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Description
During tumor progression, tumor cells proliferate under adverse

host conditions and use several survival strategies to block the action
of key regulators of the immune response and circumvent anti-tumor
defenses. Consequently, the current development of new
immunotherapeutic strategies aimed at inducing or optimizing the
immune response directed against the tumor and opened the way to
new treatments of cancers. Besides the several known classical
strategies used by tumor cells to escape to immune surveillance, it
should be noted that the evasion of immunosurveillance by tumor cells
is also under the control of the tumor microenvironment complexity
and plasticity [1,2].

Among the stromal cells, activated fibroblasts, termed cancer-
associated fibroblasts (CAFs), play a critical role in the complex
process of tumor-stroma interaction. CAFs, one of the prominent
stromal cell population in most types of human carcinomas, are α-
SMA (alpha-smooth muscle actin) positive, spindle-shaped cells, who
closely resemble normal myofibroblasts but express specific markers
(ie, FAP (fibroblast-associated protein), PDGFR-β (platelet-derived
growth factor)) together with the fibroblastic marker FSP-1 (fibroblast
specific protein 1) and vimentin (a mesenchymal marker). CAFs are
also characterized by the absence of epithelial (cytokeratin, E-
cadherin), endothelial (CD31) and fully differentiated smooth muscle
(smoothelin) markers [3]. CAFs differentiate and proliferate in the
tumor microenvironment in a transforming growth factor-β (TGF-β),
platelet-derived growth factor (PDGF) and fibroblast growth factor
(FGF)-dependent manner from other cell types such as resident
fibroblasts, mesenchymal stem cells, endothelial and epithelial cells
[4,5]. In the tumor stroma, CAFs interact with tumor cells and secrete
several factors such as extracellular matrix proteins (ie, collagen),
matrix metallo-proteinases (MMPs), proteoglycans (ie, laminin,
fibronectin), chemokines (ie, CXCL1, CXCL2, CXCL8, CXCL6,
CXCL12/SDF1, CCL2 and CCL5), vascularisation promoting factors
(ie, PDGF and VEGF) and other proteins which affect tumor cells
proliferation, invasiveness, survival and stemness (ie, TGF-β, EGF,
HGF, FGF, PGE2) [5]. Consequently, CAFs have been involved in
tumor growth, angiogenesis, cancer stemness, extracellular matrix
(ECM) remodelling, tissue invasion, metastasis and even
chemoresistance [6,7].

During the past few years, these activated tumor-associated
fibroblasts have also been involved in the modulation of the anti-
tumor immune response by the secretion of immunosuppressive and
pro-inflammatory factors (ie, TGF-β, IL-1β, IL6, IL10…), chemokines
(ie, CXCL12, CCL2…) and chemical mediators (ie, PGE2…) in the
tumor microenvironment. As such, CAFs can potentially affect both

innate and adaptive antitumor immune response [8,9]. For example,
the secretion of CXCL12/SDF1 and CCL2/MCP-1 by CAFs is
potentially involved in macrophages attraction in the tumor
microenvironment and in their differentiation into a M2
immunosuppressive phenotype [10]. CAF secretion of chemokines can
also recruit immunosuppressive myeloid-derived suppressive cells
(MDSC) population to the tumor [11]. The secretion of TGF-β by
CAFs potentially affects dendritic cells biology by inhibiting their
migration, maturation and antigen presentation capabilities, increases
the numbers of regulatory T cells (Tregs) within the tumor
microenvironment through the induction of FOXP3 expression [12]
and interferes with cytotoxic T lymphocytes (CTL) function and
frequency within the tumor [13]. The secretion of TGF-β by CAFs can
also attenuate IFN-γ production by natural killer (NK) cells [14], as
well as the expression of NK-activating receptors including NKG2D,
NKp30 and NKp44 [12]. Similarly, the secretion of vascular endothelial
growth factor (VEGF) by CAFs may affect dendritic function and
increase the infiltration of Tregs and MDSC within the tumor [15].
Moreover, the secretion of prostaglandin E2 (PGE2) can decrease the
expression of the activator receptor NKG2D on NK cells surface
(which is also the case for indoleamine-2,3-dioxygenase (IDO)
secretion by CAFs) [16] and induces FOXP3 expression in Tregs [17].
Nevertheless, further studies are clearly needed to fully elucidate the
complex role of CAFs in the complex tumor immunosuppressive
network.

Altogether, these findings highlight the action of CAFs on various
levels of the antitumor immune response within the tumor
microenvironment. Thus, combination therapy co-targeting CAFs and
tumor cells or other immune check points (ie, PDL1, CTLA4) should
represent a significant benefit in terms of tumor immunotherapy.
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