alexa Calcium Transport across Plasma Membrane in Early Stages of Chronic Kidney Disease Impact of Vitamin D3 Supplementation | OMICS International
ISSN: 2472-1220
Journal of Kidney
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Calcium Transport across Plasma Membrane in Early Stages of Chronic Kidney Disease Impact of Vitamin D3 Supplementation

Ingrid Lajdova* and Viera Spustova

Department of Clinical and Experimental Pharmacotherapy, Slovak Medical University, Slovak Republic

*Corresponding Author:
Dr. Ingrid Lajdova, PhD.
Department of Clinical and Experimental Pharmacotherapy
Slovak Medical University, Limbova 12, 833 03 Bratislava
Slovak Republic
Tel: + 421-2-59370139
Fax: + 421-2-59370598
E-mail: [email protected]

Received: November 09, 2015; Accepted: December 15, 2015; Published: December 29, 2015

Citation:Lajdova I, Spustova V (2015) Calcium Transport across Plasma Membrane in Early Stages of Chronic Kidney Disease – Impact of Vitamin D3 Supplementation. J Kidney 1:108. doi:10.4172/2472-1220.1000108

Copyright: © 2015 Lajdova I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Kidney

Abstract

Mini review summarizes the results of studies focused on elucidating pathophysiological mechanisms of altered intracellular calcium homeostasis in the peripheral blood mononuclear cells of patients with early stages of chronic kidney disease. The basic mechanisms of calcium entry as well as those of its removal are impaired by the disease. These disturbances cause an increase concentration of free cytosolic calcium which can result in a change of broad range of cellular processes and expression patterns of various signaling molecules. Vitamin D3 supplementation is the standard treatment of frequent vitamin D3 insufficiency or deficiency in these patients. It can be assumed that vitamin D3 through the pleiotropic effects may participate in modulation of intracellular calcium homeostasis. Vitamin D3 supplementation resulted in a reduction of cytosolic free calcium affecting some of the transport systems involved in cell calcium entry as well as calcium exit. Normalization of the cytosolic free calcium concentration can have a beneficial effect on intracellular signaling. The mechanisms for regulating and controlling intracellular calcium homeostasis in chronic kidney disease patients are currently still under investigation.

Keywords

Cytosolic calcium; Calcium transport; Vitamin D; Chronic kidney disease

Abbreviations

CKD: Chronic Kidney Disease, PBMCs: Peripheral Blood Mononuclear Cells, [Ca2+]i: Free Cytosolic Calcium Concentration, Ca2+: Calcium Cations, ROC: Receptor Operated Channel, VOC: Voltage Operated Channel, SMOC: Second Messenger Operated Channel, SOC: Store Operated Channel, CRAC channel: Calcium Release Activated Calcium Channel, PMCA: Plasma Membrane Ca2+-Atpase, ATP: Adenosine Triphosphate, 2APB: 2-Aminoethyl-Diphenylborate, Tg : Thapsigargin

Review

Calcium cations (Ca2+) play an important role in the cellular signaling and in a number of physiological processes. The cell Ca2+ distribution is exactly regulated by transport systems which maintain low free cytosolic calcium concentration ([Ca2+]i) (50-100 nmol/l) in comparison with Ca2+ concentration in extracellular space (about 1.3 mmol/l). The plasma membrane possesses several types of channels which control the Ca2+ entry into the cells, and systems that extrude it. Calcium enters the cell by any of the general classes of channels, including voltage-operated channels (VOC), second messengeroperated channels (SMOC), store-operated channels (SOC) and receptor operated-channels (ROC). Calcium release from the cells is regelated principally by Ca2+ - ATPase, and Na+/Ca2+ exchanger (Figure 1). Plasma membrane is responsible for the 10,000-fold gradient of Ca2+ normally measured between the extracellular space and the cytoplasm. The very large gradient of Ca2+across the plasma membrane not only ensures full availability of the cation, but it is also dynamically beneficial, since even minor changes in the Ca2+ permeability of the plasma membrane provides significant fluctuations in the [Ca2+]i. Passing Ca2+ through the plasma membrane triggers a cascade of events that are vital for cellular activities. Calcium cation is an important ubiquitous messenger, controlling a broad range of cellular processes. It has a direct role in controlling the expression patterns of its signaling systems that are constantly being remodelled in both, health and disease.

kidney-Abdominal-Basic-mechanisms

Figure 1: Basic mechanisms of calcium transport across plasma [9].

Chronic kidney disease (CKD) is associated with a significant elevation in the [Ca2+]i which is toxic to the cells and may be responsible for multiple organ dysfunction [1,2]. Knowledge of the relationship between CKD and cellular calcium homeostasis, as well as regulation mechanisms of calcium signaling especially in the early stages of the disease are missing.

Mini review summarizes the results of our studies focused on elucidating pathophysiological mechanisms of altered intracellular calcium homeostasis in the peripheral blood mononuclear cells (PBMCs) of CKD patients. Moreover, vitamin D deficiency or insufficiency is highly prevalent in CKD patients, and under current guidelines, the therapeutic strategies include supplementation of native vitamin D (ergocalciferol or cholecalciferol) [3]. The critical role of the vitamin D endocrine system in disease prevention extends beyond the classic regulation of calcium and phosphorus homeostasis and skeletal integrity, to its pleiotropic effects on extramineral metabolism [4,5]. Vitamin D is an important modulator of cellular proliferation, differentiation, inflammation and immunity. Vitamin D attenuates kidney injury by supressing fibrosis, inflammation, and apoptosis [6,7]. Therefore, the effect of vitamin D3 supplementation on the major mechanisms involved in maintaining cell calcium homeostasis was examined in patients with early stages of CKD.

Free intracellular calcium

Elevation of free cytosolic calcium concentration ([Ca2+]i) is a highly versatile signal, that operates over a wide temporal range to regulate many different cellular processes. Ca2+ signals control many cellular functions, ranging from short-term responses such as contraction and secretion, to longer term regulation of cell growth and proliferation. On the other hand, Ca2+ signal may induce apoptosis or less specific necrosis under special conditions. [Ca2+]i is controlled by mechanisms that regulate Ca2+ entry from the extracellular space and Ca2+ release from intracellular stores, and by the activity of ATP-dependent Ca2+ - ATPases and antiporters that move Ca2+ back into stores or out of cells [8-10]. Previous studies on the metabolic profile of various cells have shown, that chronic renal failure already in early stages is associated with a significant elevation in [Ca2+]i (Figure 2) [11], which may be responsible for the multiple organ dysfunction in haemodialysed patients [12]. Most of the intracellular calcium is either sequestered in the endoplasmic reticulum and mitochondria, or bound to cytoplasmic proteins and other ligands. More and more evidence suggests that intracellular Ca2+ stores might be critical for some physiological processes [9].

For determination of intracellular Ca2+ stores, thapsigargin (Tg), the specific inhibitor of endoplasmic reticulum Ca2+- ATPase, is used (Figure 3A). The effect of Tg in the absence of extracellular calcium strongly indicates that intracellular Tg sensitive calcium reserves in PBMCs of CKD patients (stage 2-3) are significantly higher in comparison with healthy volunteers (Figure 3B). Vitamin D3 supplementation returned the elevated [Ca2+]i in CKD patients to values comparable with healthy subjects (Figure 2), but did not affect intracellular calcium reserves (Figure 3B) [11,13].

kidney-Abdominal-cytosolic-calcium

Figure 2: Measurements of free cytosolic calcium concentration [11].

kidney-Abdominal-intracellular-calcium

Figure 3: Determination of intracellular calcium concentration of Tg-sensitive stores [11].

Calcium entry

Calcium release activated calcium channels: Calcium enters into the cells by calcium/cation channels. In nonexcitable cells, like PBMCs, the predominant Ca2+ entry pathway is the store-operated one, in which the emptying of intracellular Ca2+ stores activates the Ca2+ influx to the cell (Figure 1). This type of the channel is in PBMCs known as the calcium release activated calcium (CRAC) channel. The calcium entry through CRAC channels activates certain transcription factors which regulate the gene expression for cytokines responsible for immune responses [14,15]. Dysregulation of Ca2+ homeostasis involving the endoplasmatic reticulum and store-operated calcium channels has been manifested in neurodegenerative disorders, in patients with immunodeficiency, acute pancreatitis, polycystic kidney disease and cardiac hypertrophy [14-21].

In PBMCs of non-diabetic CKD patients, CRAC channels are activated indirectly by intracellular Ca2+ store depletion using Tg, the specific inhibitor of endoplasmic reticulum Ca2+ - ATPase. When the reliable inhibitor of these channels 2-aminoethyl-diphenylborate (2APB) was applied during the sustained phase of Tg effect, it evoked a decrease in [Ca2+]i, which represents particularly the Ca2+ influx through CRAC channels (Figure 4A). In early stages of CKD, the calcium entry via CRAC channels was significantly increased when compared with healthy individuals. After the treatment with vitamin D3, the enhanced Ca2+ entry through these types of channels was significantly decreased (Figure 4B) [13].

kidney-Abdominal-Calcium-entry

Figure 4: Calcium entry via calcium CRAC channels [11,13].

L-type calcium channels: Many of previous studies have implicated L-type Ca2+ channels in Ca2+ influx during T-lymphocyte activation and proliferation [22]. Nonexcitable cells express Ca2+ channels that share common structural features with voltage-dependent Ca2+ channels of excitable cells, but are not solely gated by changes in membrane potential. However, Kotturi et al. presented both, molecular and pharmacological evidence for the presence of L-type Ca2+ channels in the plasma membrane of resting lymphocytes in 2003 [23].

Despite of this knowledge, in PBMCs of early-stage CKD patients, calcium influx via L-type Ca2+ channels was not increased in comparison with healthy subjects [11]. Stimulation PBMCs by 1,25(OH)2D3, an active metabolite of vitamin D, does not induce calcium response through L-type calcium channels in healthy subjects [24]. In accordance with this finding, the calcium influx through L-type calcium channels was not observed after supplementation of vitamin D3.

P2X7 receptors: At the present time, purinergic signaling is accepted as a crucial component of diseases and was found to mediate a vast array of biological processes [25-27]. Until today, seven subtypes of P2X receptors have been identified. P2X1-P2X6 are predominantly expressed by neurons and some excitable cells. The P2X7 receptors are expressed primarily on cells of hemopoietic origin, where they participate in immune responses, cell proliferation, cell death, bone formation and resorption [25]. The P2X7 receptor is a bifunctional purinoreceptor, that either opens a non-selective cation channel, or forms a large, cytolytic pore. ATP binding leads to opening of cation channel that permits K+ efflux and both Ca2+ and Na+ influx into the cells. This causes major disturbances of the ionic gradient across the plasma membrane that raises calcium influx into the cell, thus triggering several intracellular signaling cascades, including mediation of inflammatory responses and modulation of cell turnover. A key factor of P2X7-dependent cytotoxicity is the massive intracellular Ca2+ increase triggered by its activation. It may result in membrane blebbing and cell death by apoptosis or necrosis. There is an increasing body of evidence implicating P2X7 receptor in various pathological conditions [28-31]. The most recent advances provide compelling evidence for P2X receptors, playing a key role in regulating cell physiological and pathophysiological processes and are involved in the disrupted cell calcium homeostasis in CKD patients [32,33].

In PBMCs of non-diabetic CKD patients Ca2+ entry via P2X7 channels and pores has been increased and also the permeability of P2X7 pores was higher, in comparison with healthy subjects. In addition, the function of P2X7 channels and pores was altered [13,34]. It is known, that 1,25(OH)2D3, an active metabolite of vitamin D, prevents Ca2+ increase through P2X7 channels and reduces the plasma membrane permeability through P2X7 pores in human PBMCs of healthy subjects [24]. 1,25(OH)2D3 can also up or downregulate the expression of several genes in many cell types. To our knowledge, the effect of 1,25(OH)2D3 on P2X7 receptor expression has not been studied. Our study disclosed that vitamin D3 supplementation reduced Ca2+ influx through P2X7 channels and affected their functionality. Moreover, the supplementation had no effect on permeability of P2X7 pores, and the differences in responses to stimulation or inhibition were not found [13]. Different effects of vitamin D3 on P2X7 channels and pores in CKD patients may have been made due to different sensitivity to these channels and pores. It is known, that various agonists and antagonists of P2X7 receptors may have a distinct effect on the function of P2X7 channels and/or pores [35]. Not only the function, but also the expression of P2X7 receptors may be altered in some pathological conditions [26,36-38]. We found a 1.5-fold increase in the expression of surface P2X7 receptors on PBMCs from non-diabetic CKD patients when compared to healthy subjects (Figure 5A) [39]. In our recent study, the flow cytometric measurement revealed, that vitamin D3 decreased the expression of P2X7 receptors by 45% (Figure 5B) [13].

kidney-Abdominal-cell-surface

Figure 5: The expression of cell surface P2X7 receptors [13,34].

Calcium removal

Plasma membrane Ca2+- ATPase: The plasma membrane possesses two systems that extrude Ca2+: a high-affinity, low-capacity Ca2+ - ATPase, and a lower affinity, large-capacity Na+/Ca2+ exchanger which is particularly active in excitable cells. The plasma membrane Ca2+- ATPase (PMCA) is critical for the maintenance of resting [Ca2+] i in non-excitable cells and may be the last gatekeeper for the control of low [Ca2+]i.

PMCA activity of non-diabetic CKD patients is reduced by 34% against healthy subjects [40]. This finding is consistent with other studies and points out that the PMCA activity decreases with kidney disease progression [41]. The decline in PMCA activity may be caused by numerous factors, such as calmodulin deficiency, an activity of other endogenous protein regulators, and inhibition of mitochondrial or glycolytic metabolism [42]. The Ca2+ influx through CRAC channels is also an important regulator of PMCA activity, and an altered communication between them may be another cause of PMCA malfunction [43,44]. Several experimental studies have observed direct and/or indirect effects of 1,25(OH)2D3 and/or 24,25(OH)2D3 on activity and expression of PMCA in different cells, but the effects of 25(OH) D3 itself, have not been studied. The studies targeting at the effects of native vitamin D3 supplementation on cell calcium homeostasis in patients with early stages of CKD are missing. In our study the impact of 6 month vitamin D3 (cholecalciferol) supplementation on the PMCA activity was investigated [40]. After the treatment, no changes in PMCA activity were detected. However, the concentration of plasma membrane proteins was increased by 47%. Therefore, the possibility of increased expression of PMCA cannot be excluded [13,40].

Conclusions

Our studies contribute to elucidation of pathophysiological mechanisms of altered intracellular calcium homeostasis in PBMCs of patients with CKD. Already in early stages of CKD, cytosolic free calcium concentration and calcium concentration of intracellular stores are significantly increased mainly due to increased activity of CRAC channels and P2X7 receptors activation and expression. This disturbed calcium balance can activate aberrant inflammatory and vascular pathways participating in renal injury, which may contribute to progression of renal disease [27,45]. Pharmacological blocade of P2X7 receptor protect agonist antibody-mediated glomerular inflammation and hypertensive renal injury in rodent [45]. Renoprotection is associated with reduced numbers of renal macrophages and has been atributed to direct anti-inflammatory effect of P2X7 antagonism. Similarly, pharmacological suppression of CRAC channel activity reduces pro-inflammatory cytokine expression [46]. Thus, P2X7 receptor and CRAC channel blocade may have broad therapeutic value not only in renal disease. Vitamin D3 supplementation in CKD patients causes reduction in calcium influx through CRAC channels and P2X7 receptors and downregulation of P2X7 receptors expression. These effects of vitamin D3 may be involved in anti-inflammatory and immunoregulatory effects of vitamin D3 in CKD patients and can contribute to its renoprotective effect in general.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 8171
  • [From(publication date):
    December-2015 - Dec 13, 2017]
  • Breakdown by view type
  • HTML page views : 8106
  • PDF downloads : 65
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

generalsci[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version