Carotenoids and Cardiovascular Prevention: an Update

Ricciioni G1,2, Gammone MA1 and D’Orazio N1

1Human and Clinical Nutrition Unit, Department of Medical Oral and Biotechnological Sciences, Via Dei Vestini 31, “G. D’Annunzio” University, Chieti, 66013, Italy.
2Cardiology Unit, San Camillo De Lellis Hospital, Manfredonia, FG, Italy.

Corresponding author: Maria Alessandra Gammone, Human and Clinical Nutrition Unit, Via Dei Vestini, 31, “G. D’Annunzio” University, Chieti, Italy. Tel: 00393928591916; E-mail: m.alessandra.gammone@gmail.com

Rec Date: Oct 29, 2015; Acc Date: Nov 30, 2015; Pub Date: Dec 07, 2015

Copyright: © 2015 Graziano R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Oxidative stress is a key contributor to the development of cardiovascular diseases. In this respect, phytochemicals, such as bioactive dietary elements and in particular carotenoids displayed an antioxidant effect with a substantial reduction in oxidative stress markers. Recent scientific evidence supported the beneficial role of carotenoids in preventing several chronic disorders, such as cardiovascular diseases. Clinical trials displayed a decrement in inflammatory disease risk after carotenoids supplementation, mainly due to their antioxidant and anti-inflammatory activities. This commentary aims to describe how both traditional carotenoids and novel rare ones could be exploited in the prevention of cardiovascular disease.

Keywords: Carotenoids; Oxidative stress; Inflammation; Cardiovascular disease; Prevention; Antioxidants

Introduction

A compromised endogenous antioxidant defense mechanism can lead to an imbalance between production and removal of radical oxygen species (ROS). An excessive oxidative stress and persistent low level inflammation in the cardiovascular system, thus resulting in chronic phlogosis, cell damage and death, contribute to the development of cardiovascular diseases (CVD), such as hypertension, atherosclerosis, micro-angiopathy and cardiovascular accidents [1] such as coronary artery disease, stroke and myocardial infarction [2]. In fact CVD result from a continuum of pathophysiological events, advancing from local redox disequilibrium to endothelial dysfunction, vasa vasorum and excessive vascular remodeling with subsequent cellular damage [3]. In this respect, not only pharmacology but also physical exercise and dietary interventions can play a crucial role in cardiovascular prevention through increasing cellular antioxidant system expression and targeting oxidative stress and chronic inflammation [4]. In particular, a nutritional preventive strategy through antioxidants represents a new frontier in the both prevention and treatment of atherosclerosis and, consequently of CVD. In fact, the production of oxidized low-density cholesterol (LDL) can be countered by dietary carotenoids, which are acceptor molecules sequestering free radical electrons, thus preventing LDL oxidation [5]. Scientific evidences display a strong link between oxidative stress, with a related pro-inflammatory systemic environment, and CVD [6]. In this respect, an augmented consumption of antioxidant-rich fruits and vegetables can be protective against cardiovascular disease. Life-style plays a crucial role in preventing chronic inflammatory disorders [7], especially CVD [8]. For example, thrombotic pathology is consequent to traditional and well-known risk factors: genetic factors, age, but also smoking, hypertension, dyslipidemia, insulin resistance, diabetes, overweight and obesity [9]. However, novel risk factors have been recently identified, such as high sensitivity C-reactive protein and other markers of inflammation, such as homocysteine, and lipoprotein-a [10]. Consequently, a dietetic intervention should be the initial approach against CVD. In this respect, carotenoids may play an important role in cardiovascular prevention and in health maintenance [11, 12]: as part of a balanced diet, these nutrients are responsible, directly but also indirectly, through a synergistic cooperation with other antioxidants [13], for the Mediterranean diet’s advantages and health benefits. This provides further motivation for nutritional improvements that can increase longevity and even enhance human life quality.

Antioxidant activity of carotenoids

Carotenoids are a class of natural fat-soluble pigments, largely widespread in the vegetable kingdom and present in high concentrations in algae and microorganisms. The wider family of carotenoids includes more than 500 members, of which 50 are present in our food, but only 20 are absorbed in the intestine and can reach our bodily tissues [6]. They are classified, according to their chemical structure, into carotenes and xanthophylls. Carotenes include β-carotene and lycopene and xanthophylls include lutein, fucoxanthin, canthaxanthin, zeaxanthin, β-cryptoxanthin, capsorubin, and astaxanthin [14]. However, the carotenoid species so far analyzed amount to an exiguous number. Not only terrestrial but also marine carotenoids, showed various healthy beneficial effects on humans. In this respect, novel marine carotenoids are gaining attention as potential development materials for functional foods, in order to prevent cardiovascular diseases. Carotenoids are stored in several human tissues: cervix, lung, skin, eye but especially liver and adipose tissue. In particular, tissues containing more low-density lipoprotein receptors (LDL-R) accumulate great quantities of carotenoids, maybe because of a non-specific uptake by lipoprotein carriers [15]. Carotenoids have potential antioxidant biological properties due to their chemical structure and interaction with biological membranes. Numerous epidemiologic studies asserted that antioxidants could be used as an inexpensive means of prevention of cardiovascular diseases, although interventional trials’ results gave not only positive findings, but also null results, and even some hypothesis of harm in certain high-risk populations. The antioxidant activities of carotenoids are
considered the main mechanism of their beneficial health effects [16]; however, carotenoids are involved in a complex metabolism thus responding to systemic forces. For instance, carotenoids' plasmatic levels result to be lower in both active and passive cigarette smokers because of their free radicals-rich microenvironment, and higher in people following a "Mediterranean" dietetic pattern because of their major fruits and vegetables intake. Carotenoids are excellent light filters and efficient quenchers of both singlet oxygen and excited triplet state molecules. Their lipophilicity and their subsequent characteristic sub-cellular distribution make them efficient photo-protectors: they absorb light, thus providing photo-protection and contrasting photo-oxidative damage to photo-synthetic organisms, eye (macula protection is mostly performed by the xanthophylls zeaxanthin and lutein) and skin (whose protection mostly involves the carotenes β-carotene and lycopene). Their antioxidant activity is due to their ability to quench singlet oxygen, to be oxidized, and to be isomerized [17]. They scavenge reactive free radicals and become caroteny radicals after reaction through a hydrogen abstraction: this process can lead to a switch from a beneficial antioxidant process to a damaging pro-oxidative one [18]. This antioxidant role has been suggested to be one of the mechanisms for carotenoids' preventive effects against CVD but they exert also other beneficial effects.

Carotenoids and beneficial cardiovascular effects

Oxidative stress and a persistent chronic low level inflammation in the cardiovascular system, certainly contribute to the development of cardiovascular diseases. Oxidatively modified low-density lipoproteins (LDL) are involved in the initiation and promotion of atherosclerosis and coronary heart disease. Atherogenesis seems to be due to foam cell formation. In another small study, lycopene was shown to reduce serum total cholesterol levels, thus decrementing CVD [22]. Lycopene was also shown to protect LDL from LDL oxidation. Thus, protection from LDL oxidation by antioxidants may lead to protection against human coronary heart disease. Considering that β-carotene and lycopene are primarily transported in LDL, it has they are in the central position to protect LDL from oxidation [19]. The strongest population-based evidence comes from the study EURAMIC that evaluated the relationship between adipose tissue antioxidant status and acute myocardial infarction in more than 1500 subjects from 10 different European countries. Its results displayed a dose-response relationship between adipose tissue lycopene and the risk of myocardial infarction. In this multicenter-case-control study of antioxidants role lycopene was displayed to clearly contribute to the cardioprotective effect, much more than β-carotene. The protective potential of lycopene was maximum among individuals with highest polyunsaturated fat stores [20]. In fact, lycopene results to be inversely associated to the LDL levels result to be lower in both active and passive cigarette smokers because of their free radicals-rich microenvironment, and higher in people following a "Mediterranean" dietetic pattern because of their major fruits and vegetables intake. Carotenoids are excellent light filters and efficient quenchers of both singlet oxygen and excited triplet state molecules. Their lipophilicity and their subsequent characteristic sub-cellular distribution make them efficient photo-protectors: they absorb light, thus providing photo-protection and contrasting photo-oxidative damage to photo-synthetic organisms, eye (macula protection is mostly performed by the xanthophylls zeaxanthin and lutein) and skin (whose protection mostly involves the carotenes β-carotene and lycopene). Their antioxidant activity is due to their ability to quench singlet oxygen, to be oxidized, and to be isomerized [17]. They scavenge reactive free radicals and become caroteny radicals after reaction through a hydrogen abstraction: this process can lead to a switch from a beneficial antioxidant process to a damaging pro-oxidative one [18]. This antioxidant role has been suggested to be one of the mechanisms for carotenoids' preventive effects against CVD but they exert also other beneficial effects.

Marine carotenoids: the prevention coming from sea

Recently there was a dramatic increase in the global-market demand for carotenoids, thus determining a significant rise in algae exploration. Well-known marine entities, such as astaxanthin, β-cryptoxanthin, zeaxanthin and fucoxanthin are recognized antioxidant, undoubtedly helpful in cardiovascular prevention. In
particular, astaxanthin improves blood lipid profile by increasing high-density lipoprotein cholesterol, decreasing LDL-cholesterol, triglycerides, as well as lipid peroxidation [35] and inflammation markers (after 8 weeks, subjects taking 2 mg/day had lower hs-CRP which is considered an important indicator of heart disease) [36] in correlation with increased adiponectin in humans. Another cardiovascular benefit is a significant blood pressure lowering for its modulatory effects on nitric oxide [37]: oral administration of astaxanthin for 5 weeks showed to delay the incidence of stroke in spontaneously hypertensive rats [38]. Also a diet rich in fucoxanthin could be protective through the augmentation of thermogenesis, with subsequent overweight inhibition [39], through the regulation of cytokine secretions from white adipose tissue and through the promotion of docosahexaenoic acid synthesis [38] resulting in improvements in lipid profile and a healthy liver function [40]. In fact, long-term unbalanced diets alter lipid metabolism and leads to the accumulation of visceral fat, thus resulting in obesity-related metabolic diseases, such as hypertension, dyslipidemia and cardiovascular pathologies. In this respect, fucoxanthin can play a crucial role through several mechanisms [41]. Fucoxanthin significantly reduces plasmatic triglyceride concentrations and positively influences cholesterol-regulating enzymes such as 3-hydroxy-3-methylglutaryl-coenzyme a reductase and acyl-coenzyme a [42]. Fucoxanthin also affects lipid metabolism gene expression: its supplementation in murine models decreased mRNA expression of hepatic acetyl-CoA carboxylase (ACC), a biotin-dependent enzyme that up-regulates the metabolism of fatty acids. Fucoxanthin increased High-Density Lipoprotein (HDL)-cholesterol levels in KK-Ay mice (a type 2 diabetic knock-out could be protective through the augmentation of thermogenesis, with improvements in lipid profile and a healthy liver function [40]. In fact, dietary fucoxanthin significantly augmented the mRNA expression of protein convertase subtilisin/kexin type 9 (PCSK9), which enhances intralysosomal degradation of LDL-R [43]. Fucoxanthin supplementation also decreased mRNA expression of fatty acid synthase (FAS), a multi-enzyme protein that catalyzes fatty acid synthesis, which has been investigated as a chemotherapeutic target, but it may also be implicated in the production of an endogenous ligand of the nuclear receptor PPAR-α, the target of the fibrate drugs against hyperlipidemia [44], which is an important cardiovascular risk marker too. In addition, new and rare sea-derived resources are emerging. Among these, siphonaxanthin is a specific keto-carotenoid, found in edible green algae such as Codium fragile, Caulerpa lentillifera, and Umbraulva japonica. In studies on human umbilical vein endothelial cells and the rat aortic ring, siphonaxanthin displayed a significant anti-angiogenic activity, due to a mRNA expression down-regulation of fibroblast growth factor 2 (FGF-2), its receptor FGF-R-1, and their trans-activation factor [45]. If we consider atherosclerotic plaque progression and vulnerability to rupture, angiogenesis represents a source of intraplaque hemorrhage. This potential prevention of angiogenesis and remodeling under pathological conditions, such as cancer and atherosclerosis [46], results in a promising prevention approach against inflammatory diseases. Very recently, two rare carotenoids, saponaxanthin and myxol have been extracted respectively from Saprospira grandis and cyanobacterium Anabaena variabilis [47] and reported to possess powerful antioxidant properties. Their strong antioxidant potential, even superior to those of zeaxanthin and β-carotene [48], is explained by their inhibitory activity on lipid peroxidation induced by free radicals in rat brain. Therefore, saponaxanthin and myxol can determine reinforcement and stabilization of biological membranes, which decreases their permeability to oxygen and enhances protection against radical-induced peroxidation. These novel rare monocyclic marine carotenoids, with a γ-carotene skeleton in their structure, need to be further evaluated for their potential as development materials for both pharmaceuticals and functional foods, in order to prevent oxidative stress-related disorders such as and cardiovascular diseases.

Conclusions

CVD pathophysiology is dominated by inflammation and oxidative stress. Apart from invariable factors such as sex, age, and genetics, lifestyle and dietary intervention represent crucial preventive strategies against cardiovascular risk factors. It would be necessary not only to practice regular physical exercise, reduce sodium and cholesterol dietary intake, and avoiding smoking, but also a wider antioxidants intake, especially vitamin C and E, polyphenols and carotenoids. In fact, inflammatory pathologies derive from a continuum of pathophysiological processes: cardiovascular diseases advance from a local redox disequilibrium to endothelial dysfunction, inflammation, and excessive vascular remodeling, which slowly leads to atherosclerosis and subsequent cardiovascular accidents such as coronaryopathy, myocardial infarction and ischemic/hemorrhagic stroke. A nutritional approach through natural antioxidant substances represents an important new frontier in both the prevention and treatment of cardiovascular diseases. Carotenoids are quenchers of free radicals, ROS and NOS, thus their antioxidant and anti-inflammatory activity may help against cardiovascular risk factors such as markers of inflammation, hyperlipidemia, hypertension, insulin resistance and obesity. Consequent reduction of blood pressure baseline levels and inflammation, as well as correction in lipid profile can lead to cardiovascular health’s benefits. This potential preventive and therapeutic strategy can certainly reduce the risk of developing CVD, with promising applications and without side effects. In conclusion, the beneficial effects of carotenoids have been widely reported, not only in cardiovascular prevention, but also in alcoholic liver injury, cancer and as photo protective. However, it remains to identify and characterize the active carotenoid derivatives and to determine whether this potential is due to a synergistic action of various carotenoids and antioxidant micronutrients.

References
