alexa Cell Therapies-Engineered Cartilage Tissue-New Horizons | OMICS International
ISSN: 2157-7013
Journal of Cell Science & Therapy
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Cell Therapies-Engineered Cartilage Tissue-New Horizons

Srinivas Rao K*

Consultant-Orthopaedics, Employees State Insurance Hospital, Sanathnagar, Hyderabad, Andhra Pradesh, India

*Corresponding Author:
Srinivas Rao K
Flat no G3, H No. 6-4-519
MIGH Colony, Hyderabad-500 080
Andhra Pradesh, India
Tel: 0091-9490190411
E-mail: [email protected]

Received date: February 18, 2014; Accepted date: March 20, 2014; Published date: March 28, 2014

Citation: Srinivas Rao K (2014) Cell Therapies-Engineered Cartilage Tissue-New Horizons. J Cell Sci Ther 5:160. doi: 10.4172/2157-7013.1000160

Copyright: © 2014 Srinivas Rao K. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Cell Science & Therapy

Abstract

Cartilage tissue engineering is required for the repair of injured cartilage and osteoarticular diseases. Since cartilage cells at the site do not grow to form new cartilage cells, therefore, tissue engineered cartilage approaches aim at cultivating chondrocytes in vitro, and to reintroduce the engineered cultured cartilage tissue into the damaged region. In our study, human cartilage cells cultured on novel microcarrier made of ECM (Extracellular matrix) proteins exhibited hyaline cartilage differentiation, cell proliferation and biocompatibility. Engineered cartilage tissue will be a promising method for the treatment of cartilage defects.

Keywords

Extracellular Matrix (ECM); Cartilage; Engineering; Microcarrier

Introduction

Repair of injured cartilage and osteoarticular diseases is a mojor challenge for Orthopedic surgeons. Cartilage injuries among professional and recreational athletes are increasingly encountered and diagnosed and demand a quick return to preinjury level of sporting activities [1].

Current high-field Magnetic Resonance Imaging (MRI) techniques provide a sensitive and reliable diagnostic tool for the evaluation of cartilage and osteochondral injury [2]. In the athlete, untreated articular cartilage defects can represent a careerthreatening injury and create a significant obstacle in returning to full athletic participation. The markedly limited healing potential of articular cartilage often leads to continued deterioration and progressive functional limitations [3]. Because cartilage cells at the site do not grow to form new cartilage cells, cartilage tissue engineering is required for the repair of injured cartilage. Tissueengineered cartilage approaches aim at cultivating chondrocytes in vitro and to reintroduce the engineered cultured cartilage tissue into the damaged region. Our proposed cell therapy besides being useful in repairing traumatic cartilage lesions can also serve as bioenhancement procedure after joint surgeries like ACL (Anterior cruciate ligament) repair, microfractures, and arthroscopic debridement. Bio enhancement with a bioactive scaffold, like our micro carrier can stimulate healing [4]. At present, cartilage injury cases are treated with multiple drilling, abrasion arthroplasty, mosaicplasty, Autologous Chondrocyte Implantation (ACI), and Matrix-Induced ACI (MACI®). Articular cartilage injuries remain a prime target for regenerative techniques such as tissue engineering. In contrast to the surgical techniques mentioned above, which often lead to the formation of fibrous or fibrocartilaginous tissue, tissue engineering aims at fully restoring the complex structure and properties of the original articular cartilage by using the chondrogenic potential of transplanted cells [5]. MACI® by Genzyme Corporation is proven for cartilage trauma. Collagen I and collagen III are used for MACI® that provide Extracellular Matrix (ECM) environment and hence potentially useful.

Methods

I propose two novel and hypothetical variation of MACI for cartilage injuries and Oseoarthritis. In first approach, autologous chondrocyte are cultured on ECM microcarrier and transplanted. Chondrocytephe-notype can be preserved during culture expansion [6]. In the second approach, autologous Mesenchymal Stem Cells (MSCs) are cultured on ECM microcarrier and differentiated into hyaline cartilage and used for transplantation. Bone marrow has been shown as a possible source of Multipotent Stem Cells (MSCs) with chondrogenic potential [7]. MSCs seeded in hydrogel composites can improve cartilage repair [8]. Effective chondrogenesis can be achieved by directing the MSCs toward chondrocyte lineage [9]. Both approaches have high degree of feasibility as per the published literature. In the last decades, a wide number of researchers/clinicians involved in tissue engineering field published several works about the possibility to induce a tissue regeneration guided by the use of biomaterials [10] like our ECM microcarrier. In our study primary chondrocytes were isolated from discarded human cartilage during joint replacement surgeries. The patient’s consent was taken for the study. The cartilage cells are isolated after enzyme digestion and are cultured on ECM particle (microcarrier) in spinner bottle set up for required period. Similarly, MSCs isolated from bone marrowconcentrates are differentiated into chondrocytes and expanded on ECM microcarrier. The ECM carrier laden with cells is then transplanted in nude mice for study of collagen and GAG expression. In vivo, cartilage matrix formation can be assessed by histology after subcutaneous transplantation of chondrocyteseeded scaffolds in immuno compromised mice [11]. The principle of porous microcarrier culture of human or animal cells is described with help of (Figure 1 and 2).

cell-science-therapy-porous-microcarrier

Figure 1: Principle of porous microcarrier culture of human cartilage cells.

cell-science-therapy-Cellular-Matrix

Figure 2: Extra Cellular Matrix (ECM) microcarrier.

Results

The studies on the construction of engineered cartilage tissue on a ECM composite have high degree of feasibility. The cell attachment ratio to our novel microcarrier, proliferation, and extracellular matrix proteins secretion are superior and reproducible. They have appropriate mechanical and structural properties for clinical applications. The Scanning electron microscope (Figure 3 and 4) and confocal fluoroscope examinations showed that the ECM microcarrier has a regular interconnected porous structure.

cell-science-therapy-Cartilage-cell

Figure 3: Cartilage cell growing on ECM particle.

cell-science-therapy-Ectopic-Implant

Figure 4: Ectopic Implant of Human cartilage cells on nude mice.

The novel ECM microcarrier is effective in engineered chondrocyte culture. The cell viability test (WST-1 assay), cell toxicity (lactate dehydrogenase assay), cell survival rate, extracellular matrix protein production (glycosaminoglycans contents), cell proliferation (DNA quantification), and gene expression (real-time PCR) all revealed good results for chondrocyte culture (Figure 5). The chondrocytes can maintain normal phenotypes, highly express aggrecan and type II collagen, and secrete a great deal of extracellular matrix when seeded in our novel microcarrier. This study demonstrated that a highly organized “Sol-cell”can be prepared with an ECM microcarrier device which is effective in engineering cartilage tissue.

cell-science-therapy-Human-Cartilage

Figure 5: Human Cartilage cell cultured on ECM and stained with safranin O.

Conclusion

The engineered cartilage tissue will be a promising method for the treatment of cartilage defects. The downsides associated with present treatment regimens like multiple drilling, abrasion arthroplasty, mosaicplasty and joint replacement can be addressed with our novel, fluidic yet robust cartilage engineering to overcome the limitations that currently exist, amultidisciplinary field, in which bioengineering and medicine based on integrative approaches using scaffolds, cell populations from different sources, growth factors, and nanomedicine should emerge [12].

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

Article Usage

  • Total views: 11915
  • [From(publication date):
    April-2014 - Dec 11, 2017]
  • Breakdown by view type
  • HTML page views : 8147
  • PDF downloads : 3768
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version