Certainty-Equivalent Value (henceforth shortened to Cash-
Equivalent Value or CEV) of a shifted payoff distribution X+∆ satisfies
CEV(X+∆)=CEV(X)+∆ just as for Expected Monetary Values one has
EMV(X+∆)=EMV(X)+∆. No other nonlinear utility function form has
this property.

The key parameter in the exponential utility function is the risk
tolerance of the decision maker, the reciprocal of the risk aversion
coefficient, which can be measured in terms of the dollar loss that will
be tolerated in certain well-known calibration gambles. In this paper
we present a general risk tolerance parametric programming method
(or Risk Tolerance Parametrics, RTP) that consists basically of
resolving a decision problem for a range of risk tolerance values and
tabulating the scenario results for a variety of analyses. First we

develop some basic results pertaining to the limiting values of the CEV
function as risk tolerance goes to zero or plus infinity. Then we derive
the closed form formulas for the certainty equivalent functions for
frequently use probability distributions that are particularly useful in
practice. These functions permit the plotting of Value Profiles for
different distributions that occur frequently in practice, which in turn
allows the definition of the Maximal Value Frontier (MVF) [3] for a
given set of gambles. The Risk Tolerance Parametrics methodology
(referred to as RTP) required generating the Maximal Value Frontier
and associated optimal policy choices becomes an integral part of a
new risk-averse decision analysis paradigm. The RTP-MFV paradigm
is akin to “getting the lay of the land” before building a house, or
scoping out the size and shape of a forest before cutting down any
trees. It is also closely related to the idea of developing a “requisite
decision model” as described by Lawrence D. Phillips, by noting the
behavior of one’s model not only in the vicinity of the final decision,
but across the entire range of risk tolerances, from utterly risk averse
(MaxiMIN criterion) to totally risk neutral (EMV criterion). In the
portfolio optimization realm it is the generalization of the Mean-
Variance Efficient Frontier methodology needed to accommodate
asymmetric return distributions, such as the beta and gamma models
presented in Davis and Davis [4,5].

In addition, valuable insights about the value of information can be
gleaned from an appreciation of the full spectrum of MVF solutions
before zeroing in on the final selection. We show how to extend the
neutral EVPI and EVSI value of information concepts based on
expected monetary values to the risk averse CEVPI and CEVSI
concepts which are based on CEV values. A experience with numerous
textbook examples shows that CEVSI tends to rise up higher that
EVSI, in some cases to many times as much as EVSI, and then drops
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back towards EVSI gradually, approaching EVSI in the limit as risk
tolerance increases towards infinity. The fact that CEVSI > EVSI for a
significant range of risk tolerances is very important from a practical
standpoint because it means that information opportunities that
would routinely be rejected on an EMV basis should actually be
accepted on a CEVSI basis.

The presentation in this paper will be in six parts: (1) General
Properties; (2) RTP-MVF methodology; (3) Simple gamble
comparison example; (4) From EVPI and EVSI to CEVPI and CEVSI;
(5) Portfolio Optimization example; (6) Conclusions. Appendices are
provided that show (A) proof of the limits theorem that bounds CEV
between the minimum and mean values of the payoff distribution; (B)
derivation of CE value functions for uniform, histogram and normal
distributions; (C) a compilation of CE value functions for most
commonly used probability distributions. An earlier paper [3] presents
the generalization of the value of information concepts EVPI and EVSI
to the risk-averse case, yielding CEVPI and CEVSI. In the present
paper we show that CEVSI can be much larger than EVSI in some risk
tolerance ranges (on the order of 5 to 30 times or more), hence making
the information options much more attractive to the risk averse than
to the risk neutral decision maker.

General Properties
Exponential Utility functions may be written in the form 1 – Exp(-

x/τ) where x is a monetary amount and the scale factor τ, also a
monetary amount with the same units of measure, is referred to as the
Risk Tolerance of the decision maker. (Some books use “R” for this
parameter, but it is a measure of risk tolerance, not of risk, so we prefer
the Greek tau instead.). The CEV for a given distribution X with
respect to a given risk tolerance τ is the solution to the equation stating
that the utility of the CEV is equal to the expected utility of the
distribution, or for exponential utility

1−e −CEV/τ   =  1−E e−X/τ

Solving for CEV yields the general result

CEV X, τ = − τ ⋅ ln E e−X/τ

In the special case where X is a finite discrete distribution, this
becomes

CEV X, τ = − τ ⋅ ln ∑
i=1

n
p ie−x i/τ

This is the only form that is needed for most elementary decision
analyses. Other formulas apply, of course, for other distributions used
in more advanced analyses. A great number of these are presented in
Appendix C to this paper.

In addition to the delta-property mentioned above, there are two
limit theorems for Exponential Utility that are key to shape of the CEV
function when plotted for a given distribution as a function of the Risk
Tolerance parameter. This function is called the Value Profile for the
distribution, and this function will tend towards the minimum payoff
for the distribution ( or -∞ if the distribution is unbounded below) as
risk tolerance approaches zero, whereas the CEV value function will
tend towards the EMV or mean value of the payoff distribution as the
risk tolerance approaches infinity. In fact the CEV Value Profile is
always concave (for positive risk tolerances) and monotonically
increasing between the two limiting values, so we have the following

Theorem: MIN(X)≤CEV(X,τ)≤EMV(X)for all risk tolerance values,
where

limτ 0CEV X, τ = MIN X  and limτ ∞CEV X, τ = EMV X
The proof of this theorem is given in Appendix A. This leads
immediately to the following corollary concerning the buying price
BP(X,τ) and selling price SP(X,τ) of a gamble X.

Corollary: MIN(X) < BP(X,τ) < EMV(X,τ) < SP(X,τ) < MAX(X) for
all 0<τ<∞

Here BP(X,τ) and SP(X,τ) are the buying and selling prices of a
gamble X given by the following formulas:

BP(X,τ) = CEV(X,τ) and SP(X,τ)= -CEV(-X,τ)

Moreover,

limτ 0BP X, τ = MIN X  and limτ 0SP X, τ = MAX X
And

limτ→∞BP(X,τ)=limτ→∞SP(X,τ)=EMV(X)

Proof: The buying price of X is that value (b) such that CEV(X-
b)=0. From the delta property one has CEV(X-b,τ)=CEV(X,τ)-b=0 so
that b=CEV(X,τ). The selling price of X is that value (s) such that
CEV(s-X)=0. Again the delta property leads one to CEV(s-X,τ)=s
+CEV(-X,τ)=0 so that s=-CEV(-X,τ). From the preceding theorem we
know that MIN(X)<CEV(X,τ)<EMV(X) so
MIN(X)<BP(X,τ)<EMV(X) as well. Likewise, MIN(-X)=-
MAX(X)<CEV(-X,τ)<EMV(-X)=-EMV(X) so EMV(X)< –CEV(-
X,τ)<MAX(X) or EMV(X)< SP(X,τ) <MAX(X)

The limit results follow directly from the corresponding CEV
results in the preceding theorem QED.

This result shows that the common misconception that buying and
selling price are equal for exponential utility is actually false. In fact
equality for buying and selling price is true only for the risk neutral
decision maker with infinite risk tolerance. For any finite risk
tolerance BP(X,τ)<SP(X,τ) and in the most common case in which
2*MIN(X)<MAX(X) there will exist a risk tolerance such that
SP(X,τ)=2*BP(X,τ) corresponding to the well-known maxim that “a
bird in the hand is worth two in the bush.”

Risk Tolerance Parametrics and Maximal Value
Frontier

There are some general analysis procedures associated with the risk-
averse decision analysis paradigm proposed here that we feel should
always be carried out. The step by step is as follows:

• Using the Data Table command in Exel (or other equivalent
programming tool) resolve the decision analysis problem over a grid of
risk tolerance values ranging from suitably small to suitably large,
storing the solutions obtained in a Scenario Results Table;

• Using the Goal Seek tool in Excel (or other equivalent
programming tool) find accurate risk tolerance values where the
solution changes (in the discrete case) or a solution breakpoint occurs
(in the continuous case);

• Compile a Policy Region Tabulation to summarize the sequence of
optimal policies obtained giving the applicable risk tolerance range for
each (in the discrete case), or an Asset Allocation Breakpoint Table (in
the continuous case).

Citation: Davis RE (2014) Risk Tolerance Parametrics and the Maximal Value Frontier: The Value of Information for Risk-Averse Decision
Making With Exponential Utility. Bus Eco J 5: 115. doi:10.4172/2151-6219.1000115

Page 2 of 13

Bus Eco J
ISSN:2151-6219 BEJ, an open access journal

Volume 5 • Issue 3 • 1000115



• Plot the maximal CEV value obtained as a function of risk
tolerance (defined as the MAXIMAL VALUE FRONTIER), with
vertical lines locating policy changes or solution breakpoints, and
annotation in each interval indicating what the optimal policy is in
that interval;

• Perform a risk tolerance estimation Q&A with the decision maker
to obtain a range of risk tolerance values containing the least square
estimate of the risk tolerance for the decision maker in question;

• Superimpose the “interval of uncertainty” in the least square risk
tolerance estimate on the policy region or breakpoint table or Maximal
Value Frontier plot to identify those midrange policy or allocation
solutions that obtain in the vicinity of the least square risk tolerance
estimate;

• Present those midrange policies or allocations that occur in the
“interval of uncertainty” to the decision maker for review and
consideration.

• If model or parameter changes are obtained from the decision
maker as a result of step 7, repeat those of the preceding steps that are
necessary to arrive at the new results, and repeat step 7 again, until the
decision maker is able to make a final policy or allocation selection.

The basic idea is to resolve the decision problem repeatedly on a
grid of Risk Tolerance values (this is Risk Tolerance Parametrics or
RTP) and from the resulting scenario results table, create a chart and
table that shows the different optimal policies that result. In our view,
this can and should be done before estimating the decision maker’s
risk tolerance, to get a global view of the space of maximal value
solutions before narrowing the range according to the risk tolerance
estimation procedure. This is analogous to the practice in portfolio
optimization, where the entire Mean-Variance Efficient Frontier is
determined prior to selection of the optimal point on the curve by
reference to some measure of the investor’s risk aversion, or as we
prefer to do here, in terms of the investor’s risk tolerance. In fact, the
RTP-MVF methodology described here can be thought of as a
generalization of the well-known Mean-Variance Efficient Frontier
concept (used for normally distributed returns) that can be used for
any non-normal and asymmetric probability distributions. See Davis
[5] for a treatment of portfolio optimization with asymmetric gamma
distributed returns. A conference presentation [4] was also given on a
portfolio model using asymmetric beta distributed returns.

Simple gamble comparison example
The RTP-MVF analysis paradigm just described can be illustrated

with a simple gamble comparison example that also serves to acquaint
the reader with the three CEV functions most often used in practice,
or most likely to be used, as the methodology becomes more well-
known. The first gamble has payoffs described by a finite discrete
distribution for which the CEV formula has already been given. This
will be option A for the example decision analysis, and will be a
gamble having probabilities [0.3, 0.4, 0.3] for values [30, 60, 90]
respectively. Hence the mean value is $60, the variance is 540$2 and
the minimum payoff is $30.

The second option B will be based on a histogram distribution, such
as simulation and data analysis tools usually create. Such a distribution
is described by n intervals and a set of n probabilities summing to 1.0
where interval i is the interval from xi-1 to xi and the interval
endpoints [x0, x1, …,xn] are arranged in increasing order. The
probability for an observation in interval i is the given pi value, and the

distribution is uniform across each interval. For reference we note that
the mean and variance for such a distribution are given by the
following formulas, where the subscript H stands for the Histogram
distribution.

Histogram  Mean    μ H = ∑
i=1

n
p i

x i−1 +x i
2  and

Histogram  Variance  σ H
2 = ∑

i=1

n
p i

x i−1
2 +x i−1x i +x i

2

3 −μ H
2

The mean value is the weighted average of the interval midpoints, and
the second moment is the weighted average of the interval second
moments. The variance is given as the second moment less the square
of the mean, as usual.

In Appendix C we show that the CEV for the continuous Histogram
distribution takes the following form, where we use mi for the interval
midpoints and wi for the interval half-widths.

m i = x i−1 +x i / 2 ; w i = x i−x i−1 / 2

CEVH = − τ *ln ∑
i=1

n
p ie−mi/τ sinh w i / τ

w i / τ

This form is very similar to that used for the finite discrete
distribution, where the interval midpoint takes the place of xi and
there is an “adjustment factor” for width of the interval that involves
the hyperbolic sine function, expressed in terms of relative half-width
(i.e. relative to the risk tolerance). The adjustment factor approaches 1
as wi goes to zero. The data for option B is shown in the following
Table 1.

Histogram parameter set

Breakpoints Cum Probs

0 0

30 0.1

60 0.3

90 0.6

120 1

Table 1: Histogram Parameter Set.

This histogram has four intervals with interval probabilities [0.1,
0.2, 0.3, 0.4] respectively. The minimum value is zero, the mean value
is $75 and the variance is 975$2. Compared to option A, its mean value
is higher, but its variance is larger and the worst case is worse.

Finally the third option C is a gamble with a simple normal
distribution with mean 80 and standard deviation 30. Hence the worst
case is -∞ and the variance is 900$2. It has the highest mean but the
worst minimum value. The fairly well known CEV function for the
normal distributions [6-10] is as follows.

CEVN = μ −0.5σ2 / τ

The decision problem is to choose the option that has the greatest
CEV. Obviously, the answer to the question depends on the size of the
risk tolerance parameter. The RTP procedure requires we re-evaluate
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the three options for a range of risk tolerance values. At the extremes,
we find that based on expected value, the preference ordering would
be C>B>A whereas based on worst case, the preference ordering
would be just the opposite, A>B>C. The risk tolerance parametrics
(RTP) process entails resolving or reevaluating the problem on a grid
of risk tolerance values which is such that the first optimal choice is A
and the last optimal choice is C. This is easily accomplished in Excel
using the Data/Table command. Plotting these three Value Profiles
gives rise to the Maximal Value Frontier and a set of policy regions
(intervals in risk tolerance) in which the optimal choice remains
constant as shown in the Figure 1. As expected, we find that there is no
one optimal solution for all risk tolerance values, rather there is a set of
options which are optimal for some risk tolerance intervals, and also a
set of options which are not optimal for any risk tolerance value. Here
is the chart depicting this analysis for the present case.

Figure 1: Value Profile Comparison.

The profile for option A begins at 30 (the min for A) on the left and
rises towards a limiting value of 60 (the EMV for A) on the right. The
profile for option B begins at zero and rises towards a limiting value of
75 on the right. The profile for option C begins at -∞ and rises towards
a limiting value of 80 on the right. The upper envelope of the
collection of value profiles is the Maximal Value Frontier for the
problem. In this case, A is optimal for all risk tolerances greater than
zero and less than 12.28 (approx.). For risk tolerances greater than the
policy region breakpoint value 12.28 it is seen that option C is
preferred. In this case, option B is never optimal since it does not
appear in the maximal value frontier, meaning that CEV (B) is always
less than the maximum of CEV (A) and CEV(C). Hence we can define
a new sort of dominance, dominance in CE-Value. We say that B is
dominated by {A, C} in CE-Value when CEV (B,τ)
<MAX(CEV(A,τ),CEV(C,τ)) for all positive risk tolerances.

The remaining element of the RTP-MVF procedure to be shown is
the Policy Region Tabulation (PRT). In this table the risk tolerance
intervals are listed in increasing order together with the “policy” that is
optimal on each risk tolerance interval. The word policy is used
because this methodology can be applied to large decision trees having
many decision nodes, and a new interval occurs whenever any one of
the decisions in the decision rule changes. In our simple example,
there is only one decision node, so the policies are specified by the
alternative chosen. In a more complex situation, a more complex
decision rule would be associated with each region in the tabulation.

These decision rules would be computed by using CEV at each chance
node instead of the usual risk neutral EMV evaluation.

By subtracting CEV (A) from CEV(C) we can search for the zero
point for the difference (using the Goal Seeker Tool in Excel, for
example). In this case the (approx) risk tolerance obtained is 12.28
(dollars, or other monetary unit as defined in the problem). Hence the
PRT in this case is simply shown in the Table 2.

0 to 12.28 Choose A

12.28 to +∞ Choose C

Table 2: Policy Region Tabulation.

One finds that if option B were to be enhanced appropriately, it
enters into the PRT and the MVF as the optimal choice in some
midrange risk tolerance interval. In fact, if the two lower breakpoints
are moved up to 15 and 45 respectively (leaving the other parameters
unchanged), then the mean of B moves up to $78, variance drops to
718.5$2 and the Maximum Value Frontier appears as in the chart
below shown in the Figure 2.

Figure 2: Revised Value Profile Comparison.

The associated Policy Region Table 3 in this case becomes

0 to 5.31 Choose A

5.32 to 40.17 Choose B

40.18 to +∞ Choose C

Table 3: Policy Region Table.

Now there are no dominated alternatives; indeed, all options are
optimal over some range of risk tolerances. A, being the MaxiMIN
choice, is still optimal for the smallest risk tolerance range, and C,
being the EMV choice, is still optimal for large risk tolerance range.
But now there is a significant midrange for risk tolerance in which B is
the preferred choice. For larger more complex problems, the
intermediate solutions between the MaxiMIN choice and the EMV
choice may be more numerous, of course. The first major purpose of
the RTP-MVF methodology is to find out what these intermediate
solutions are, their associated risk tolerance ranges, and lay them “on
the table” for explicit consideration. Then estimation of the
appropriate risk tolerance range will identify which solutions on the
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MVF need to be considered most closely to make a final selection. Risk
Tolerance estimation is covered in later in section 6.

Decision Tree Problem with Information Option
The standard value of information concepts EVPI & EVSI for risk

neutral evaluations have natural extensions in the risk-averse case,
denoted CEVPI and CEVSI. Instead of measuring an increase in
Expected Monetary Value (EMV = Σpixi), one measures an increase in
Cash Equivalent Value (CEV = -τ*ln(Σpiexp(-xi/τ)). This is simple
enough to define, but some surprising and significant things happen
when you carry out the risk tolerance parametric analysis in specific
cases. The example developed in this paper shows, in particular, that
CEVSI can be MUCH LARGER than EVSI in certain mid-range risk
tolerance intervals, meaning that the decision to buy or not buy
information may be different as well. In the example below, the
CEVSI/EVSI ratio rises to over 5.5, so that in many cases the
information option that might be passed over by the risk neutral
decision maker should in fact be purchased by the risk-averse decision
maker. Other textbook examples have been seen in which the value
ratio is over 27.

There is another extremely important point that can be illustrated
with this same example. This point constitutes one of the principal
justifications for accepting the delta-property axiom and therefore
using exponential utility for risk-averse analyses. It is the consistency
between the backwards induction process and the value of the
information. Since the value of the information is computed as if it
were free, the cost of the information does not enter into either EVSI
or CEVSI. Let us supposed that the CEVSI obtained for a given risk
tolerance exceeds the cost of the information, indicating that the
information should be bought. If the cost of information is now
deducted from all terminal payoffs on branches following the decision
to buy, the backwards induction can be done again. We would like to
see that the optimal policy (and value) obtained taking the cost of
information into account agrees with the optimal policy (and value)
indicated by the CEVSI computation. In fact, if we do not get the same
policy (and same value), then we seem to have a contradiction that is
hard to explain. It turns out that the only way to avoid this kind of
contradiction is to require that the delta-property continue to hold in
the risk-averse case as it does for the EMV case. And as we have seen,
this means that the utility functions for risk-averse analysis must come
from the exponential utility family.

The example analysis

ACE Computer Company has been using the Be-Sure Survey
Company to predict the success of new products. Over a period of
years ACE has found that when a new product was successful, i.e.,
sales were high for that product, the survey Co. study had predicted
success 30% of the time, showed inconclusive results 60% of the time
and predicted failure 10% of the time. The record also indicated that
when sales for a new product were low Be-Sure Survey Co. predicted
success 10% of the time, showed inconclusive results 40% of the time
and predicted failure 50% of the time. ACE Company has established
the probability of high sales for a new product at 40% and low sales
have a 60% probability.

It will cost ACE Company $1 million to introduce its new product,
and if Be-Sure Survey is retained again, it will cost $100 thousand for
the survey. If sales are high they expect to gross $4 million and they
would expect to gross $0.5 million on low sales.

Prior analysis

We first construct a payoff table for the “main” decision, which is
whether or not to market the product. If the product is not marketed,
there is no introduction cost and no revenue, so the payoff is zero
regardless of the level of potential demand. If the product is marketed,
the net profit is 4 - 1 or $3 million under the High demand scenario
and 0.5 -1 or a loss of ($0.5) million under the Low demand scenario
as shown in the Table 4.

 A0 A1 V*

E1 (High demand)
0.4

0 3 3

E2 (Low demand)
0.6

0 -0.5 0

EMV 0 0.9 1.2

Table 4: Prior Analysis Go/Nogo Payoff Table.

The expected value is higher for the A1 decision (market the
product). Hence the highest expected value that can be achieved
without perfect or sample information is $0.9 million or $900,000.
With perfect information available, the expected value increases to
$1.2 million or $1,200,000. EVPI is the difference, or $300,000. Since
Be-Sure Survey Company is only asking $100,000 for their survey,
there is some possibility, at least, that it might be worthwhile to use
their services. But the decision about this issue must await the
outcome of the decision tree analyses of sample information described
next.

Posterior analysis

Since the EVPI for this situation exceeds the asking price of
$100,000 for the Be-Sure Survey marketing study, it is conceivable that
the market study might be worthwhile. But this depends upon the
track record, which Be-Sure has had in previous studies of the same
sort in the past. From the data given in the problem statement we can
tabulate the following prior and conditional survey result probabilities
shown in the Table 5:

Prior
Probability

State P(PS|Ei) P(I|Ei) P(PF|Ei) SUM

0.4 High
Demand

0.5 0.4 0.1 1

0.6 Low
Demand

0.1 0.4 0.5 1

Table 5: Conditional Survey Result Probability Table.

State P(PS and Ei) P(I and Ei) P(PF and Ei) Marginal

High
Demand

0.2 0.16 0.04 P(E1)=.4

Low Demand 0.06 0.24 0.3 P(E2)=.6

Marginal P(PS)=.26 P(I)=.40 P(PF)=.34 1

Table 6: Joint Probability Table.

Citation: Davis RE (2014) Risk Tolerance Parametrics and the Maximal Value Frontier: The Value of Information for Risk-Averse Decision
Making With Exponential Utility. Bus Eco J 5: 115. doi:10.4172/2151-6219.1000115

Page 5 of 13

Bus Eco J
ISSN:2151-6219 BEJ, an open access journal

Volume 5 • Issue 3 • 1000115



The row sums are 1.0, indicating that each row is a separate
probability distribution, conditioned on which demand level applies.
The column sums need not be 1.0. Now, to form the joint probability
table, we must multiply each conditional probability by the prior
probability at the beginning of the row in which it occurs. This yields
the following shown in the Table 6:

Now the row sums give the marginal probabilities for the demand
levels, i.e. the prior probabilities in this case, and the column sums give
the marginal probabilities for the survey results. Finally, by dividing
the joint probabilities in each column by the marginal survey result
probability at the base of the column, we get the “posterior”
probabilities, or the conditional probabilities for the demand levels
given the survey result shown in the Table 7.

State P(Ei|PS) P(Ei|I) P(Ei|PF)

High Demand .2/.26=10/13 .16/.40=0.4 .04/.34=2/17

Low Demand .06/.26=3/13 .24/.40=0.6 .30/.34=15/17

SUM 1 1 1

Table 7: Posterior Probability Table.

In this table the columns sum to one, and the row sums need not be
one. Each column gives the “revised” or “updated” or “posterior”
probability distribution for the demand level, given the survey result
reported by Be-Sure Survey Co. Notice also that if Be-Sure predicts
success (PS) then the probability of High Demand increases from its

prior of 0.4 to a posterior of almost 77%. On the other hand, if Be-Sure
predicts failure (PF) then the probability of High Demand decreases
from its prior of 0.4 to a posterior of less than 12%. And if Be-Sure is
indeterminate (I) about sales, then the decision-maker regards High
Demand as a 40-60 proposition, just the same as the prior
probabilities.

Pre-posterior analysis

Our next task is to evaluate the EVSI (Expected Value of Sample
Information) for the Be-Sure survey result. We wish to know what it
would be worth to us in increased expected value, if the information
were free. By comparing this EVSI with the price Be-Sure is asking for
its prediction ($100,000) we can determine whether or not to buy the
information. In particular, we can compute the ENGSI (Expected Net
Gain of Sample Information) which is the difference between the two,
ENGSI = EVSI - Cost of Information. If there were more than one
Survey Company we were considering, each with a different track
record and a different cost of survey, we could compute the ENGSI for
each alternative information source. In this case we could pick that
one which gives the largest expected net gain, if any is positive, or
make the main decision without surveying if they are all negative.

In order to evaluate EVSI, we need to develop and “roll-back” the
decision tree corresponding to the “BUY SURVEY” decision. In this
analysis, the cost of the survey will be neglected (i.e. treated as zero)
and the marginal survey result probabilities and the posterior demand
level probabilities will be employed, as shown in the tree below as
Figure 3.

Figure 3: Result probabilities and the posterior demand level probabilities.

We have computed the expected revenues at the end of the tree, and
then subtracted the $1 million cost of marketing only when the Market
decision yields the higher net return. The net return figures are shown
in each decision box based on the optimal policy from that point
forward. In this case the optimal decision policy is to market the
product if the Be-Sure result is PS or I, and not market the product if
the Be-Sure result is PF.

The net expected values for each survey result are then weighted by
the survey result probabilities. This gives an expected value of $0.93
million given (free) sample information, or $930,000. When this is
compared with the best we could do using prior information, namely
$900,000, we have

EVSI = EV|SI - Max EMV(Ai) = $930,000 - $900,000 = $30,000
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The expected value of having access to the Be-Sure Survey Co. result
prior to the marketing decision is only $30,000 and they are asking
$100,000 for it. Thus based on expected values, the ENGSI comes out
to be a large negative amount ($70,000). If the decision-maker is risk
neutral (i.e. makes decisions based on expected values only), then the
most that could be paid for the Be-Sure survey result would be
$30,000. Paying anything more would cause the expected net gain to
go negative, and hence is inferior to simply marketing the product
without the benefit of the survey result.

The Risk-Averse Analysis Using a Risk Tolerance
In reality, we know that decision-makers generally have a certain

amount of risk aversion, so that they exhibit some sensitivity to the
worst case result as well as the expected value of the outcome. The
certainty equivalent value (or CEV, for short) of a chance outcome is
therefore obtained by discounting the expected value of the outcome
by a certain “risk premium” which depends upon the risk tolerance of
the decision-maker. The optimal decision rule and also the value of
perfect and survey information must therefore be computed in terms
of the two cash equivalent values involved, assuming the information
is free, so that we have the following Table 8.

CEVPIt = CEVt|PI - Max CMEt (Ai)

CEVSIt = CEVt|SI - Max CMEt (Ai).

Table 8: Information Value Concept Definitions.

As the risk tolerance scale factor τ decreases from ∞ towards 0, the
policies, both with and without sample information, may change to
reflect a progressively more and more risk-averse posture, until the
risk tolerance is so small that the product would not be marketed
under any conditions. At this point the CEVSI drops to 0. Our
problem in this risk tolerance parametric analysis is to determine at
exactly which values for risk tolerance does the policy change (with or
without survey information). Also, how do CEV|PIτ, CEV|SIτ and
Max CEτ (Ai) and thus CEVPIτ, and CEVSIτ change between these
“breakpoints” in the risk tolerance level. When we plot these cash
equivalent values between the policy change “breakpoints” in different
colors, we get what is called a “Rainbow Diagram.” EXCEL
spreadsheets for accomplishing this, and the associated charts of
CEVPI and CEVSI, are shown below, but first we illustrate the
computational process using just one particular value for τ, namely τ =
1 million $ (i.e. $1,000,000).

Prior analysis with a risk tolerance

Let’s calculate the CE value for the prior analysis first, without using
the results of the survey. We have

CE(A1) = -1*ln[0.4EXP(-4/1)+0.6EXP(-0.5/1)] - 1 = -0.009106 = -
$9,106

where the prior probabilities have been used to evaluate the chance
node on level of demand. We would get the same value if we had
evaluated the net profit figures from the payoff table,

CE(A1) = -1*ln[0.4EXP(-3/1)+0.6EXP(0.5/1)] = -0.009106 = -
$9,106

This is due to the "Value Additivity" or delta-property of
Exponential Utility mentioned before. We can compute the CE value
ignoring the 1M cost and then subtract the 1M, or we can subtract the

1M cost first and then compute the CE value; we get the same answer
either way. Also note that the value of the A1 alternative has dropped
from its former $900,000 level all the way down to just under zero, so
the former GO with the product is replaced with a NOGO preference.
The Risk Premium in this case is given by

RP = EMV - CEτ = $900,000 - (-$9,106) = $909,106

Notice also that the value of the V* gamble (given Perfect
Information) has changed as well, since we have

CEτ|PI = -1*ln[0.4EXP(-3/1) + 0.6EXP(0/1)] = .478173185 =
$478,173.185

Consequently, in this case the value of perfect information is given
by

CEVPIτ = CEVτ|PI - Max{CE(Ai)} = $478,173.19 - $0 =
$478,173.19

This is substantially greater than the EVPI obtained before, namely,
$300,000. Thus the value of perfect information can be worth more to
the risk-averse decision-maker than to the risk neutral decision-maker.
We shall see shortly that the same is true for the value of sample
information. Also by varying the risk tolerance through a range of
values, we get a chart of CEVPI as a function of τ.

Posterior analysis with a risk tolerance

Let's turn now to the computation of the value of sample
information. When the backwards induction process is carried out for
a risk-averse decision maker, ALL chance nodes are regarded as
gambles at which a cash equivalent value must be computed from the
probabilities and the cash equivalent values for outcomes at a the
node. Thus all expected value computations are replaced with cash
equivalent value evaluations. This must be done THROUGHOUT the
ENTIRE TREE, not just at the ends of the tree. Let’s see how this
works out for the Be-Sure decision with τ = 1.

Consider the three demand level chance nodes using the three sets
of posterior probabilities. After the “predict success” result (PS), the
posterior probabilities are 10/13 and 3/13, which lead to a net value of

CE|PS = -1*ln[(10/13)EXP(-3/1)+(3/13)EXP(0.5/1)] = 0.870428936
= $870,428.94

Likewise, after the indeterminate result (I) we have

CE|I = -1*ln[0.4EXP(-3/1)+0.6EXP(0.5/1)] = -0.009106 = -$9,106 <
0

as previously obtained in the Prior Analysis, so the decision is
NOGO in this case with a net value of 0. And after the “predict failure”
result (PF) we have

CE|PF = -1*ln[(2/17)EXP(-3/1)+(15/17)EXP(0.5/1)] = -0.37885509
< 0

so in the last case it's also preferable not to market the product, and
the net value is 0.

Now backing up to the chance node for the survey result, we again
use the cash equivalent formula (NOT an expected value calculation)
and obtain

CE|SI = -1*ln[0.26EXP(-0.870428936/1)+0.4+0.34]=0.163836632 =
$163,836.63
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where the last two exponential terms reduce to 1.0 since the payoff
value in that case is zero and exp(0)=1. Placing these cash equivalent
values on the decision tree gives us the following modified Figure 4:

Figure 4: Cash equivalent values on the decision tree.

And the corresponding tree for the prior analysis has changed to:

Figure 5: Corresponding tree for the prior analysis.

Finally taking the difference between CEV|SI and CEV|priors we
obtain

CEVSI = CE|SI - Max CEV(Ai) = $163,836.63 - $0 = $163,836.63.

Now this IS interesting! The CEVSI has gone UP dramatically from
the EVSI, which was only $30,000. The information is worth MUCH
MORE to the risk-averse decision-maker than to the risk neutral one.
Hence we cannot assume that the most one should pay for the sample
information is $30,000. We have shown that when τ = 1, the decision-
maker would be willing to pay up to $163,836.63 for the survey result,
a full $130,000 more than the risk neutral decision-maker would.
Hence the $100,000 asking price is seen as attractive in this case, and
CENGSI = $163,836.63 - $100,000 = $63,836.63. Also, note the
magnitude of the increase in information value in terms of the ratio
CEVSI/EVSI = 5.46, nearly five and a half times as large. In the course
of instruction, we have seen this ratio as high as 27 times higher.

Risk Tolerance Parametrics
By varying the risk tolerance across a range of values, one can easily

show that in fact there is a substantial range of risk tolerances that
would justify the $100,000 price for the sample information. In fact, as
you systematically vary τ, you will find that there are three distinct
“breakpoints” in the analysis where either the prior or the posterior
policy changes. As you increase τ from 0, you will first notice that the
Max CEV for the prior policy is zero, which means that the product is
not introduced, based on prior information only. At a somewhat larger
value, one finds that the Be-Sure Survey option becomes attractive,
and that an I result from Be-Sure is not sufficient, and one only goes
ahead with the product if the Be-Sure result is PS. In the next policy
region, a PS or an I result is sufficient to justify going ahead with the
product. And finally, the CEVSI drops below $100,000 again so the
optimal decision is to just introduce the product with no survey, which
is the risk neutral or EMV policy. From the attached graph of CEVSI,
you can see that it varies nonlinearly in a smooth way between
breakpoints, and that it achieves a maximum value at a unique value of
τ. What is the value of τ which maximizes CEVSI? What is the
maximum value that CEVSI attains? What is the maximum value that
CEVSI/EVSI attains? Explain the significance of this result.

To summarize the results of the parametric analysis on risk
tolerance, it is convenient to create a table showing the optimal
policies for each policy range, and the interval of risk tolerances over
which that policy is optimal. The policies that appear in this table
constitute the “MAXIMAL VALUE FRONTIER” for the problem, and
all other policies are said to be CEV-dominated by these which are
optimal for one risk tolerance or another. A plot of the maximum CEV
for each risk tolerance in which the area under the curve is color coded
according to which policy is optimal is called a Rainbow Diagram for
the Analysis and depicts the range of optimality for each policy
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graphically. The table and chart for the Be-Sure Survey analysis are
shown below. The color coding in the third Column correlates with
the color coding on the Rainbow Figure 6.

Figure 6: Color Coded Maximal Value Frontier.

This is associated with the following

Table 9: Policy Region Tabulation.

The first policy is appropriate for the ultra-risk-averse decision
maker who evaluates gambles in terms of their worst case shown in the
Table 9. And the last policy is appropriate for the risk neutral decision
maker who evaluates gambles in terms of their EMV. The benefit of
the risk tolerance parametric analysis is that it shows up two more “in

between” policies that are optimal for mid-range risk tolerance levels,
both of which indicate purchase of the Be-Sure Survey result. Note
that the risk tolerance range in which the Survey is purchased extends
from $694,577 all the way up to $3,199,662. This is a significant
interval that might very well include the risk tolerance appropriate for
the ABC Computer Company executives. Hence the information
option cannot be rejected just because the $100,000 cost exceeds the
EVSI of $30,000. If the decision makers are risk averse, as they usually
are, then one must compute the CEVSI values, and these may well
indicate purchase of the information even when EVSI does not.

To get a visual sense of the degree to which CEVSI may exceed
EVSI, one can construct the plot of CEVSI versus risk tolerance, as
shown in the Figure 7 below.

In this case the EVSI is only $0.03 Million whereas the CEVSI rises
to over $0.16 Million when risk tolerance is in the neighborhood of $1
Million, an increase of over five times. This makes the information
attractive (even when priced at $100,000) across a significant risk
tolerance range, whereas the EVSI result would reject the survey
option out of hand.

Figure 7: Cevsi as A Function of Risk Tolerance.

Consistency check

One of the nice features of risk neutral EMV analysis is that the
EMV of the optimal policy risk profile is equal to the EMV developed
by the backwards induction process which shows over the first node in
the decision tree. This is insured because EMV satisfies the delta-
property requirement that EMV(X+Δ) = EMV(X)+Δ where Δ is any
constant. It would be nice if this remained true for risk-averse analyses
as well, and, in fact it does remain true if the utility function also
satisfies the delta-property so that CEV(X+Δ) = CEV(X) + Δ. For
other utility functions that do not have this property, contradictions
may arise in which the value of information results are different from
what is obtained via the backwards induction process. That is, the
results obtained by keeping the cost of information on the branch
preceding the sample information chance node may be different from
the results obtained by netting out the cost of the sample from the
payoffs at the end of the tree. If this occurs, then one is in a quandary
to explain why the optimal solution from the backwards induction is
not the one indicated by the value of information results. The only way
to avoid this quandary is to require the utility function to have the
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delta-property, which, as we know, implies that it be from the
exponential utility family.

Let us now confirm equality of the results for the analysis
completed in this example with risk tolerance at $1 million as before.
By deducting the $100,000 survey cost from the CEVSI we obtained
the value $63,836.63 for the optimal policy, which was to “Buy Survey;
Market only if PS”. Now we will develop the risk profile for this policy
by collapsing the tree down to a single chance node, deducting the
$100,000 survey cost from the affected terminal node values. We find
there is a 74% chance of just losing the $100,000 cost of the sample, a
20% chance of the “big hit” being $2.9 million in this case, and only a
6% chance of taking a major loss of $600,000. Hence in Figure 8, we
have

Figure 8: Results for the analysis.

Note that the CEV of the risk profile for the optimal policy is
EXACTLY equal to the CEV we got by backwards induction on the
decision tree with the cost of information subtracted only once at the
beginning of the tree, not multiple times at the end of the tree. The
policy obtained is the same as well, because the choices made at each
of the decision nodes will be the same in either analysis. This equality
of results will always be true for exponential utility analysis because of
the delta-property that is true for this family of utility functions.

Portfolio optimization example

The standard Markowitz portfolio optimization problem is usually
formulated with a minimum variance objective and an expected return
constraint. Parametrics are performed by increasing the expected
return target from the minimum possible to the maximum possible to
sweep out the mean-variance efficient frontier. In this context, we
prefer to formulate the objective function as a maximization of the
certainty equivalent value of the portfolio return distribution. The
parametrics are then done by varying the risk tolerance parameter
from 0 to infinity, obtaining a minimum variance solution at one end
and a maximum expected value at the other. Specifically we

Maximize r’x - 0.5*x’Cx/τ subject to 1’x=1 (or 100) and x ≥ 0

Here r is the column vector of expected returns, x is the column
vector of investment levels (normally fractions summing to 1, or
percentages summing to 100, or dollar investments summing to the
portfolio fund size). C is the covariance matrix for the returns, and 1’
is a row vector of ones the same dimension as x.

It can be shown that when the parametric analysis on risk tolerance
is done in this case, the asset allocations turn out to be piecewise
linear, with breakpoints where an allocation declines to zero, or rises
from zero. This is a particular convenient result since the entire range
of solutions can then be obtained by linear interpolation in a
breakpoint table showing the allocations only at breakpoints. Since the
number of breakpoints is usually a fairly small number, this is an
extremely compact and useful representation of all the solutions on the
MVF.

In this example, based on data given in [5], the first stock is for
APD, the second is for IBM, and the third is for XON. The returns and
covariance matrix for the example are

r   =  
0.0988
0.1487
0.1756

 C  =  
0.0264 0.0036 0.0336
0.0036 0.0351 −.0029
0.0336 −.0029 0.0558

The mean returns and variances increase in the sequence given.
Essentially the same results were obtained using the Excel Solver and
the MATLAB Optimization Toolbox quadprog function, as shown on
the Figure 9 below.

Figure 9: Asset Allocations as function of Risk Tolerance.

For small risk tolerances (less than 1.1.6193%) XON remains at zero
level, having the largest variance, with about equal allocations to APD
and IBM. On this first interval, the allocation shifts from APD to IBM
with increasing risk tolerance since the expected return for IBM is
greater than for APD. On the next interval, XON comes into the
solution and the shift to IBM increases until APD goes to zero at
τ=6.9434%. On the third interval the allocation shifts from IBM to
XON with increasing risk tolerance since the expected return of XON
exceeds that of IBM. Eventually at τ=218.2156% the IBM allocation
goes to zero, and 100% of the allocation goes to XON for all larger risk
tolerances. Since (it can be shown) the allocation plots are piecewise
linear for each investment class, the entire solution can be
characterized in a table listing the allocations at each breakpoint in the
analysis, where an activity that had been zero becomes positive or
where an activity that had been positive becomes zero. In this case that
table is:

On the intervals between breakpoints, the allocation formulas are
linear in risk tolerance shown in the Table 10; hence intermediate
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solutions can be obtained with linear interpolation between successive
breakpoint solutions. For this particular example the linear formulas
are as follows:

Risk Tolerance % APD % IBM % XON %

0 58.011 41.989 0

1.6193 56.5229 43.4771 0

6.9434 0 58.7717 41.2283

218.216 0 0 100

Table 10: Allocation Percentages Vs Risk Tolerance.

On [0, 1.6193]

APD
IBM
XON

  =  
58.011
41.989

0
 +

−.918969
0.918969

0
 τ

On [1.6193, 6.9434]

APD
IBM
XON

  =  
73.7145
38.8252
−12.5397

 +  
−10.6165

2.8727
7.7438

 τ

On [6.9434, 218.2156]

APD
IBM
XON

  =  
0

60.7032
39.2968

 +
0

−.2782
0.2782

 τ

These formulas are shown to emphasize the fact that asset
allocations vary linearly with risk tolerance between breakpoints. In
practice, linear interpolation in the former breakpoint table will
suffice.

Another important advantage of the maximum CE value
formulation is that it generalizes to asymmetric distributions for which
the mean-variance efficient frontier is no long optimal in any
maximum expected utility sense. To illustrate this point, let us now
suppose that the three given gambles in the earlier simple example (A,
B, and C) are the forecasted total dollar returns for a $50 investment in
each one (we use the enhanced version of Gamble B for this example).
Let us also assume that this is a mutual fund type situation that allows
for fractional allocations in each gamble. When it is possible to split
the $50 investment between the three gambles, then we obtain a
portfolio optimization problem that is formulated in terms of
maximizing the portfolio CEV which is a function of the fractions of
the investments in each gamble. If the return distributions are
independent one from the other, then, because of the value additivity
property, we have that CEV(Portfolio) = CEV(fa*A) + CEV(fb*B) +
CEV(fc*C) where the fractions (fa, fb, and fc) are nonnegative and
sum to 1.Formally, the problem is to

Maximize Portfolio CEV = CEV(fa*A)+CEV(fb*B)+CEV(fc*C)

Subject to  fa+ fb+ fc = 1 and fa, fb, fc ≥ 0

Scaling Gambles A and B is accomplished by scaling the xi
parameters in their definitions, leaving the probability assignments the
same. For the normal distribution, the mean and standard deviation
are scaled by the fractional allocation fc. Maximizing Portfolio CEV
subject to the given constraints is a well formed and well behaved

nonlinear programming problem which is easily solved for a range of
risk tolerance values, using the Solver Table Excel Add-in for example.

We can anticipate the behavior of the optimal allocation at the two
extremes, i.e. where risk tolerance tends towards 0 and where it tends
towards infinity. Since Gamble A has the largest MIN value, the
portfolio allocation will put virtually everything in Gamble A as the
risk tolerance tends towards 0. And since Gamble C has the largest
EMV the allocation will put virtually everything in Gamble C as the
risk tolerance tends towards infinity. With the RTP-MVF analyses,
one gets the allocations for in between risk tolerance values which can
be plotted to give a pictorial representation for the MVF solutions.
This is presented in the two charts below.

The first chart shows the fractional asset allocations as risk
tolerance varies from 0 to 100, which has sufficient resolution to see
the details of the allocations as fa drops from 1 to 0 as shown in the
Figures 10 and 11 (when the risk tolerance is about 21.5). Although the
three allocations vary nonlinearly with risk tolerance on this interval,
they also exhibit an approximately piecewise linear shape if we break
the interval from 0 to 21.5 in two intervals, from 0 to 6 and from 6 to
21.5. From the second chart it is seen that once A is out of the
allocation (risk tolerance > 21.5), the allocations to B and C vary in an
almost perfectly linearly way with respect to risk tolerance, crossing
with a 50-50 allocation when risk tolerance is about 40. We do not at
present have an explanation. for this behavior, but when it happens it
is very convenient since the results of the analysis can be summarized
in a breakpoint table in which one can interpolate to find
approximately optimal allocations for all risk tolerance levels. For this
example, one obtains the following table. This Table 11 is analogous to
the Policy Region Table in the discrete case, but allows for fractional
allocations to the investment options rather than the discrete selection
in the earlier analysis.

Risk Tolerance Fraction in A Fraction in B Fraction in C

0 1 0 0

6 0.32559 0.3932 0.28121

21.5 0 0.52338 0.47662

450 0 0 1

Table 11: Asset Allocation Table.

With the piecewise linear tabulation, one can very easily obtain
solutions for situations like the following. Suppose an investor says “I
don’t really know what my risk tolerance is, but I feel that I should be
making approximately equal investments in all three gambles.” The
analyst can then point out that the breakpoint table shows that
approximately equal allocations occur for the risk tolerance of 6, and
after a little searching with the nonlinear optimizer can announce that
the closest approach to equal allocations on the maximal value frontier
occurs for τ=6.2 at which point the allocations are (.318766, .395279, .
285955) respectively, or in dollars, ($15.84, $19.76, $14.30). On the
other hand, suppose an investor says “I feel that I should have at least
as much in Gamble A than in the other two combined.” The
breakpoint table shows that in this case the risk tolerance would have
to be less than 6 (in the first interval of the table) and again a little
searching with the nonlinear optimizer shows that this relationship
between the allocations occurs for τ=3.44 at which point the
allocations in dollars are ($25.00, $15.54, and $9.46)
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On the other hand, if the investor says “I would like to have twice as
much invested in Gamble B than the other two combined,” the analyst
has to respond that this does not occur on the maximal value frontier,
and should be set aside as a goal since it is not optimal for any risk
tolerance. Of course, a formal risk tolerance assessment will give more
precise guidance regarding preferred allocations, but our point here is
that valuable insights can be obtained even without a risk tolerance
assessment, if one just carries out the requisite risk tolerance
parametrics and tabulates the optimal solutions for a suitable range of
risk tolerance values.

Figure 10: Asset Allocation as Risk Tolerance varies from 0 to 100.

Figure 11: Asset Allocation as Risk Tolerance varies from 0 to 450.

Least Square Risk Tolerance Estimation
In the foregoing, we have been concerned with characterizing

solution behavior as risk tolerance varies across its entire range from 0
to +infinity. Now we consider how to narrow the range of risk
tolerances by making an assessment of the risk tolerance that best
represents the choice behavior of the decision maker when faced with
a systematically constructed sequence of “calibration gambles.” These

calibration gambles are kept simple by using 50-50 “flip of the coin”
type lotteries with payoffs within the range of outcomes for the
decision tree under consideration.

Generalized Interview Method to Estimate Risk
Tolerance

While there is an objective risk associated with any particular
gamble (risky option), the risk attitude that we measure by means of
the risk tolerance is a subjective attitude embedded in the heart and
mind of the decision maker (D.M.) faced with the choice. Hence to
estimate risk tolerance, we must ask the D.M. to state some
preferences about certain simplified “calibration” gambles. We then
find a “best fit” to the revealed preferences of the D.M. and use the
estimated tolerance to evaluate more complex gambles on behalf of the
D.M. The method described here is a generalization and extension of
the one presented in Chapter 8 of the Smart Choices text by
Hammond et al. [11,12].

The estimation of risk tolerance is best done in relation to a
particular decision problem that can be modeled by means of a
decision tree. If we let H be the maximum payoff in the tree (for High)
and L be the minimum payoff in the tree (for Low), then a sequence of
structured calibration gambles can be developed in the following way.
The notation for the certainty equivalents comes from imagining that
we are construction a utility function for money where U(L) = 0 and
U(H) = 100 (as in the Smart Choices text).

First Calibration Gamble (G.L-H): 50-50 chance for either L or H

The expected utility for this gamble is (U(L)+U(H))/2 or 50. We
obtain the empirical (subjective) certainty equivalent for this gamble
by asking the question: What is the least amount of cash in an
envelope that you would find equivalent in preference to G.L-H? Or,
What is the least amount of cash in an envelope that you would accept
instead of receiving G.L-H? Or, what is the most amount of cash in an
envelope that you would reject in preference for G.L-H? These are
meant to be questions that all have the same answer, just asked in
different ways. The answer will be called ECE.50 for Empirical Cash
Equivalent for G.L-H.

Second Calibration Gamble (G.L-ECE.50): 50-50 chance for either
L or ECE.50

The expected utility for this gamble is (U(L)+U(ECE.50))/2 or 25.
The answer to the same type of question in this case will be called ECE.
25 for Empirical Cash Equivalent for G.L-ECE.50.

Third Calibration Gamble (G.ECE.50-H): 50-50 chance for either
ECE.50 or H

The expected utility for this gamble is (U(ECE.50+U(H))/2 or 75.
The answer to the same type of question in this case will be called ECE.
75 for Empirical Cash Equivalent for G.ECE.50-H.

We could stop there, but in the Smart Choices case they do one
more bisection in preference between ECE.75 and H.

Fourth Calibration Gamble (G.ECE.75-H): 50-50 chance for either
ECE.75 and H

The expected utility for this gamble is (U(ECE.75)+U(H))/2 or 87.5.
So the answer to the same type of question in this case will be called
ECE.875 for Empirical Cash Equivalent for G.ECE.75-H.
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Having these four subjective cash equivalent evaluations from the
D.M. for the four calibration gambles, we now consider the question as
to what risk tolerance best represents these preferences or preference
equivalences that have been given by the D.M. We would like to have a
range of imputed values as well as a “least square” estimate, this being
the “best fit” in terms of minimizing the sum of squared deviations
between the stated (empirical) CEs and those that are imputed by the
CE function for Exponential Utility. In fact, each of the empirical CEV
responses of the decision maker can be used to obtain an estimate of
risk tolerance, simply by solving for that risk tolerance which would
give a theoretical CEV which matches the stated CEV exactly. Hence
Solving

−τln .5e−L/τ +.5e−H/τ = ECE.50 y ie lds τ.50

In the same way, one obtains three other risk tolerance estimates, as
follows

solv ing − τln .5e−L/τ +.5e−ECE.50/τ = ECE.25 y ie lds τ.25

solv ing − τln .5e−ECE.50/τ +.5e−H/τ = ECE.75 y ie lds τ.75

solv ing − τln .5e−ECE.75/τ +.5e−H/τ = ECE.875  y ie lds τ.875
These four estimates will most likely be all different (people are not
naturally consistent, nor do they have a built in exponential utility
function). Hence the least square estimate we find as described below
will be somewhere in the interval between τ.min and τ.max where
τ.min=MIN(τ.25,τ.50,τ.75,τ.875) and τ.max=MAX(τ.25,τ.50,τ.75,τ.
875). In this paper we refer to the interval [τ.min,τ.max] as the
“interval of uncertainty” for the risk tolerance estimate for the decision
maker in question.

To obtain our “optimal” estimate we invoke the time honored
principle of least square fits. In this case, we want to minimize the root
mean square of the deviations between the observed and the fitted
certainty equivalents. Hence our maximand is

RMS=[(ECE.50+Τln(.5e-H/τ+.5e-L/τ))2+(ECE.25+τln(.5e-ECE.50/τ+.
5e-L/τ))2+(ECE.75+τln(.5e-H/τ+.5e-ECE.50/τ)2+(ECE.875+τln(.5e-H/τ+.
5e-ECE.75/τ)2)/4]1/2

This RMS deviation measure is minimized with respect to
variations in the risk tolerance τ, easily accomplished with the Excel
Solver, for example. The risk tolerance that minimizes the sum of
squared deviations is said to be the least square estimate of the
decision maker’s risk tolerance. This will lie in the interval of
uncertainty, which is between τ.min and τ.max, but not necessarily
half way in between the two end points.

Conclusions
We have presented a general risk tolerance parametric analysis

procedure (RTP) that can be applied to any decision making problem
under uncertainty with risk-averse preferences. This methodology
produces two principal results: a maximum value function of risk
tolerance (the MVF) and an optimal policy region tabulation (PRT), or
asset allocation breakpoint table that describes all of the solutions that
occur as risk tolerance is varied from (close to) 0 to very large values.

This is seen as a preliminary model validation method that is done
early on in the search for a “requisite decision model” for the situation
at hand. It can be done prior to risk tolerance estimation for the
decision maker in question, so that when the risk tolerance estimate is
developed, the optimal solution(s) for the interval of uncertainty
around the estimate can be read directly from the Policy Region
Tabulation or the Asset Allocation Breakpoint Table that have
previously been determined.

In addition, for decisions involving an information acquisition
option, the plot of CEVSI may indicate information acquisition over a
significant range of risk tolerance values where the EVSI results do
not. This information acquisition can mitigate downside risk
significantly which manifests itself in greater CEVSI that is not
reflected in the EVSI measure of value.

It is believed that this risk tolerance parametrics methodology will
lead to better models, greater insight and less risk exposure in the
analysis and optimization of decisions made under uncertainty with
risk-averse preferences.
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