Cable Shovel Stress & Fatigue Failure Modeling - Causes and Solution Strategies Review

Muhammad Azeem Raza* and Samuel Frimpong
Missouri University of Science & Technology, Rolla, MO, USA

Abstract
Cable shovel is a primary excavation unit in many surface mines around the world. The capacities of the shovels have seen an ever increasing trend to achieve the economies of large scale operation. The modern day shovels have 100+ tons per pass production capacities. The dynamic force of 100+ ton material combined with the dynamic cutting, friction and acceleration forces during the excavation result in severe stress loading of the shovel front end components. Stress and fatigue cracks appear, as a result of this cyclic stress loading, resulting in expansive breakdown of shovel components. Numerical and analytical techniques can be used to model the stress and fatigue failures. This paper outlines the causes and some of the strategies to model stress and fatigue failure of shovel components and to predict shovel component life.

Introduction
Material excavation is the primary activity in surface mining operations; and shovel excavators are the primary production equipment in mining industry. The active population of cable shovels is about 2400 units around the world out of which 1700 are 20mt or larger capacity (http://parkerbaymining.com/mining-equipment/electric-shovels.htm). Joy Global (P&H), Caterpillar (formerly under Bucyrus) and OMZ(IZ-KARTEX) are the largest electric shovels OEM around the world. The cable shovel is the preferred equipment for excavating larger capacities economically over its economic life. The capital investment in cable shovels can be as high as $25 million. The efficiency of the overall surface mining operations, where shovel-truck system is the primary mining system, is largely dependent on shovel efficiency. There is a trend in the mining industry towards excavating and loading more tons per scoop to achieve the economies of scale and reduce per ton excavation and haulage costs. There has been an increasing trend in cable shovel capacities as the capacity improved from 5yd³ in 1960 to 44+ yd³ today. Modern day cable shovels have thepayload capacities of 100+ tons per scoop. The excavation of 100+ tons per scoop, combined with the weight of the dipper, and diggability variation of the formation result in varying mechanical energy inputs and stress loading of the boom and dipper-and-tooth assembly across the working bench. Furthermore, the repeated loading and unloading cycles of the shovel induce fatigue stresses in the shovel components. The induced stresses over time may exceed the yield strength of steel/ material of the shovel leading to fatigue failure, teeth losses, and boom and handle cracks. These frequent breakdowns result in increased shovel downtime, reduced efficiency, higher repair costs, and increased production costs.

Majority of the shovel downtime is dipper related. Roy et al. [1] reported the dipper related problems to be the 2nd largest contributor towards shovel breakdown time as shown in figure 1. The data also show that dipper related breakdowns were the most frequent amongst all the breakdowns as shown in figure 2. Knights [2] reported a teeth set of 4% in 1960 to 44+ yd³ today. Modern day cable shovels have the payload capacities of 100+ tons per scoop. The excavation of 100+ tons per scoop, combined with the weight of the dipper, and diggability variation of the formation result in varying mechanical energy inputs and stress loading of the boom and dipper-and-tooth assembly across the working bench. Furthermore, the repeated loading and unloading cycles of the shovel induce fatigue stresses in the shovel components. The induced stresses over time may exceed the yield strength of steel/ material of the shovel leading to fatigue failure, teeth losses, and boom and handle cracks. These frequent breakdowns result in increased shovel downtime, reduced efficiency, higher repair costs, and increased production costs.

The current practice for the shovel front-end assembly repair is generally based on experience and history rather than science. This leads to frequent and costly shovel breakdowns. A systematic study is required to model the dynamic stresses during the digging to understand the failure mechanism and quantitative assessment of the failure.

Solution Methodology
To have a systematic study for shovel stress and fatigue failure
A good digging practice involves the penetration of the dipper along the surface of the ground and then hoisting through the shovel. The digging cycle starts with the crowding motion of the components of shovel front-end assembly.

The dipper, dipper teeth, dipper handle and ropes are the important controlled through multiple swing gears, pinions and electric circuits. Swing motion, between excavation face and haulage equipment, is relocating the excavator from one digging site to another and to position itself against the face. Shovel crowd/retract. The shovel uses the propel function to tram from one of the boom, crowd machinery, dipper-handle, dipper and ropes.

The shovel’s upper assembly is a roller and center-pin mounted deck. Additionally, the upper assembly provides a platform for boom control cabinet on the lower deck; and the operator’s cab on the upper decks with housing for the hoist and swing machinery and electronic on the lower mechanism. The upper assembly consists of multiple face. The shovel’s upper assembly is a roller and center-pin mounted crawler system and provides a solid and stable base for the excavator.

The primary motions of a cable shovel include propel, swing, and crowd/retract. The shovel uses the propel function to tram from one digging site to another and to position itself against the face. Shovel swing motion, between excavation face and haulage equipment, is controlled through multiple swing gears, pinions and electric circuits. Dipper, dipper teeth, dipper handle and ropes are the important components of shovel front-end assembly.

The soil-tool interaction and resistive forces depend on a number of modeling, a detailed understanding of the shovel working and its interaction with the formation is required. Figure 3 shows a flowchart for such a study and to determine the life expectancy of shovel front-end components for known defect or assumed cracks. Understanding and modeling the stresses on the shovel components is the first step towards this study. A dynamic model of the shovel is essentially required to model the stresses. A critical component of this shovel dynamic modeling is to model the shovel-formation interaction incorporating the dynamic resistive forces during the digging. A validated dynamic model can lead to a virtual prototype of the shovel front-end assembly measuring the stresses during the normal duty cycle of the shovel. The stress level history data generated through these virtual prototypes, combined with the finite element modeling of the shovel components, can be used to estimate the life expectancy of the shovel front-end components for assumed or known cracks.

Figure 4 illustrates a schematic view of a cable shovel. A cable shovel consists of three major mechanisms: the lower, upper and the attachments. The lower assembly consists of the propel drive and crawler system and provides a solid and stable base for the excavator. This helps relocating and repositioning the excavator against the face. The shovel’s upper assembly is a roller and center-pin mounted on the lower mechanism. The upper assembly consists of multiple decks with housing for the hoist and swing machinery and electronic control cabinet on the lower deck; and the operator’s cab on the upper deck. Additionally, the upper assembly provides a platform for boom attachment and counter weight for the dipper. The attachment consists of the boom, crowd machinery, dipper-handle, dipper and ropes.

The excavation process with a tool can be categorized as penetration, cutting, and scooping processes [4,5]. In general terms, penetration is the insertion of the tool into the medium; and cutting is the lateral movement of the tool, generally at a constant depth. The resistive force and soil failure theories date back to the research efforts by Coulomb [6] and Mohr [7]. Resisting in simpler mathematical formulation for shear failure. Nineteenth century saw a significant work and development in the soil failure theories, especially for soil cutting using tools; and 2D and 3D failure models are available based on empirical, analytical, and FEM and DEM techniques.

The soil-tool interaction and resistive forces depend on a number of...
Cundall and Strack [18] introduced a DEM method to analyze discrete particle assemblies. In DEM the medium is considered as an assembly of discrete particles connected through a spring to represent the elastic/in-elastic properties of the medium. DEM has been used to model soil cutting by different tools and cutting conditions [19-23]. DEM analyses are generally limited to small scale studies. The actual soil cutting process consists of billions of particles which require huge computational resources for real simulation experiments. Further, the particles and contact are generally simpler, while the actual grain geometries and contacts are complex in nature.

Digging with a cable shovel dipper is 3-dimensional in nature, where the side plates also take part in excavation. There exist few 3-D extensions of 2D soil cutting models [10,24,25].

**Shovel Resistance Forces and Modeling**

A cable shovel dipper has teeth at its front end as the cutting tools and the excavation process is a combination of penetration, cutting, and scooping (bucket filling) as shown in figure 5. When cutting by a blade, the cutting force is generally decomposed into two orthogonal components: (i) tangential force component acting along the blade surface, and (ii) normal force acting perpendicular to the blade surface. For excavation with a dipper, the teeth, lips, and side plates all take part during the digging process. Resistance offered by soil on cutting tool forms the basis for resistive force theories or models on excavator. The resistive forces acting on the dipper of a shovel during the digging operation are a combination of cutting forces at the teeth and lip and the excavator, and excavation forces due to material movement along, ahead, and inside the dipper. There have been attempts to model these forces, both experimentally and analytically. Some of the earlier work was carried out by Russian researchers.

Dombrovskii and Pankratov [26] proposed the tangential force to the digging of soil, P, as the sum of three component forces – soil’s resistance to cutting; frictional resistance of the tool with soil; resistance to movement of the drag prism ahead of the tool and the soil movement inside the bucket (Alekseeva et al. [27] given in equation 4. They proposed another simplified model as given in equation 5.

\[
P = \mu_1 \mathbf{N} + q(1 + q_1)B_k \mathbf{K}_d + KWd
\]

(4)

\[
P = K_{1}wd
\]

(5)

Here \( k \) was the specific digging resistance which, unlike the specific cutting resistance \( k \), includes the cutting and all other resistances. The values for \( k \) and \( k \) were calculated experimentally for different kind of soils.

Balovnev [9] extended the UEE and the passive earth pressure theory to model the forces on a bucket by dividing the forces into individual constitutive components (side walls, front blade, back of bucket). Balovnev[9] proposed the total excavating effort as the sum of all the forces on individual parts. The four individual forces were identified (\( P_1 \) - \( P_4 \)).

Zelenin et al.,[12], after extensive experimentation, proposed models and came up with the following empirical formulae (equation 6) for the cutting resistance, \( P \) for unfrozen soil with a bucket without teeth.

\[
P = 10C_s \mu \left(1 + 2.6\omega \right) (1 + 0.0075\beta) \left(1 \pm s\right) V \mu
\]

(6)

Zelenin et al. [12] postulated that for soil cutting with a bucket with teeth, the teeth eliminated the participation of side plates during...
and the point-of-application and force $f_5$ depends upon the acceleration of force $f_6$. The information in table 1 can be approximated from that graph. The 'z' values increase with decrease in 'd' values and were calculated for $d=25$cm to $d=5$cm. The coefficient $z$ also depends upon the ratio $a'/b'$ (where $a'$ being the spacing between teeth and $b'$ being the width of tooth). Table 2 gives the multiplying factors for $z$ based on ratio $a'/b'$. Zelenin et al. [12] further developed the model (equation 8) for the forces during excavation process and divided the excavation forces into two categories: forces due to longitudinal compression of soil chip (R) and forces due to movement of drag prism ahead of bucket (P).

Zelenin et al. [12] postulated that these forces were present for buckets with teeth for graders and draglines. However, they were absent for bucket with teeth for a cable shovel, teeth disintegrate the soil in front of the bucket and there is no drag prism. Therefore, the total excavation force for the shovel bucket with teeth was as given in equation 7 [12]. It must be noted that these empirical results came from a large number of experiments with smaller buckets. Given the dipper sizes today, the results might change.

Wu [28] used a resistance model based on the resistive forces acting on the dragline bucket proposed by Rowland [29]. The forces on the dipper were divided into four components – payload weight; friction forces on teeth; friction forces on lip; and four frictional forces on dipper surfaces (outer dipper bottom, inner dipper bottom, outer surfaces of side plates, and inner surfaces of side plates). The frictional forces of the bottom surface, inner and outer, were modeled based on the total payload which increased linearly with position. The frictional forces on the side plates (inner and outer) were calculated utilizing the passive earth pressure theory on a wall. The teeth and lip forces were modeled based on Hettiaratchi and Reece [30]. The payload was modeled as the maximum payload capacity of the dipper. All these forces were considered as static forces acting at the tip of the dipper.

Hemami [31], in an attempt to automate the LHD loading, proposed a model consisting of five component forces ($f_1$-$f_6$), which must be overcome, on a dipper during excavation as shown in figure 6. Force $f_6$ was originally defined as a part of $f_1$. Hemami [31] defined the $f_1$ and $f_5$ as the dynamic forces, where $f_1$ changes both in magnitude and the point-of-application and $f_5$ depends upon the acceleration of the bucket. Further, the force $f_6$ was defined as a part of $f_1$ and $f_5$. The force $f_1$ cannot be made a part of $f_1$ and $f_5$ as the point of application of $f_6$ is not concentric with $f_1$. Hemami [31] modeled $f_1$ using geometric configuration, velocity, position and orientation of the bucket. The cutting; therefore, the cutting force for a bucket with teeth was as modified into equation 7.

\[ P = 10C_o d^{1.35} (1 + 2.6w)(1 + 0.0075\beta)z \]

\[ W = R + P_u = FKL \text{comp} + gq\gamma \tan \mu I \]

Where $z$ is the coefficient taking into account the effect of blades. Zelenin et al. [12] gave a graph to calculate $z$ values depending upon the 'w' and 'd'. The trajectory curve and is numerically calculated once the points on the dipper trajectory of the curve are known.

Figure 6: Dipper Forces during Excavation [31].

\[ f_i = A w y_i \]

The cross-sectional area $A$ was calculated as equation 10.

\[ A = (X_i - X_0) Y_i + \frac{1}{2} (X_i - X_0)^2 \tan \alpha - \int f(x)dx \]

Where $X_0$, $Y_0$ were the initial coordinates of the tip of the dipper when it comes in contact with the material and $x$ is the x co-ordinate after a time $t$. The integral in the above equation defined the area under the trajectory curve and is numerically calculated once the points on the trajectory of the curve are known.

Forces $f_1$ and $f_6$ were modeled based on the forces defined by Balovnev [9] model using the passive earth pressure theory. A numerical model was created to calculate the forces on the dipper while it moves through the muck pile. The model, however, doesn't give the forces for shovel joints and links that are important to compare against the strength, yield and fatigue behavior of the shovel.

**Summary of Resistive Forces**

Shovel excavation is complex in nature. There have been several attempts to model the resistive forces; however, no model describes the model completely. Some of the recent comprehensive models made the following assumptions:

- The models are two-dimensional, while the dipper width is incorporated later in the model.

<table>
<thead>
<tr>
<th>Length of horizontal surface (w, meters)</th>
<th>0.25-0.50</th>
<th>0.50-0.75</th>
<th>0.75-1.00</th>
<th>1.00-1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient z</td>
<td>0.55-0.75</td>
<td>0.63-0.78</td>
<td>0.69-0.78</td>
<td>0.72-0.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ratio $a'/b'$</th>
<th>$a'=b'$</th>
<th>$a'=2b'-3b'$</th>
<th>$a'=4b'$</th>
<th>$a'=5b'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z$</td>
<td>1</td>
<td>1.1</td>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Dependence of $z$ on $d$ and $w$.

Table 2: Dependence of $z$ on $a'/b'$ [12].
• The material failure plane is flat. [31,32]
• The material is homogenous. [31,32]
• The thickness of the bucket is negligibly small compared with the size of the rock pile. [32]

Hemami [31] model, consisting of six forces \(f_1 - f_6\), is by far the most comprehensive model. All these forces, except \(f_5\) are dynamic in nature. Research shows that \(f_1\) and \(f_4\) are the most important and dominant forces for shovel digging [31,32]. The excavation research generally ignored the dynamic nature of the resistive forces especially for \(f_5\).

Hemami [31] and Awuah-Offei et al. [33] modeled \(f_6\). Awuah et al.,[33]’s model is easier to compute for simpler dipper trajectories. The force \(f_6\) can be set to zero, provided the bottom of the bucket stays clear of the material and does not compress the material by selecting a proper trajectory of the bucket (Hemami, [31]). Several models exist to clear of the material and does not compress the material by selecting a proper trajectory of the bucket (Hemami, [31]). Several models exist to estimate the cutting force of soil by bucket type dippers. Only Zelenin et al.[12] empirical model considers the teeth ahead of the bucket; therefore, \(f_5\) can be modeled as a part of \(f_5\) using Zelenin et al. [12] model[31,33]. The force \(f_5\) can be set to zero if we assume that the dipper moves with a constant speed through the muck pile [33]. Force \(f_5\) is a known force as it depends on the dipper dimensions and the material being excavated. It is simply the weight of the bucket.

### Kinematic and Dynamic Modeling

One of the early developments on the excavator kinematics, for an automatic or semiautomatic backhoe, are described in Seward et al. [34]. Kinematic relations were developed, for both forward and reverse, between the joint angles and the position of the bucket. This work was primarily based on the geometric relationships between the different links.

Koivo [35] produced a good text on the robotic manipulators. He described the principles and strategies for kinematic and dynamic design of robotic manipulators. Koivo [36] later presented a detailed kinematic model for backhoe excavator using the Denavit and Hartenberg [37] notation. In that research, Koivo [36] gave a detailed description of the scheme for the coordinate frame assignment and the estimation of structural kinematic parameters. The forward and reverse kinematic equations for the backhoe were developed using the Newton-Euler formulations. He presented a very fundamental background for the kinematics of the loaders, which is a great research reference in the field of kinematic analysis of excavators.

Vaha and Skibnevsky [38] used Newton-Euler equations of motion to produce a dynamic model of the excavator. They preferred Newton-Euler motion equations over Lagrange energy equations because of computational ease and efficiency for being recursive in nature. The dynamic model didnot, however, consider the external resistive forces which are very important aspect for the complete dynamics of an excavator.

Koivo et al. [39] extended the earlier work Koivo [36] and presented a dynamic model for the excavators (backhoe). The model comprises of detailed kinematic and dynamic equations for the backhoe using Newton-Euler recursive techniques. The desired trajectories were computed using simulation studies done in C language programming environment. The resistive forces were also included based on Alekseevaet. al. [27].

Hendricks et al. [40] developed the kinematic and dynamic model and simulator of cable shovel to improve the shovel productivity using Lagrangian formulations. Daneshmend et al. [41] later applied the iterative Newton-Euler formulation to the same kinetic model and developed the dynamic model. This later approach is considered better being iterative and for easier computer programming. The work, however, did not consider the crowd action of the arm which is very important for complete description of the dynamic behavior of the cable shovel. In addition, no model predictions were presented in these papers.

Wu [28] developed a five-link full-body dynamic model of the cable shovel using Newton-Euler equations. The author used a resistive force model of Rowland [29], developed for dragline bucket filling, as the forces on cable shovel dipper. The forces were assumed to be acting at the tip of the dipper as well.

Frimpong et al. [42] used the Newton-Euler method to build the dynamic model of the cable shovel front-end assembly for shovel-formation interaction studies as given in equation 11and12. The formation resistive and breakout forces were based on the Zelenin et al. [12] model. The breakout forces were considered to be acting at the tip of the excavator. The model only considered the shovel breakout forces and ignored the dynamic forces of material inside the dipper, the dipper itself, and the reaction forces. A simulated study calculated the joint torque and force during a 3-seconds digging cycle.

\[
D(\Theta) \ddot{\Theta} + C(\Theta, \dot{\Theta}) \dot{\Theta} + G(\Theta) = F^* - F_{\text{load}}(F_1, F_n)
\]

\[
D(\Theta) = 
\begin{bmatrix}
  m_1 + m_2 - m_d l_2^2 + m_1 l_2^2 & -m_d l_2^2 & -m_2 l_2^2 & m_d l_2^2 & m_2 l_2^2 & (m_2 + m_3) l_2^2 + m_2 l_2^2 & (m_2 + m_3) l_2^2 + m_2 l_2^2 \\
  -m_d l_2^2 & m_1 + m_2 - m_d l_2^2 & -m_2 l_2^2 & m_d l_2^2 & m_2 l_2^2 & (m_2 + m_3) l_2^2 + m_2 l_2^2 & (m_2 + m_3) l_2^2 + m_2 l_2^2 \\
  -m_2 l_2^2 & -m_2 l_2^2 & m_1 + m_2 - m_d l_2^2 & -m_d l_2^2 & m_d l_2^2 & m_2 l_2^2 & (m_2 + m_3) l_2^2 + m_2 l_2^2 \\
  m_d l_2^2 & m_d l_2^2 & -m_2 l_2^2 & m_1 + m_2 - m_d l_2^2 & -m_d l_2^2 & m_d l_2^2 & m_2 l_2^2 \\
  m_2 l_2^2 & m_2 l_2^2 & m_d l_2^2 & -m_2 l_2^2 & m_1 + m_2 - m_d l_2^2 & -m_d l_2^2 & m_d l_2^2 \\
  (m_2 + m_3) l_2^2 + m_2 l_2^2 & m_1 + m_2 - m_d l_2^2 & -m_d l_2^2 & m_d l_2^2 \\
  (m_2 + m_3) l_2^2 + m_2 l_2^2 & -m_d l_2^2 & m_1 + m_2 - m_d l_2^2 & -m_d l_2^2 \\
  (m_2 + m_3) l_2^2 + m_2 l_2^2 & m_d l_2^2 & m_1 + m_2 - m_d l_2^2 & -m_d l_2^2 \\
  (m_2 + m_3) l_2^2 + m_2 l_2^2 & m_d l_2^2 & m_1 + m_2 - m_d l_2^2 & -m_d l_2^2 \\
\end{bmatrix}
\]

\[
C(\Theta, \dot{\Theta}) = 
\begin{bmatrix}
  0 \\
  0 \\
  0 \\
  0 \\
  0 \\
  (m_2 + m_3) l_2^2 + m_2 l_2^2 \\
  (m_2 + m_3) l_2^2 + m_2 l_2^2 \\
  (m_2 + m_3) l_2^2 + m_2 l_2^2 \\
\end{bmatrix}
\]

\[
G(\Theta) = 
\begin{bmatrix}
  \dot{\Theta}_1 \\
  \dot{\Theta}_2 \\
  \dot{\Theta}_3 \\
  \dot{\Theta}_4 \\
  \dot{\Theta}_5 \\
  \dot{\Theta}_6 \\
  \dot{\Theta}_7 \\
  \dot{\Theta}_8 \\
\end{bmatrix}
\]

\[
F_{\text{load}}(F_1, F_n) = 
\begin{bmatrix}
  F_{\text{n}}(l_1, l_2) \dot{\Theta}_1 \\
  F_{\text{n}}(l_1, l_2) \dot{\Theta}_2 \\
\end{bmatrix}
\]
the boom stresses could be used to assess the efficiency of the operator towards better training.

Awuah-Offei [46] utilized Newton-Euler based vector loop equations for dynamic modeling of the front-end of shovel dipper. The model calculated the hoist force for the dipper by incorporating the dynamic weight and excavation forces as the dipper moved through the muck pile. The vector loop equations, however, don’t calculate the joint torques and forces as the vector lengths didn’t exactly match with the geometric lengths of the dipper.

**Summary of Kinematic and Dynamic Models**

The literature review shows that both Newton-Euler and Lagrange formulations are commonly used for kinematic and dynamic modeling of the cable shovel. However, Newton-Euler equations of motions are preferred for modeling of the excavators being computationally easier and recursive in nature that helps in computer implementation.

In general, the forces acting on the dipper were greatly simplified; and generally limited to cutting forces only. The dynamic nature of the weight and cutting forces is generally ignored. Similarly, the research didn’t model the stresses on the dipper surfaces, teeth and ropes.

**Fatigue Failure Modeling of Excavators**

Cable shovel excavation is cyclic in nature. The stresses on the front-end assembly continuously vary during an excavation duty cycle of cable shovel [45,46]. This stress loading results in fatigue cracking of shovel components leading to expensive repairs, increased shovel down-time, and possible failures. Pearson et al. [3] reported a sudden breaking down of the boom of a large barge-mounted hydraulic excavator due to fatigue cracks reaching the critical length.

Metal Fatigue is a complex metallurgical phenomenon and depends on microstructure of the metal. External factors e.g. environment, temperature etc. impact the metal fatigue properties and toughness. A cable shovel; therefore, with similar stress levels in one operation might experience brittle fracture failure in freezing conditions. Cable shovel, like all other engineering structures, is designed to withstand the normal elastic stress levels. However, the internal material flaws and welded joints may expand rapidly to undesirable lengths under cyclic loading condition leading to failure. The current practice for crack repairs is based on experience rather than on scientific principles. Fatigue analysis is used to assess the damage and take concrete actions to rectify the problems early for machine health and longevity. It is important to understand the fracture growth rates at different areas of the shovel for better shovel health and longevity. Metal fatigue has been a subject of interest for design engineers and there are a number of good texts available. One of the good texts is produced by Bannantine et al. [47].

There are three common fatigue failure analysis approaches – stress-life approach; strain-life approach; and fracture-mechanics approach; and all have their own application with overlapping boundaries. Stress-life approach is generally represented by a Stress-Number of cycles to failure (S-N) curve as defined by Anon [48]. The technique is generally suitable for high cycle fatigue components where material behavior is elastic i.e. stress-strain levels stay within elastic limits.

Strain-life approach is best suitable for high stress, low cycle fatigue, where stress-strain behavior is plastic. The engineering structures are generally designed to keep the stress ranges within elastic limits. However, there are generally left few notches due to internal material flaws, and welding points. The stress levels around these notches can be well above the elastic ranges and can fall in the plastic ranges. Every fatigue failure has two crack related phases – crack initiation and crack propagation. The distinction between two phases is almost impossible to make. However, it is believed that fatigue life is more spent during the crack propagation. The plastic behavior around the notches can be attributed as the crack-initiation phase. Standardized procedures and recommendations are available for testing and fatigue life prediction [49,50] based on strain-life approach.

Fracture mechanics approach is used to estimate the propagation life of a crack. For these approaches the initial crack lengths are either known (welds, known defects, porosities, cracks found during non-destructive testing etc.) or assumed. A combination of strain-life and fracture mechanics approach can be used for crack initiation and crack propagation lives, to estimate the total fatigue life of a component; which in this case will be a sum of lives estimated by strain-life approach and by fracture-mechanics approach.

A typical crack growth curve is shown in figure 7. Three regions can be identified on this curve: crack initiation, crack propagation (region-II), and rapid increase in crack growth leading to failure. Crack propagation is relatively linear and the slope of this curve defines the crack growth rate. The majority of life of a crack is spent during this stage, and different models are available for region-II of this curve. One of the most commonly used methods is given by Paris and Erdogan [51] and is known as Paris Law (Equation 13).

\[
\frac{da}{dN} = C(\Delta) \gamma
\] (13)

The material constants (c, m) can be found for different metals in literature or obtained using standard tests i.e. ASTM E647.

The stress intensity factor ‘K’ defines the magnitude of local stresses around the crack tip and can be defined as in equation 14 [47].

\[
K = f(g)\sigma
\] (14)

Stress intensity factors are available for simple crack geometries in literature and can also be computed numerically [52-55].

The fatigue life can then be computed for a known length crack by integrating the equation 15 [47].
\[ N_f = \int_{a_i}^{a_f} \frac{d}{C(\Delta)} \]  

There is no reported work for fatigue life estimation of cable shovel dipper and front-end assembly. The only reported work is done by [56-58] who estimated the fatigue life for corner cracks in the steel welded box section of the shovel boom. The researchers used finite element method to estimate the crack growth rate, and metal properties were found in the lab using standard procedures.

**Conclusions**

Cable shovel front end assembly undergoes severe stress loading during the excavation process, given the present day capacities. The stress loading results in stress and fatigue failure of the shovel components, resulting in shovel downtime, expensive repairs and reduced efficiencies. To model the fatigue failure and estimate the lives of the shovel front-end components a systematic and detailed dynamic and stress modeling of the shovel is required. A key component of this modeling is the shovel-formation interaction and a dynamic model that incorporates all the resistive forces during the excavation process. Virtual prototyping combined with finite element modeling techniques can be utilized to estimate the stresses loading of shovel front-end assembly. Once the stress modeling is done, numerical techniques can be used to find the fatigue properties of the material and hence the life of the components can be estimated.

**Nomenclature**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau)</td>
<td>shear strength</td>
</tr>
<tr>
<td>(c)</td>
<td>cohesion</td>
</tr>
<tr>
<td>(\phi)</td>
<td>internal friction angle of the soil</td>
</tr>
<tr>
<td>(C)</td>
<td>material constant for Paris Law</td>
</tr>
<tr>
<td>(C_a)</td>
<td>coefficient of adhesion between soil and tool</td>
</tr>
<tr>
<td>(C_{\alpha})</td>
<td>the number of impacts required to sink a cylindrical tip in a standardized test by 10 cm. (Zelenin, Balovnev, &amp; Kerov, 1985)</td>
</tr>
<tr>
<td>(\rho)</td>
<td>the angle that the rupture surface makes with the horizontal</td>
</tr>
<tr>
<td>(s)</td>
<td>thickness of side plate of bucket</td>
</tr>
<tr>
<td>(V, \mu)</td>
<td>coefficients dependent upon the cutting conditions for (Zelenin et al., 1985) model</td>
</tr>
<tr>
<td>(\beta)</td>
<td>tool cutting angle</td>
</tr>
<tr>
<td>(q)</td>
<td>surcharge pressure acting vertically on soil surface</td>
</tr>
<tr>
<td>(d)</td>
<td>tool working depth</td>
</tr>
<tr>
<td>(w)</td>
<td>width of tool</td>
</tr>
<tr>
<td>(\nu)</td>
<td>bulk density</td>
</tr>
<tr>
<td>(N_i, N_i', N_{i'})</td>
<td>N-Coefficients for Terzaghi’s model. Valued depend upon the internal friction angle ((\phi))</td>
</tr>
<tr>
<td>(N_i, N_{i}, N_{i'})</td>
<td>N-factors in the Universal Earthmoving Equation</td>
</tr>
<tr>
<td>(z)</td>
<td>coefficient for teeth configuration in the Zelenin model</td>
</tr>
<tr>
<td>(Q_u)</td>
<td>ultimate bearing capacity of rock, as defined in Terzaghi’s Equation</td>
</tr>
<tr>
<td>(B)</td>
<td>width of foundation</td>
</tr>
<tr>
<td>(FEM)</td>
<td>Finite Element Modeling</td>
</tr>
<tr>
<td>(DEM)</td>
<td>Discrete or Distinct Element Modeling</td>
</tr>
<tr>
<td>(\mu_i)</td>
<td>coefficient of friction between material and bucket</td>
</tr>
<tr>
<td>(N')</td>
<td>Normal force</td>
</tr>
<tr>
<td>(\xi)</td>
<td>coefficient of resistance to filling of the bucket and movement of the drag prism of soil</td>
</tr>
<tr>
<td>(q_{\beta})</td>
<td>ratio of the volume of the drag prism ahead of bucket to the volume of the bucket</td>
</tr>
<tr>
<td>(B_v)</td>
<td>volume of bucket</td>
</tr>
<tr>
<td>(k_{\beta})</td>
<td>ratio of the volume of the drag prism ahead of bucket to the volume of the bucket</td>
</tr>
<tr>
<td>(k)</td>
<td>specific cutting resistance of soil</td>
</tr>
<tr>
<td>(P_1)</td>
<td>cutting resistance of the blade</td>
</tr>
<tr>
<td>(P_2)</td>
<td>additional resistance due to wear of the edge</td>
</tr>
<tr>
<td>(P_3)</td>
<td>resistance offered by the two sides</td>
</tr>
<tr>
<td>(P_4)</td>
<td>resistance due to friction of the sides</td>
</tr>
<tr>
<td>(K_{\text{comp}})</td>
<td>specific resistance of the given stratum to longitudinal compression, (N/cm2)</td>
</tr>
<tr>
<td>(F)</td>
<td>stratum cross-section ((w)×d)</td>
</tr>
<tr>
<td>(g)</td>
<td>gravitational acceleration (m/sec2)</td>
</tr>
<tr>
<td>(q_v)</td>
<td>volume of drag prism (m3)</td>
</tr>
<tr>
<td>(y)</td>
<td>is density of soil (kg/m3)</td>
</tr>
<tr>
<td>(f_1)</td>
<td>Force required to overcome the weight of the loaded material in and above the bucket.</td>
</tr>
<tr>
<td>(f_2)</td>
<td>Resultant of forces of resistance for material moving towards the bucket.</td>
</tr>
<tr>
<td>(f_3)</td>
<td>Force due to the friction between the bucket walls and the soil material sliding into the bucket.</td>
</tr>
<tr>
<td>(f_4)</td>
<td>Resistance to cutting and/or penetration acting at the tip of the bucket and side walls.</td>
</tr>
<tr>
<td>(f_5)</td>
<td>Inertia force of the material inside and above the bucket.</td>
</tr>
<tr>
<td>(f_6)</td>
<td>force required to move the empty bucket (modeled as part of f1)</td>
</tr>
<tr>
<td>(A)</td>
<td>Cross-sectional area swept by the dipper up to failure plane</td>
</tr>
</tbody>
</table>
References


