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Introduction
Shape reconstruction of cavities (namely holes) is a challenging 

subject with application to diverse areas such as exploration geophysics, 
medical imaging and non-destructive testing. In industrial framework 
for example, it is essential for engineers to check the structure integrity 
and to establish the behavior of mechanical components before critical 
damage occurs [1,2]. 

To such identification tasks (namely to deduce the properties of 
the hidden interior), boundary data are required. In the context of 
geometrical inverse problem, it is a question about overdetermined 
boundary data, namely data provided by measurements distributed on 
the exterior boundary of the domain of interest [3,4]. To the author’s 
best knowledge, all geometric inverse problems in linear elasticity, 
investigated in the literature, have in common to be defined by 
complete overdetermined boundary data [3-6] with the exception of a 
recent work [7], where data appear to be partial. 

Driven by the needs from applications in both industry and other 
sciences, we consider in the present work, the same geometrical inverse 
problem of recovering cavities in elasticity framework, investigated in 
[7]. The problem is compounded by missing data which is the main 
motivation. Indeed, the displacement field and the normal component 
of the normal stress are accessible whereas no information is given on 
the shear stress.

The problem under consideration might be formulated as follows: 
Let Ω⊂2 denotes an open and bounded domain with boundary ϒ 
occupied by a linear elastic material, the medium being assumed to 
be homogeneous and isotropic. Given the normal component of the 
normal stress imposed g and the displacement field f measured on the 
boundary ϒ 

( ) = ,
= ,

u n n g on
u f on
σ ϒ ϒ⋅ ϒ

 ϒ

namely the exterior boundary measurements, the linear elasticity 
inverse problem consists in finding the boundary Γ of a bounded 

domain ⊂ Ω  and the displacement field u satisfying 
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Where nϒ and n are the outward unit normals to the boundary of 
\Ω  . The stress tensor σ and the strain tensor ε are given by 

( ) = div( ) 2 ( )ij ij iju u uσ λ δ µε+

and 1( ) = , 1 , 2
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Above, δij is the Kronecker symbol and λ, µ are the Lamé coefficients 
related to Young’s modulus E and Poisson’s ratio v via 

( ) ( )( )
= and = .

2 1 1 2 1
E Eνµ λ
ν ν ν+ − +

In order to solve our geometrical inverse problem (1), we propose 
a Dirichlet-Neumann approach by the means of a self regularization 
technique, namely the Kohn-Vogelius formulation [3,4,7,8]. Indeed, 
it leads to define two forward problems. One of them is related to 
the Dirichlet data (the displacement field f) (2) and the other one is 
associated to the "Neumann" data (the normal component of the 
normal stress g) (3) 
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D
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and 
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Our main interest in this work is an analysis of geometrical inverse problem related to the detection of cavities, in 

elasticity framework from partially overdetermined boundary data in two spatial dimensions. For the reconstruction, 
we have only access to the displacement field and to the normal component of the normal stress. We propose 
an identification method based on the Kohn-Vogelius formulation combined with the topological gradient method. 
An asymptotic expansion for an energy function is derived with respect to the creation of a small hole. A one-shot 
reconstruction algorithm based on the topological sensitivity analysis is implemented. Some numerical experiments 
concerning the cavities identification are finally reported, highlighting the ability of the method to identify multiple 
cavities.
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The main idea of the approach proposed relies on the use of a 
Kohn-Vogelius functional defined by 

( ) ( )
\

1( , ) := ( ) ( ) : ( ) ( ) ,
2

D N D N D Nu u u u u uσ σ ε ε
Ω

− −∫ 
 	               (4)

as it will be explained below. Thus, the geometrical inverse problem 
(1) is formulated as a topology optimization one 

( , ).min D Nu u
⊂Ω
 					                  (5)

The important point to note here is that the same geometric inverse 
problem was addressed in [7] by means of the same Kohn-Vogelius 
misfit functional (4) combined with the shape gradient method. The 
theoretical question related to the identifiability was also proved in the 
case of monotonous cavities [7]. 

A logical sequel of the work [7] is to combine the shape gradient 
method with the level set one which is one of promising techniques 
that can be designed to such shape reconstruction problem [3,4,8]. 
However, one can remark that although the level set method is able 
to automatically handle topology changes and reconstruct the precise 
geometry of the cavities [3,4,8], it requires an iterative procedure 
where at each iteration step, one needs to solve a sequence of forward 
solutions. As a consequence, the level set method seems to be a slow 
and expensive process. To overcome this difficulty when solving our 
geometrical inverse problem, we resort, in this paper, to a one iteration 
algorithm based on the topological gradient method. It is a recent 
numerical method of shape and topology optimization of structures, 
introduced by A. Schumacher in 1995 [9] in the context of compliance 
minimization in linear elasticity and which makes possible topology 
changes. Indeed, unlike the classical shape optimization, the topology 
of the domain may change during the optimization process. A change in 
topology means removing a small ball from the domain of integration. 
Our aim is so to find an optimal shape without any a priori assumption 
about its topology.

The rest of this paper is organized as follows: in the next section, we 
give a brief review of the topological gradient method and then present 
its application to the cavities localization problem in the third section. 
The main result in this part is providing the topological asymptotic 
expansion by the means of a generalized adjoint method, previously 
recalled in the second section, and a domain truncation. The fourth 
section is devoted to numerical implementation using one-iteration 
algorithm. Indeed, we explore the efficiency of the proposed method 
by several numerical experiments. The last section contains some 
comments. 

The Topological Gradient Method
As it does not impose restriction on the topology of the domain, 

the topological gradient method has been widely applied in literature 
to different and broad cases of problems as the elasticity framework 
[10,11], the Stokes system [12,13], the Helmholtz equation [14], the 
image processing problems [15,16] and many others. We refer to 
[13,17,18] for a concise overview of the method. 

Let us present the basic idea of this approach. We consider a variable, 
open and bounded domain Ω of 2 and a cost functional j()=(uΩ) to 
be minimized, where uΩ is solution to a given PDE defined over Ω. For 

a small parameter ρ >0, let 0= \ ( )xρ ρωΩ Ω +  be the perturbed domain 
obtained by removing a small part ωρ=x0+ρω from Ω, where x0∈Ω and 
ω⊂2 is a fixed open and bounded subset containing the origin, whose 
boundary ∂ω is connected and piecewise of class C1 (Figure 1). 

If ρ=0 then ωρ=∅. Then, a so-called topological asymptotic 
expansion of the function j is provided by the topological sensitivity 
theory in the following form 

( )0( ) = ( ) ( ) ( ) ( ) ,j j f g x o fρ ρ ρΩ Ω + +

where 0
( ) = 0 ( ) > 0lim f and f

ρ
ρ ρ

→

In other words, the purpose is to study the variations of the 
objective function j(Ωρ) as ρ→0. The topological sensitivity g(x0), also 
called the topological gradient can be used like a descent direction in 
an optimization process. Indeed, to minimize the criterion j, one has to 
create holes at some points where the topological gradient g is negative. 
g(x0) is usually computed using the solution of direct and adjoint 
problems defined on the initial domain and it will be the case in our 
problem as it will be demonstrated in the forthcoming sections. 

A generalized adjoint method

The following generalized adjoint method [10,14] is applied to the 
above problem.

Let  be a fixed Hilbert space. For ρ ≥ 0, let aρ be a bilinear, 
symmetric, uniformly continuous and coercive form on  and let l be 
a linear and uniformly continuous form on . We assume that there 
exist a bilinear and continuous form δa, a linear and continuous form δl 
and a real function f() >0 defined on + such that 

0

0 ( )2

0 ( )

( ) = 0,lim

|| ( ) || = ( ( )),
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ρ δ ρ

ρ δ ρ

→

 − −


− −

 

 

where () (respectively 2()) denotes the space of continuous and 
linear (respectively bilinear) forms on . 

These assumptions will be satisfied in the topology optimization 
context in the next section. For ρ ≥ 0, let uρ be the unique solution [10] 
to the following problem: 

( , ) = ( ) .a u v l v vρ ρ ρ ∀ ∈ 				                   (6)

Now, let us consider a function j(Ωρ)=ρ(u), where 0 is differentiable 
with respect to u, its derivative being denoted by D(u). Moreover, we 
suppose that there exists a function  defined on  such that 

0( ) ( ) = ( )( ) ( ) ( ) (|| || ( )) , .v u D u v u f u o v u f u vρ ρ δ ρ− − + + − + ∀ ∈   

For ρ>0, we define the Lagrangian operator ρ by 

 
Figure 1: The initial domain and the same domain after the inclusion of the 
hole.
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( , ) = ( ) ( , ) ( ) , .u v u a u v l v u vρ ρ ρ ρ+ − ∀ ∈  

Its variation with respect to ρ is given by 

( , ) = ( ) ( , ) ( ) ,a lu v u u v v u vδ δ δ δ+ − ∀ ∈  

and we have 

0( , ) ( , ) = ( ) ( , ) ( ( )) , .u v u v f u v o f u vρ ρ δ ρ− + ∀ ∈  

Theorem 1: The function j has the asymptotic expansion [10]. 

0 0( ) = ( ) ( ) ( , ) ( ( )),j j f u v o fρ ρ δ ρΩ Ω + + 	  	                 (7)

Where u0 is the solution to the problem (6) with ρ=0 and v0 is the 
solution to the adjoint problem: find v0∈ such that 

0 0 0( , ) = ( ) .a w v D u w w− ∀ ∈  			                     (8)

Application to Cavities Identification
Let Ω be defined in the same way as in the introduction. The linear 

elasticity Dirichlet respectively "Neumann" problems, defined on the 
whole domain Ω, are the following: Find 0

Du  respectively 0
Nu  solution 

of 

0

0

div ( ) = 0 ,
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Where σ, ϒ, nϒ and τ are as already defined in the first section. Let us 
also consider Ωρ as previously specified in the previous section and the 
displacements Du

ρΩ
 and Nu

ρΩ
 defined as the solutions of the following 

Dirichlet (11) and "Neumann" (12) problems, on the perforated 
domain Ωρ, by 
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D

D
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and 

div ( ) = 0 ,

( ) = ,

= ,

( ) = 0 ,

N

N

N

N

u in

u n n g on

u f on

u n on

ρρ

ρ

ρ

ρρ

σ

σ

τ τ

σ ω

Ω

Ω ϒ ϒ

Ω

Ω

 − Ω

 ⋅ ϒ


⋅ ⋅ ϒ


∂

		                  (12)

Where n denotes the outward normal to Ωρ on the boundary ∂ωρ. It 
should be reminded that for ρ=0, we have ωρ=∅ and Ω0=Ω.

One can remark that ωρ coincides with the actual cavity  (1) where 
there is no misfit between both Dirichlet (11) and "Neumann" (12) 
problems, that is when =D Nu u

ρ ρΩ Ω  in Ωρ. According to this observation, 
we propose to recover  by minimizing an energy gap cost functional, 
namely the following misfit Kohn-Vogelius functional (4) defined by 

( ) ( )1( ) = ( , ) = ( ) ( ) : ( ) ( ) ,
2

D N D N D Nj u u u u u u dxρ ρ ρ ρ ρ ρ ρρ
σ σ ε εΩ Ω Ω Ω Ω ΩΩ

Ω − −∫     (13)

in the presence of a single hole ωρ⊂Ω. Above, for both Dirichlet 

(11) and "Neumann" (12) problems, we impose a homogeneous 
Neumann boundary condition on ∂ωρ which means that ωρ represents 
a perforation, namely a cavity in mathematical concept. 

The so-called Kohn-Vogelius criterion [19] (13) has already been 
investigated in the topological gradient context for the detection of 
cracks [20] in the steady-state heat equation, for the localization of 
small cavities in Stokes flow [12] and for the shape reconstruction of 
inclusions in an inverse conductivity problem [21]. 

The computation of the topological gradient exposed below 
is inspired by the paper [10] and let us point out that the main 
contribution in this paper relies not only on the detection of cavities 
from partially overdetermined boundary data but also on the use of 
the error functional (13), also known as an energetic least-squares 
functional [3,4,8]. Indeed, the aim here is to derive an asymptotic 
expansion for the cost functional j (13) following the same procedure 
outlined in the previous section, that is, to study the variation of the 
design functional  with respect to the creation of small hole. However, 
the tools presented in the previous section cannot be applied directly as 
a fixed functional space  is required. Indeed, the displacements Du

ρΩ
 

(11) and Nu
ρΩ

 (12) are defined on the variable domain Ωρ dependant 
on ρ.

Let us mention that this question was solved in the context of shape 
gradient method by the means of a fixed domain [7], the so-called 
reference domain Ω and a bi-Lipshitz map between this reference 
domain Ω and the perturbed one.

Nevertheless, a domain truncation technique [10,14] comes 
to help in the topological gradient context which allows us to 
construct a functional space independent of ρ. Hence, the topological 
gradient method can be viewed as an extension of the classical shape 
gradient method [3,4,7,8,22] with a difficulty concerning the lack of 
homeomorphism map between the safe domain  and the perforated 
one Ωρ since the domains Ω and Ωρ haven’t the same topology. 

Domain truncation technique

Let R>0 be such that 0( , )B x R ⊂ Ω  and ωρ⊂B(x0,R). Then, the 
truncated open set ΩR (Figure 2) is defined by 

0= \ ( , ).Ω ΩR B x R

Let us denote by Dρ the open set 0( , ) \B x R ρω  (Figure 2).

In order to provide an asymptotic expansion of the functional j 
(13), we need, first of all, an asymptotic expansion of both problems 
(11) and (12). 

The Dirichlet problem: For ρ ≥ 0, let us define the Dirichlet-to-
Neumann operator Tρ, needed in the sequel, by 

Figure 2: The truncated domain.
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where uϕ
ρ  is the solution to the problem 
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σ ω
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Above, ΓR is the boundary of B(x0,R). The normal n is chosen 
outward to D on ∂ωρ and ΓR, regardless of whether Dρ or ΩR are 
considered. 

Hence, the displacement Duρ  is defined for ρ ≥ 0 as the solution of 
the truncated problem: Find Duρ  such that 

div ( ) = 0 ,
= ,

( ) = .

D
R

D

D D
R

u in
u f on

u n T u on

ρ

ρ

ρ ρ ρ

σ

σ

 − Ω
 ϒ
 Γ

	 (14)

The problem (14) can be stated in its variational formulation as 
following: 

Find 
21( ) ; =D D

Ru H u fρ ρ ∈ Ω   on ϒ such that 

( , ) = ( ) ,D D D D
Ra u v l v vρ ρ ∀ ∈ 			                   (15)

where the functional space Daρ  and the bilinear form Daρ  are 
defined by 

21= { ( ) ; = 0 }D
R Ru H u on ∈ Ω ϒ 

( , ) = ( ) : ( ) ( ).D

R R
and a u v u v dx T u vd xρ ρσ ε γ

Ω Γ
+ ⋅∫ ∫ 	               (16)

Here, lD0. 

The reader is referred to [10] to prove the symmetry, continuity 
and coercivity of Daρ . Let us remind a standard result in PDE theory. 

Proposition 1: Problems (11) and (14) have a unique solution. 
Moreover, the solution Duρ  to problem (14) is the restriction to ΩR of 
the solution Du

ρΩ
 to problem (11) [13].

Proof: One can follow the same lines as in the Helmholtz problem 
[14]. 

The "Neumann" problem: Let ΩR, ΓR, Dρ and the operator Tρ be as 
previously defined. Then, the displacement Nuρ  is defined for ρ ≥ 0 as 
the solution of the truncated problem: Find Nuρ  such that 

div ( ) = 0 ,
( ) = ,

= ,
( ) = .

N
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N

N

N N
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The variational formulation associated to problem (17) is the 
following:

Find 
21( ) ; =N N

Ru H u fρ ρ τ τ ∈ Ω ⋅ ⋅   on ϒ such that 

( , ) = ( )N N N N
Ra u v l v vρ ρ ∀ ∈ 			                 (18)

where the functional space N
R , the bilinear form Naρ  and the linear 

form lN are defined by 
21= { ( ) ; = 0 },N

R Ru H u onτ ∈ Ω ⋅ ϒ 

( , ) = ( ) : ( ) ( )N

R R
a u v u v dx T u vd xρ ρσ ε γ

Ω Γ
+ ⋅∫ ∫ 		                (19)

( ) = ( ).Nand l v g v nϒϒ
⋅∫ 				                   (20)

Since N Da aρ ρ≡ , Naρ  is symmetric, continuous and coercive and one 
can easily prove the continuity of the linear form lN. 

Then, we have the same standard result as the one related to the 
Dirichlet problem (Proposition 1), that is: 

Proposition 2: Problems (12) and (17) have a unique solution. 
Moreover, the solution Nuρ  to problem (17) is the restriction to ΩR of 
the solution 

ρΩ
Nu  to problem (12). 

The fixed Hilbert space [H1(ΩR)]2 required by the adjoint method 
previously presented in the second section is now available. For 

21( )D
Ru Hρ  ∈ Ω  , let 

21( )Du Hρ ρ ∈ Ω   be the extension of Duρ  which 
coincides with Duρ  on ΩR and ΓR and which satisfies 
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In the same way, for 
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extension of Nuρ  which coincides with Nuρ  on ΩR and ΓR and which 
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Then, a function ρ can be defined on [H1(ΩR)]2×[H1(ΩR)]2 by 
 ( , ) = ( , )D N D Nu u u uρ ρ ρ ρ ρ 

and from the previous proposition 1 and 2, it follows that 

( ) = ( , ) = ( , ).D N D Nj u u u uρ ρ ρ ρρ ρΩ ΩΩ  

The main result

We are now able to prove the main result of our work available in 
the case of spherical hole. 

Theorem 2: The function j has the following asymptotic expansion 
2 2

0 0 0 0 0 0( ) = ( ) ( , ) ( , ) ( , ) ( ),D D N N D N
D Na a

j j u v u v u u oρ ρ δ δ δ ρ Ω Ω + + + +         (21)

where 
( ) ( )0 0 0 0 0 0( , ) = 4 ( ) : ( ) 2 ( ) ( ) ,
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D D D D D D
Da

u v u v tr u tr v
π µ η

δ µσ ε η µ σ ε
ηµ
+

 − + −     (22)
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N N N N N N
Na

u v u v tr u tr v
π µ η
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+
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and 
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2

D N D D N Nu u u x u x u x u xπδ σ ε σ ε − +              (24)

Above, 

η=λ+µ (plane strain), 

0 0
D Dv ∈  is the solution to the adjoint equation associated to the 

Dirichlet problem (9) 

0 0 0 0 0
0

( , ) = ( , ) ,D D D N D
Du

a w v u u w w−∂ ∀ ∈  		                 (25)

0 0
N Nv ∈  is the solution to the adjoint equation associated to the 

Neumann problem (10) 

0 0 0 0 0
0

( , ) = ( , ) .N N D N N
Nu

a w v u u w w−∂ ∀ ∈  		               (26)

1) Variation of the bilinear form Daρ  (Dirichlet problem)

The variation of the bilinear form Daρ  (16) defined by 
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( , ) = ( ) : ( ) ( )D

R R
a u v u v dx T u vd xρ ρσ ε γ

Ω Γ
+ ⋅∫ ∫

reads 

0 0( , ) ( , ) = ( ) ( ).D D

R
a u v a u v T T u vd xρ ρ γ

Γ
− − ⋅∫

As a consequence, one has only to examine (Tρ-T0)ϕ for 
21

2 ( )RHϕ
 

∈ Γ 
 

. Indeed, one would like to find an operator 
1 1

2 22 2( ( ) ; ( ) )T R RH Hδ
−

∈ Γ Γ  such that 
2 3

0 1 1
2 22 2( ( ) ; ( ) )

|| || = ( ).T

H HR R

T T oρ ρ δ ρ
−

Γ Γ

− −


Hence, we define Da
δ  by 

21( , ) = ( ) , ( )D T Ra R
u v u vd x u v Hδ δ γ

Γ
 ⋅ ∀ ∈ Ω ∫

and we get that 
2 3

0 21( ( ) )2

|| || = ( ).D D
Da H R

a a oρ ρ δ ρ
 Ω  

− −


Making use of the same procedure outlined in [10], one can get the 
expression (22). 

2) Variation of the bilinear form Naρ  (Neumann problem)

We remark that the same bilinear form aρ is available for 
the Dirichlet and the Neumann problem, namely D Na aρ ρ≡ . As a 
consequence, the same variation (23) of Naρ  follows. 

3) Variation of the linear form lD and lN 

Since lN
 is independent of ρ, it follows trivially that 0Nl

δ ≡  and 
since lD≡0, then 0Dl

δ ≡ . 

4) Variation of the cost functional

Let us now focus our attention on the variation of the Kohn-
Vogelius functional given by 

( ) ( )1( , ) = ( ) ( ) : ( ) ( ) .
2

D N D N D Nu u u u u u dx
ρ ρ ρ ρ ρ ρρ

σ σ ε εΩ Ω Ω Ω Ω ΩΩ
− −∫

This functional  can be decomposed as 

( , ) = ( ) ( ) ( , ),D N D N D N
D N DNu u u u u u

ρ ρ ρ ρ ρ ρΩ Ω Ω Ω Ω Ω+ +   

1( ) = ( ) : ( ) ,
2
1( ) = ( ) : ( ) ,
2

( , ) = ( ) : ( ) .

D D D
D

N N N
N

D N D N
DN

u u u dx

where u u u dx

u u u u dx

ρ ρ ρρ

ρ ρ ρρ

ρ ρ ρ ρρ

σ ε

σ ε

σ ε

Ω Ω ΩΩ

Ω Ω ΩΩ

Ω Ω Ω ΩΩ







 −


∫

∫

∫







Variation of D: The variation of D reads 

0 0 0
1 1( ) ( ) = ( ) : ( ) ( ) : ( ) ,
2 2

D D D D D D
D Du u u u dx u u dx

ρ ρ ρρ
σ ε σ εΩ Ω ΩΩ Ω

− −∫ ∫ 

0
1= ( ) : ( )
2

D D Du u u dx
ρ ρρ

σ εΩ ΩΩ
−∫

0 0 0 0
1 1( ) : ( ) ( ) : ( ) .
2 2

D D D D Du u u dx u u dx
ρ ωρ ρ

σ ε σ εΩΩ
+ − −∫ ∫

Using the Green formula, one can get from (11) that 

0
1 ( ) : ( ) = 0.
2

D D Du u u dx
ρ ρρ

σ εΩ ΩΩ
−∫

Then, it follows that 

0 0 0 0 0
1 1( ) ( ) = ( ) : ( ) ( ) : ( ) .
2 2

D D D D D D D
D Du u u u u dx u u dx

ρ ρ ωρ ρ
σ ε σ εΩ ΩΩ

− − −∫ ∫        (27)

Variation of N: The variation of N reads 

0 0 0
1 1( ) ( ) = ( ) : ( ) ( ) : ( ) ,
2 2

N N N N N N
N Nu u u u dx u u dx

ρ ρ ρρ
σ ε σ εΩ Ω ΩΩ Ω

− −∫ ∫ 

0
1= ( ) : ( )
2

N N Nu u u dx
ρ ρρ

σ εΩ ΩΩ
−∫

0 0 0 0
1 1( ) : ( ) ( ) : ( ) .
2 2

N N N N Nu u u dx u u dx
ρ ωρ ρ

σ ε σ εΩΩ
+ − −∫ ∫
Using the Green formula applied to the problem (12), we obtain 

0 0
1 1( ) : ( ) = ( ) ( ) .
2 2

N N N N N Nu u u dx u n u u ds
ρ ρ ρ ρρ

σ ε σΩ Ω Ω ϒ ΩΩ ϒ
− ⋅ −∫ ∫

Since 0= =N Nu u f
ρ
τ τ τΩ ⋅ ⋅ ⋅  and ( ) =Nu n n g

ρ
σ Ω ϒ ϒ⋅  on ϒ, we have 

0 0
1 1( ) ( ) = ( ) .
2 2

N N N N Nu n u u ds g u u n ds
ρ ρ ρ

σ Ω ϒ Ω Ω ϒϒ ϒ
 ⋅ − − ⋅  ∫ ∫

Then, the following equality holds 

0 0
1 1( ) : ( ) = ( ) .
2 2

N N N N Nu u u dx g u u n ds
ρ ρ ρρ

σ εΩ Ω Ω ϒΩ ϒ
 − − ⋅  ∫ ∫

Hence, we get 

0 0 0 0
1 1( ) ( ) = ( ) : ( ) ( )
2 2

N N N N N N N
N Nu u u u u dx g u u n ds

ρ ρ ρρ
σ εΩ Ω Ω ϒΩ ϒ

 − − + − ⋅  ∫ ∫    (28)

0 0
1 ( ) : ( ) .
2

N Nu u dx
ωρ
σ ε− ∫

Variation of DN: The variation of DN reads 

0 0 0 0( , ) ( , ) = ( ) : ( ) ( ) : ( ) .D N D N D N D N
DN DNu u u u u u dx u u dx

ρ ρ ρ ρρ
σ ε σ εΩ Ω Ω ΩΩ Ω

− − +∫ ∫ 

Using the Green formula applied, on the one hand, to the problem 
(12) we obtain 

( ) : ( ) = ( )D N Nu u dx u n f ds
ρ ρ ρρ

σ ε σΩ Ω Ω ϒΩ ϒ
− − ⋅∫ ∫
and on the other hand, to the problem (10) we get 

0 0 0( ) : ( ) = ( ) .D N Nu u dx u n f dsσ ε σ ϒΩ ϒ
⋅∫ ∫

Then, we have 

0 0 0( , ) ( , ) = ( ) .
ρ ρ ρ

σΩ Ω Ω ϒϒ
− − ⋅∫D N D N N N

DN DNu u u u u u n f ds 

Since 0( ) = ( ) =N Nu n n u n n g
ρ

σ σϒ ϒ Ω ϒ ϒ⋅ ⋅  on ϒ, it follows that 

( )0 0 0( , ) ( , ) = ( ) .D N D N N N
DN DNu u u u u u n f ds

ρ ρ ρ
σ τ τΩ Ω Ω ϒϒ
 − − ⋅ ⋅  ∫ 

               
(29)

Combining the variations (27), (28) and (29), the variation of the 
functional  becomes 

0 0( , ) ( , )D N D Nu u u u
ρ ρΩ Ω − 

0 0 0 0= ( ) ( ) ( , ) ( , ) ( ) ( ),D D D N D N N N
D D DN DN N Nu u u u u u u u

ρ ρ ρ ρΩ Ω Ω Ω− + − + −     

0 0 0 0
1 1= ( ) : ( ) ( ) : ( )
2 2

D D D D Du u u dx u u dx
ρ ωρ ρ

σ ε σ εΩΩ
− −∫ ∫

( )0 0 0
1( ) ( ) : ( )
2

N N N N Nu u n f ds u u u dx
ρ ρρ

σ τ τ σ εΩ ϒ Ωϒ Ω
 + − ⋅ ⋅ + −  ∫ ∫

0 0 0
1 1( ) ( ) : ( ) ,
2 2

N N N Ng u u n ds u u dx
ρ ωρ

σ εΩ ϒϒ
 + − ⋅ −  ∫ ∫

0 0 0 0 0 0 0 0
1 1= ( , )( , ) ( ) : ( ) ( ) : ( ) ,
2 2

D N D D N N D D N ND u u u u u u u u dx u u dx
ρ ρ ω ωρ ρ

σ ε σ εΩ Ω− − − −∫ ∫

where 

0 0 0 0( , )( , )
ρ ρΩ Ω− −D N D D N ND u u u u u u

0 0 0 0
1 1= ( ) : ( ) ( ) : ( )
2 2

D D D N N Nu u u dx u u u dx
ρ ρρ ρ

σ ε σ εΩ ΩΩ Ω
− + −∫ ∫
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( )0 0
1( ) ( ) .
2

N N N Nu u n f ds g u u n ds
ρ ρ

σ τ τΩ ϒ Ω ϒϒ ϒ
   − − ⋅ ⋅ + − ⋅      ∫ ∫

Using the change of variables x=x0+ρy with x0=0, one can write 
2

0 0 0 0( ) : ( ) = ( )( ) : ( )( ) ,D D D Du u dx u y u y dy
ω ωρ
σ ε ρ σ ρ ε ρ∫ ∫

2
0 0= ( )(0) : ( )(0)D Du u dy

ω
ρ σ ε∫

2
0 0 02 ( )( ) ( )(0) : ( )(0)D D Du y u u dy

ω
ρ σ ρ σ ε + − ∫
2

0 0 0 0( )( ) ( )(0) : ( )( ) ( )(0) ,D D D Du y u u y u dy
ω

ρ σ ρ σ ε ρ ε   + − −   ∫
2

0 0 1 2= ( )(0) : ( )(0) ( ) ( ),D Du u dy E E
ω

ρ σ ε ρ ρ+ +∫
where 

2
1 0 0 0( ) = 2 ( )( ) ( )(0) : ( )(0)D D DE u y u u dy

ω
ρ ρ σ ρ σ ε − ∫

2 0 0 0 0( ) = ( )( ) ( )(0) : ( )( ) ( )(0) .D D D Dand E u y u u y u dyρ ρ σ ρ σ ε ρ ε   − −   ∫
By the Taylor expansion, using the fact that  is regular in a 

neighborhood of 0, namely 2
0 ( )Du C ρω∈ , one can prove that 

0 0 0( )( ) ( )(0) : ( )(0) = ( )D D Du y u u dy O
ω
σ ρ σ ε ρ − ∫

and so we obtain E1(ρ)=o(2). 

In the same way, using the Taylor expansion and the regularity of 
0
Du  in a neighborhood of the origin, we get that 

2
0 0 0 0( )( ) ( )(0) : ( )( ) ( )(0) = ( )D D D Du y u u y u dy O

ω
σ ρ σ ε ρ ε ρ   − −   ∫

and so E2(ρ)=o(2). Then, it follows that 
2 2

0 0 0 0
1 1( ) : ( ) = ( )(0) : ( )(0) ( ).
2 2

D D D Du u dx u u dx o
ω ωρ
σ ε ρ σ ε ρ+∫ ∫

Following the same lines outlined above, we derive 
2 2

0 0 0 0
1 1( ) : ( ) = ( )(0) : ( )(0) ( ).
2 2

N N N Nu u dx u u dx o
ω ωρ
σ ε ρ σ ε ρ+∫ ∫

Thus, 

0 0 0 0 0 0 0 0 0 0( , ) = ( )( ) : ( )( ) ( )( ) : ( )( ) .
2

D N D D N Nu u u x u x u x u xπδ σ ε σ ε − + 

All the assumptions of the adjoint method are satisfied and the 
topological asymptotic expansion is given by Theorem 1. 

Numerical Experiments
In spite of the lack of identifiability of the inverse problem 

under consideration(the identifiability was only proved in the case 
of monotonous cavities [7]), it is nevertheless useful to evaluate the 
efficiency of the proposed method through numerical experiments.

Therefore, this part aims to develop a one-shot reconstruction 
algorithm to numerically solve our cavities identification problem from 
partially overdetermined boundary data using the topological gradient 
method. In order to evaluate the topological gradient g, it is practically 
sufficient to solve the Dirichlet (9) and Neumann (10) state equations as 
well as the appropriate adjoint Dirichlet (25) and Neumann (26) state 
equations in the safe domain Ω. Hence, an efficient and cheap topology 
optimization algorithm can be implemented in our case as one only 
needs to compute the solution of both Dirichlet and Neumann direct 
and adjoint problems. Since the function j has to be minimized, one 
has to create holes at some points x0 where the topological gradient 
g(x0), giving by 

0 0 0 0 0 0 0( ) = ( , ) ( , ) ( , ),D D N N D N
D Na a

g x u v u v u uδ δ δ+ +  		                 (30)

is the most negative. In order to point out this feature, let us 

enumerate the steps of the topological optimization algorithm to be 
implemented. 

Algorithm

Let Ωtrue be a domain containing a cavity whose location and shape 
are to be retrieved from boundary measurements. The displacement 
f and the normal component of the normal stress g are generated by 
a numerical computation of a direct problem over the domain Ωtrue 
containing the cavity to recover (synthetic data). 

Since the partially overdetermined boundary data (f,g) are 
overspecified, the numerical procedure could be represented in the 
following algorithm stages. 

1. Provide the initial domain Ω0 (the safe domain). 

2. Solve the Dirichlet (9) and Neumann (10) direct problems in the 
safe domain Ω0. 

3. Solve the Dirichlet (25) and Neumann (26) adjoint problems in 
the safe domain Ω0. 

4. Compute the topological gradient g (30). 

5. Create holes at the points where the topological derivative is the 
most negative. 

Numerical tests

In this subsection, we provide some numerical results related to 
the identification of cavities carried out with the algorithm described 
above. 

We consider for all the following tests the same initial domain Ω0, 
namely the disc centered at the origin of radius r0=2. 

First case: In this case, the solution, namely the boundary of the 
cavity to recover, is the circle Cexact centered at the origin with radius 
Rexact=0.45 and the partially overdetermined boundary data, that is the 
displacement field and the normal component of the normal stress 
are taken from the analytical expression uexact, of the solution u of the 
elasticity problem with complete data [3], given by 

exact
1 2( ) =

2
C Cu r r

r
+

where 
2(1 )(1 2 ) 11 = and 2 =C A C B

E E
ν ν ν+ − +

Above, the constants A and B are determined by the boundary 
conditions, namely 

2 2
2 21 1 2 0 1 2

1 02 2 2 2
0 1 0 1

= and =P r P r P PA B r r
r r r r
− −
− −

where r1=Rexact, σr(r1)=-P1=0 and σr(r0)=-P2 (σr is the radial stress).

Figure 3 shows the level lines of the topological gradient g (30). 
We remark that the level set curve of g related to the smallest value 
corresponds to the cavity to be recovered. 

Second case: In the following cases, the measurements f and g are 
synthetic, i.e. generated by a numerical computation.

In this second case, we consider again a single cavity centered at 
(-1.6;-0.3) with radius Rexact=0.3. Figure 4 depicts the rough location of 
the cavity. 

In contrast to the first and second cases focusing on the 
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identification of a single cavity, the issue discussed in the next cases 
deals with multiple cavities detection insofar as the topological gradient 
does not depend on the number of cavities. 

Third case: The aim of the third numerical experiment is to identify 
two cavities centered at (-1.65;0) and (1.65;0) with radius Rexact=0.3. 
From Figure 5, it turns out that an accurate detection is achieved. 

Fourth case: For the numerical reconstruction in the last 
experiment, we focus on the case of a mechanical structure with four 
cavities, having the same radius Rexact=0.3 and centered at (-1.65;0), 
(1.65;0), (0;-1.65) and (0;1.65), to be recovered. The negative level lines 
of the topological gradient presented in Figure 6 coincide with the 
actual cavities. 

Let us point that although the partially overdetermined boundary 
data lead additional difficulties especially in the numerical part, the 
detection of the cavities is efficient. Thus, these numerical illustrations 
demonstrate that the approach, namely the topological gradient 
method combined with the Kohn-Vogelius functional, proposed in 
this paper, is a reliable tool to recover cavities in mechanical structures. 

Conclusion
Among several techniques proposed to solve the problem of 

detection of geometrical faults arising in elasticity framework, we resort, 
in this paper, to the topological gradient method which furnishes the 
sensitivity of a shape functional when modifying the topology of the 
domain with respect to the creation of a small hole.

We have proposed a one-shot approach based on the topological 
gradient method combined with the so-called Kohn-Vogelius gap 
cost functional. From the numerical results, the topological sensitivity 
method has been seen to be a powerful tool to be applied in topology 
optimization problems even in the case of partially overdetermined 
boundary data. 

Moreover, the theoretical question related to the identifiability is 
still open since the uniqueness result was only derived for the case of 
monotonous cavities.

Although the process of the topological gradient method is not only 
cheap but also fast, it only allows to detect the rough location of faults. 
Hence, if one needs to determine a precise location, it should use some 
others approaches like level set method. A promising strategy [23] to  

Figure 3: On the left: superposition of the actual cavity and the smallest 
isovalue of the topological gradient; on the right: the topological gradient g.

 
Figure 4: On the left: superposition of the actual cavity and negative level 
lines of the topological gradient; on the right: the topological gradient g.
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be explored is so to combine the level set method with the topological 
gradient one from which a good initial guess can be obtained.
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Figure 5: On the left: superposition of the actual cavities and negative level 
lines of the topological gradient; on the right: the topological gradient g.

 

Figure 6: On the left: superposition of the actual cavities and negative level 
lines of the topological gradient; on the right: the topological gradient g.
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