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Abstract

The human skin is a complex organ consisting of multiple skin cells that work together to complement each other
and provide essential functions such as skin barrier function, skin homeostasis and protection against the harmful
ultraviolet radiation. Understanding the roles and paracrine signaling of different skin cells plus the influence of
external stimuli on them are crucial towards the design of tissue-engineered skin constructs as these factors
regulate the cellular behavior such as cell proliferation, migration and differentiation. Hence, an in-depth
understanding of the knowledge on the epithelial-mesenchymal interactions would be valuable towards the design of
a tissue-engineered skin construct.

Keywords: Skin; Keratinocytes; Melanocytes; Fibroblasts; Stem cells;
Tissue Engineering

Introduction
Human skin, which is the body's largest organ, not only protects us

against a plethora of deleterious stressors such as chemical, mechanical
and biological insults but also plays a critical role in maintaining the
body homeostasis. Wounds are breaches in skin's structure that
compromise the skin barrier functions and they can be classified into
different categories such as I) epidermal, II) superficial partial-
thickness, III) deep partial-thickness or IV) full-thickness wounds
based on the depth of injury [1]. In severe cases such as chronic ulcers
or extensive burns, the wounds extend deep into the dermis region
(full-thickness wounds) and they do not close without intervention.
Any full-thickness wound larger than 1 cm in diameter requires the
use of a skin graft for proper healing and the current “gold standard”
treatment is to apply split-thickness grafts onto the wound site [2]. In
the United States, an estimated US $25 billion is spent on wound
treatment annually and this healthcare burden is expected to snowball
drastically due to escalating healthcare costs and increasing aging
population worldwide [3].

Although the limited availability of suitable skin grafts poses a
major challenge, development of tissue-engineered skin substitutes
can help to alleviate this problem [4]. At present, tissue-engineered
skin substitutes are already a reality due to extensive research in cell
biology, wound healing mechanisms and breakthrough in cell culture
techniques [5,6]. The advent of skin tissue engineering has brought
about a paradigm shift in wound management from the use of passive
wound dressings to bioactive skin regeneration scaffolds [7]. Tissue-
engineered skin constructs comprising of living cells, biomaterials and
biochemical signals aim to expedite wound healing by stimulating the
innate capability of the skin for self-regeneration. The gradual
understanding of wound healing mechanisms has invoked the
development of bioactive skin regeneration scaffolds that promote
skin rejuvenation via the incorporation of different skin cells within
tissue-engineered scaffolds. As the skin cells themselves are the

primary sources of various extracellular matrix (ECM) molecules that
stimulate and coordinate tissue repair, it is important to understand
the roles of these cells within the native skin. In this review, the roles of
different skin cells and their paracrine signaling are highlighted. In
addition, the current progress of tissue-engineered skin substitutes and
the potential use of stem cell technology for skin tissue engineering
will be discussed.

Cellular Components of Skin
The skin cells found in tissue-engineered skin can be categorized

into autologous (from the patient’s own cells) or allogeneic (from
genetically non-identical donors) cell source. Both autologous and
allogeneic skin cells have been used in commercially available skin
substitutes and they help to initiate wound healing process [8]. The
advantages of utilizing an autologous cell source include the
comparatively low requirement for safety testing and a lower risk of
immunological rejection by the patients, while the limitations include
lengthy cultivation time (~15 to 30 days) and high manufacturing
costs arising from having to use separate, independent tissue culture
suites. In contrast, allogeneic cell source has the advantages of
immediate clinical applications to injured skin and the use of common
tissue culture facility for each cell type allows the economies of scale
and straightforward logistics. The limitations include more stringent
safety-testing, potential risk of immunological rejection and disease
transmission. In the following section, the roles of different skin cells
in their respective regions and the influence of external factors on cell
migration, proliferation and differentiation will be presented and
highlighted.

Keratinocytes
Keratinocytes found in epidermis (the outermost layer of the skin)

form an impermeable barrier to pathogens and play an important role
in cell signaling within the extracellular matrix. The epidermis
measures about 0.2 mm thick and epidermal keratinocytes with
different degrees of differentiation are arranged into 4 layers within
the epidermis as depicted in Figure 1 (namely stratum corneum,
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stratum granulosum, stratumspinosum and stratum basale). The
outermost stratum corneum is a cornified layer of 15-30 sheets of
terminally-differentiated keratinocytes (corneocytes). The next inner
layer (stratum granulosum) consists of 3-5 sheets of granular layer of
non-dividing keratinocytes, which flatten as the dividing cells below
progressively push them to the skin surface. The following layer
(stratum spinosum) consists of 8-10 sheets of keratinocytes with
limited capacity for cell division. The basal or dividing layer of the
epidermis (stratum basale) houses the differentiating keratinocytes
and keratinocyte stem cells. Every keratinocyte in the basal layer would
eventually mature and differentiate into corneocyte, followed by
organizing into “bricks-and-mortar” arrays that provide the important
skin barrier function [9].

Autologous keratinocytes are required for the development of a
permanent skin substitute as allogeneic keratinocytes are usually
rejected by the host [10]. The major challenge encountered was the
lengthy cultivation period for autologous keratinocytes from skin
biopsies prior to obtaining sufficient amount of keratinocytes for
clinical application. Strategies that were proposed to alleviate this
problem include the use of low calcium medium to enhance the
proliferation rate of keratinocytes, the use of sub-confluent
keratinocytes on functionalized plasma treated surfaces or fibrin glue
and chimeric composition of keratinocytes (a mixture of allogeneic
and autologous keratinocytes) [11-17]. Interestingly, allogeneic
neonatal foreskin-derived keratinocytes do not elicit immune rejection
due to undeveloped human leukocyte antigen (HLA) tissue markers
and they also demonstrate high proliferation and differentiation
capabilities [18,19]. The proliferation of keratinocytes is highly
dependent on the epithelial-mesenchymal interactions [10]; the
keratinocytes cease to proliferate after 1 week and differentiate into
discontinuous epithelium in the absence of fibroblasts.

Upon reaching confluency, these proliferating keratinocytes would
undergo a sequential differentiation process which is regulated by a
calcium gradient across the epidermal region to form fully stratified
keratinocyte layers that provide the epidermal barrier function [20]. In
another study, both calcium and vitamin D were shown to activate the
phospholipase C (PLC) and protein kinase C (PKC) signaling
pathways that are involved in the regulation of keratinocyte
differentiation [21]. A recent study also highlighted the synergetic
effect of multifactorial external stimuli (calcium, confluence, serum
and lower incubation temperature) on optimal differentiation of in
vitro keratinocytes [22]. The proliferation and differentiation of the
keratinocytes are regulated by a variety of biological factors; the
change in protein phosphorylation is one of the major mechanisms
that alter the keratinocyte’s response to extracellular signals. This
protein phosphorylation process involves the binding of ligands to
receptors which subsequently leads to the activation of several
transduction pathways in keratinocytes. These signal transduction
pathways include protein tyrosine kinases (PTK), protein kinase A
(PKA), protein kinase C (PKC), mitogen-activated protein kinase
(MAPK), casein kinase II, phospholipases and cytokine receptor
superfamily [23]. The activation of the tyrosine kinase activities and
tyrosine phosphorylation are required for keratinocyte differentiation;
which is closely associated with epithelial growth factor receptor
(EGFR), calcium concentration (Ca2+) and 12-0-
tetradecanoylphorbol-13-acetate (TPA). It was also shown that PKC
activation is essential for keratinocyte terminal differentiation [24] and
this activation is regulated by Ca2+, diacylglycerol (DAG) or phorbol
ester. PKC is an important transduction pathway that regulates the
sequential differentiation of keratinocytes from the spinous to

granular region in the epidermal skin. Keratinocytes in a reduced Ca2+

concentration (0.05mM) demonstrates a basal-cell like morphology,
whereas keratinocytes cultured in higher Ca2+ concentration (0.12
mM) leads to sequential induction of early differentiation markers (in
the spinous cells) such as keratins 1 (K1) and 10 (K10) and late
markers (in the granular cells) that include involucrin, profilaggrin
and loricrin [20]. More comprehensive reviews on the signal
transduction pathways in keratinocytes were already covered
[23,25,26].

The substrate stiffness also plays a critical role in regulating the
proliferation, migration and differentiation of the keratinocytes; a
stiffer surface is preferred for keratinocyte migration and proliferation,
whereas a softer surface is favorable for keratinocyte differentiation
[27]. Furthermore, the widely-accepted practice of culturing confluent
keratinocytes at the air-liquid interface is another critical step in the
formation of a fully-stratified epidermal layer [28,29]. Understanding
these mechanisms that regulate the proliferation and differentiation
process of keratinocytes will aid in the development of techniques and
procedures for accelerated maturation of a fully functional epidermal
layer.

Figure 1: Schematic drawing of human skin

Melanocytes
Melanocytes found on the basement membrane at the epidermal-

dermal junction, synthesize the pigment melanin which provides our
distinct skin colour and protects us against the ultraviolet radiation
(UV-R). The melanin are synthesized and stored within melanosomes,
which are then transferred to the overlying suprabasal keratinocytes
via elongated dendrites. These melanins can be categorized into
eumelanin (black to brown colour), pheomelanin (yellow to reddish-
brown colour), neuromelanin (brown/black colour) and mixed
melanin pigment (contains both eu- and pheonomelanin) [30]. The
variation in skin colour is attributed to the density, size and
distribution of melanosomes to the cluster of surrounding
keratinocytes. Although every individual has a distinctive skin colour,
the melanocyte density in a specified area is identical for all skin types
[31]. The ratio of epidermal melanocytes to basal keratinocytes in the
human skin is approximately 1:20 and it is imperative to note that a
minimum density of 1.0 x 104 melanocytes/cm2 is required to restore
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the skin pigmentation completely [32]. The main components of a
basement membrane (BM) consist of collagen type IV, collagen VII
and laminins and the presence of a basement membrane is essential
for the positional orientation of the melanocytes [33]. In the absence
of BM, these melanocytes migrate to the superficial keratinocyte layers
and undergo spontaneous pigmentation. In an elegant study, it was
demonstrated that the dynamic epithelial-mesenchymal interactions
required for basement membrane formation are predominantly
regulated by diffusible factors without the need for direct keratinocyte-
fibroblast contact [34]. 

The epidermal melanin unit (EMU) is a functional complex unit
found within the epidermis that consists of both keratinocytes and
melanocytes. Once melanosomes are transferred to the keratinocytes,
the melanin granules accumulate above the nuclei and absorb the
harmful UV-R. The keratinocyte-melanocyte complex reacts
spontaneously to a wide range of external stimuli in both autocrine
and paracrine signaling [35]. Upon stimulation, increased expression
of proopiomelanocortin (POMC, precursor of melanocyte-stimulating
hormone) and its receptor melanocortin 1 receptor (MC1-R) by
melanocytes was observed. Furthermore, production of keratinocyte-
derived factors such as adrenocorticotropic hormone (ACTH), alpha-
melanocyte stimulating hormone (α-MSH), basic fibroblast growth
factor (bFGF), nerve growth factor (NGF) and endothelins was
detected. Fibroblasts also respond to UV-R by producing melanogenic
factors such as hepatocyte growth factor (HGF), stem cell factor (SCF)
and bFGF.

One of the main challenges in cultivation of melanocytes is due to
drastic reduction in number of melanocytes after serial sub-cultivation
and cryopreservation [36]. Conventionally, melanocytes are isolated
from the primary culture consisting of both keratinocytes and
melanocytes. This leads to low initial density and subsequently, low
proliferative capacity in the first passage. In a recent study, the
melanocytes were co-cultured with keratinocytes present in the
primary culture until sufficient melanocytes are obtained [37] and the
presence of keratinocyte-derived growth factors enhance the
differentiation, migration and proliferation of the melanocytes. It was
also reported that phospholipase A2, a component of bee venom, helps
to stimulate melanocyte dendricity and pigmentation [38]. Extensive
research was conducted to induce the differentiation of different stem
cells into melanocytes [39-42] and this provides alternative sources of
melanocytes which could overcome the above limitation.

Recent works on reconstruction of tissue-engineered skin
containing melanocytes clearly emphasize the poor reliability of
animal models [43]. Reconstructed pigmented skin substitutes
transplanted on the full-thickness defects created on the back of the
nude rats showed darker pigmentation as compared to the donor
melanocytes [44]. This observation is corroborated by an earlier study
[45] that murine fibroblasts were shown to secret more soluble factors
that increase the pigmentation. Markedly, it was shown in another
study that the skin colour of the reconstructed pigmented skin
transplanted onto full-thickness defects on the backs of nu/nu rats was
similar to the donor skin, independent of the melanocyte to
keratinocyte ratio used [46]. The surgical steel rings that were sutured
to the full-thickness skin defects prevent wound closure with the
surrounding rat skin; this might negate the influence of murine
fibroblast on the skin pigmentation [33]. To the best of our knowledge,
no work on the use of allogeneic melanocytes that closely matches the
patient's skin colour for skin repigmentation has been reported.

Fibroblasts
Fibroblasts residing in the dermal region produce collagen, growth

factors, glycosaminoglycans (GAGs), and fibronectin to initiate wound
healing process. The dermis is predominantly extracellular matrix with
low fibroblast density [47] and this dermal region can be further
divided into an upper 'papillary' and a lower 'reticular' region. The
papillary dermis is characterized by thin, randomly orientated collagen
fiber bundles (with a high ratio of type III to type I collagen) that are
arranged into ridge-like structures, while the reticular dermis consists
of numerous thick, orderly-orientated fiber bundles (low ratio of type
III to type I collagen) as illustrated in Figure 2. The dermal fibroblasts
are heterogeneous and the papillary and reticular fibroblasts are
known as superficial and deep fibroblasts respectively [48]. Recent
studies on evaluation of the fibroblast heterogeneity on wound healing
have shown that incorporation of superficial dermal fibroblasts within
cultured skin substitutes demonstrated reduced hypertrophic scarring
and improved basement membrane and epidermal barrier formation
[49,50].

Figure 2: Schematic drawing of the collagen fiber distribution
within the dermal region

A study on cell adaptation to a physiologically relevant ECM with
varying viscoelastic properties demonstrates contrasting effects,
whereby the fibroblasts migrate faster (0.81 μm/min) on softer
substrates (95Pa) while proliferating preferentially on the stiffer
substrates (4270Pa) [51]. Notably, the proliferation of fibroblasts
demonstrated high dependency on the substrate hardness with a
dimensionality-specific response [52]. In contrast to higher
proliferation rate on a 2D microenvironment with increasing substrate
stiffness, the fibroblasts demonstrated slower proliferation rate within
a 3D microenvironment with increasing substrate stiffness. Although
the knowledge on fibroblast biology within a 3D microenvironment is
integral towards our understanding of the cell-matrix interactions and
development of improved skin substitutes; it is beyond the scope of
this review. Detailed reviews on the fibroblast mechanics and biology
within 3D collagen matrices could be found elsewhere [53,54]. Other
factors that affect the fibroblast proliferation include passage number,
donor's age and fibroblast phenotype [55]. Furthermore, the presence
of vitamin C and antioxidant (coenzyme Q10) were shown to increase
migration and proliferation of fibroblasts [55].

In contrast to allogeneic keratinocytes, numerous reports advocated
the hypothesis that allogeneic fibroblasts can be tolerated by the host
and long-term grafting of these fibroblasts for up to 2 months was
demonstrated [10,56-60]. Notably, the allogeneic neonatal fibroblasts
are more responsive to mitogens as compared to allogeneic adult
fibroblasts [61]; they migrate faster and have a shorter cell population
doubling time [62]. The allogeneic fibroblasts in the cultured skin
substitutes are gradually replaced by the host cells over time [21];
hence the use of autologous fibroblasts in dermal substitutes is
required for permanent engraftment and was shown to result in better
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restoration and minimal scar formation as compared to allogeneic
dermal substitute [63,64].

The feeder cell-culture system is an exemplar which clearly depicts
the importance of epithelial-mesenchymal interactions. The
keratinocyte-derived interleukin-1 (IL-1) stimulate the fibroblasts to
synthesize and secrete growth factors and cytokines such as
keratinocyte growth factor (KGF) / fibroblast growth factor -7 (FGF7),
interleukin 6 (IL-6), and granulocyte macrophage colony-stimulating
factor (GM-CSF) [65], which in turn regulates keratinocyte
proliferation and differentiation in the keratinocyte-fibroblast co-
cultures [66]. This elucidates the existence of a double paracrine loop
and highlights the significance of epithelial-mesenchymal interactions.
Nevertheless, it is important to note that the presence of fibroblasts in
the tissue-engineered skin induced a reduction in melanocyte
pigmentation as compared to tissue constructs without fibroblasts [45]
and this observation is corroborated by another study which highlights
that the presence of fibroblast-secreted proteins, Dickkopf 1 (DKK1),
suppress the melanocyte function and proliferation [67]. As such, it is
desirable to have a low fibroblast density within the tissue-engineered
skin constructs which closely mimics the native dermal region.

Current Progress of Tissue-engineered Skin Substitutes
The demand for improved healing outcomes has invoked the

development of skin substitutes that actively promote wound
regeneration. Over the last three decades, several tissue-engineered
skin substitutes have been developed and they have emerged as
important therapeutic products for treatment of chronic wounds or
extensive burns. These novel skin substitutes can be classified into
epidermal, dermal and epidermal-dermal (composite) tissue-
engineered constructs. Nevertheless, some of the limitations include
more stringent safety-testing, potential risk of immunological rejection
and disease transmission. In the subsequent sections, the types of skin
substitutes and their respective roles will be briefly covered.

Epidermal Skin Substitutes
Epidermal skin substitutes containing autologous keratinocytes are

often cultivated on top of irradiated murine fibroblast feeder layer.
These autologous keratinocytes from patient’s skin biopsy are usually
cultivated and expanded in laboratories over a period of approximately
3 weeks to obtain stratified keratinocyte cell sheets, which are also
known as cultured epithelial autografts (CEAs). Over the last three
decades, confluent CEAs have been utilized for treatment of extensive
burns and temporary wound dressings are required due to the lengthy
cultivation period for CEAs. Furthermore, these CEAs (which typically
range between 2 to 8 cell layers thick) do not result in satisfactory
healing outcomes [68] and meticulous handling of the fragile cell
sheets is required.

The use of synthetic carrier templates such as petrolatum gauze
backings and silicone membranes provides mechanical support to the
fragile cell sheets. Intriguingly, an acid-functionalized silicone
membrane was reported to facilitate attachment, proliferation and easy
transfer of keratinocytes [69]. However, these carrier templates are
non-biodegradable, and as such it is necessary to subsequently remove
them from the wound site. The use of natural biomaterials such as
fibrin [70,71] and hyaluronic acid [72] as delivery system for cultured
keratinocytes provides a suitable microenvironment for migration,
proliferation and differentiation of keratinocytes and also improves
graft adherence. Furthermore, they can undergo enzymatic

degradation in vivo which eliminate the hassle for subsequent removal
from the wound sites. The missing dermal component in these skin
substitutes often results in unsatisfactory healing outcomes, as the
degree of epithelial attachment and scarring is closely dependent on
the condition of the underlying dermal wound bed [73]. To improve
the clinical outcomes, another type of skin substitute with the dermal
component was developed.

Dermal Skin Substitutes
The biomaterials in dermal skin substitutes not only aid in wound

bed preparation, but also provide temporary scaffolds for cell
attachment and proliferation [73]. Fibroblasts found in the dermis
layer of human skin produce collagen, growth factors,
glycosaminoglycans (GAGs), and fibronectin to initiate wound
healing. Generally, a two-step process is required for the
reconstruction of deep wounds (as shown in Figure 2). The dermal
skin substitute is first placed over the wound site for wound bed
preparation, followed by the application of an epidermal layer over a
well-vascularized dermal layer.

Figure 3: Reconstruction process of a full thickness burn with
tissue-engineered skin constructs. A full thickness burn is usually
treated via a two-step process by first applying a dermal substitute,
followed by an epidermal cover.

These dermal skin substitutes can be further classified into cell-
seeded scaffolds [74] or acellular scaffolds [75-78]. Most of these
commercially available dermal skin substitutes are acellular scaffolds,
which mainly function as temporary scaffolds for cellular infiltration
and attachment. This could be due to lower manufacturing costs and
straightforward logistics and storage [79]. It was highlighted that
acellular dermal substitutes could be repopulated by autologous
fibroblasts in vivo from day 3 onwards [80]. In contrast, the allogeneic
human neonatal fibroblasts present in the cellular dermal skin
substitutes die within a few weeks after implantation [10]; hence the
cellular dermal skin substitutes only function as a delivery system for
temporary production of growth factors and ECM proteins.

Epidermal-Dermal Skin Substitutes
Epidermal-dermal skin substitutes comprising both epidermal and

dermal layers is currently the most sophisticated tissue-engineered
skin product that closely resembles the structure of native human skin.
The presence of both keratinocytes and fibroblasts within the
epidermal-dermal skin substitutes leads to the production of a variety
of growth factors and cytokines which expedite wound healing
[81-83], highlighting the importance of epithelial-mesenchymal
interactions. These epidermal-dermal skin substitutes have been
utilized for treatment of chronic wounds and ulcers with higher
incidences of wound closure were reported [84].

The epidermal-dermal skin substitutes are around 2.5mm thickness
on average and delayed vascularization in such thick tissue-engineered
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skin construct remains a critical bottleneck in skin tissue engineering
[85]. Integration of a vascularized skin construct with the host
vasculature is vital for efficient diffusion of oxygen, nutrients and
waste products, as such most cells reside close to the blood capillaries
as the oxygen and nutrient diffusion limit is approximately 0.1-0.2mm
[86]. Different engineering approaches have been proposed to induce
the formation of blood vessels in vitro [87]. A combination of cell-
based [88], biomaterial-based [89,90] and micro-fabrication
approaches [91,92] could possibly alleviate the problem of delayed
vascularization. In the cell-based approach, endothelial cell cocultures,
growth factor-producing cells or stem/progenitor cells were utilized to
accelerate the formation of new blood vessels. Studies have also shown
that incorporation of biomaterials such as fibrin [89] or hyaluronic
acid [90] within the tissue-engineered constructs can help to improve
angiogenesis. In the micro-fabrication approach, miniature channels
were fabricated to enhance the oxygen and nutrient diffusion. Detailed
reviews on the different vascularization strategies were already covered
elsewhere [88,93,94].

Furthermore, the aesthetic outcomes of these skin substitutes
remain unsatisfactory [4]. The lack of pigmentation within the skin
substitutes leads to the formation of white patches resulting vitiligo,
which may result in a negative impact on the patient’s social life. A
spray-on cell suspension, ReCell®, which comprises of non-cultured
autologous keratinocytes, melanocytes and fibroblasts, was studied for
treatment of vitiligo. In one study, repigmentation time takes
approximately 3-5 weeks but clinical results demonstrated good colour
match and high extent of repigmentation [95]. Conversely, the results
from another study showed that repigmentation of transplanted skin
after 4months is highly dependent on the patient’s age, whereby
unsatisfactory results (less than 65%) were obtained for patients above
30 years old [96].

Stem Cell Technology
Although the use of tissue-engineered skin substitutes have

demonstrated some success in the treatment of chronic wounds,
current technologies only remain partially effective in mimicking the
native human skin (eg. lack of skin appendages, skin pigmentation and
extensive network of blood vessels). Extensive stem cell research is
being carried out due to their high differentiation and proliferation
capacity. The use of stem cells is gaining attention due to their
potential to overcome these limitations. In this section, recent studies
on the potential use of stem cells in skin tissue engineering will be
highlighted and discussed.

Mesenchymal Stem Cells (Mscs)
Human mesenchymal stem cells (MSCs) are adult stem cells which

can be isolated from tissues such as bone marrow [97,98] and adipose
tissue [99,100]. Bone marrow MSCs (BM-MSCs) were shown to
differentiate into multiple skin cell types which aid in wound healing
[97,100]. It was also demonstrated that BM-MSCs can differentiate
into sweat gland cells in vitro [102]. Notably, the BM-MSCs enhance
angiogenesis [97,99], which is crucial for wound healing. Although
BM-MSCs have many beneficial outcomes, the use of allogeneic MSCs
does induce slight immunoreactivity [103].

Human adipose-derived stem cells (ADSCs) could be harvested
easily from liposuction of human adipose tissue in a minimally
invasive manner, providing an abundant source of autologous cells
[104]. An approximately 40-fold yield of MSCs could be obtained from

the adipose tissue as compared to the bone marrow [105]. Automatic
cell sorters such as CelutionTM system provided a cost-effective and
efficient method of isolating and concentrating these stem cells
automatically from adipose tissue [106]. A study showed that
conditioned medium of ADSCs stimulated collagen synthesis and
migration of human dermal fibroblasts (HDFs) [100], thus indicating
that ADSCs secreted growth factors which accelerated wound healing.
Intriguingly, increased secretion of growth factors such as vascular
endothelial growth factors (VEGFs) and basic fibroblast growth factors
(bFGFs) is observed under hypoxic conditions [107]. Another study
has shown that ADSCs secreted angiogenic cytokines increase
neovascularization [108]. Markedly, Chan, et al. have developed
vascularized skin constructs from autologous ADSCs, which further
differentiated into different mesenchymal cell types by varying the
type of hydrogels used in the bilayered construct [99]. Lin, et al. [109]
have demonstrated that wound closure rates by ADSC sheets were
significantly higher than non-treated control group during the first 18
days. Trottier et al. produced a tri-layered skin substitute using
ADSCs, this result elucidated that ADSCs could be used as a potential
replacement for fibroblasts in skin reconstruction [110].

Nestin-Positive Stem Cells
Nestin-positive stem cells are adult stem cells, which can be isolated

from the human skin appendages [111-114]. They maintained high
proliferation and differentiation capacity during propagation [115].
Markedly, it was demonstrated that nestin-positive stem cells improve
wound healing via formation of microvasculature networks [116-118].
Amoh et al. have demonstrated that the incorporation of nestin-
expressing hair follicle cells induced the formation of an extensively
branched network of blood vessels that anastomose with host vessels
in the nude mice models [116].

Amniotic Fluid-Derived Stem Cells
Human amniotic fluid-derived stem (AFS) cells belong to a new

type of stem cells intermediate between embryonic and adult stem cells
[119]. Notably, AFS cells can be isolated easily and they demonstrated
high proliferation rates without the need of any supportive feeder layer
[120]. Furthermore, AFS cells demonstrated high expansion capacity
(more than 250 passages) and chromosomal stability [120,121],
allowing effective cell banking for off-the-shelf applications. AFS cells
do not induce immune rejection [122] and they were shown to secrete
cytokines and chemokines essential for accelerated wound healing
[123]. Intriguingly, a novel study has demonstrated the ability of AFS
cells to support crucial cross-talk between mesenchyme and epithelia
needed for epidermal stratification [124]. This finding suggested that
AFS cells could be used as an alternative for fibroblasts. A histological
study by Skardal et al. [125] elucidated an increased micro-vessel
density and capillary diameters in AFS cell-treated wounds as
compared to the MSC-treated wounds. Furthermore, proteomic
analysis showed that AFS secreted a higher concentration of growth
factors than those of MSCs. These results corroborated that bioprinted
AFS cells in a mouse model resulted in accelerated healing of large
skin wounds. Hence, the use of AFS cells is attractive for skin tissue
engineering.

Conclusion
Over the last three decades, the field of skin tissue engineering has

been developing rapidly. This is evident with the development of
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several skin substitutes for treatment of chronic wound and severe
burns. They can be categorized into epidermal, dermal and epidermal-
dermal skin substitutes. The epidermal skin substitutes often result in
poor healing outcomes as pre-conditioning of the underlying wound
bed is important for epithelial attachment and reduced scarring. This
leads to the development of dermal substitutes which function as
temporary scaffolds for cellular attachment and infiltration. A two-
step reconstruction process is required for full-thickness wound; a
dermal substitute helps to condition the wound bed prior to the
application of an epidermal substitute on top of the dermal substitute.
To eliminate the hassle of two-step reconstruction process, an
epidermal-dermal substitute that closely resembles the native skin was
developed. The involvement of paracrine signaling from both
keratinocytes and fibroblasts accelerate the wound healing process via
the secretion of a wide variety of growth factors as highlighted in
earlier sections. Despite the advancement in skin tissue engineering,
limitations such as delayed vascularization and lack of skin
pigmentation remain unsolved.

The purpose of this review is to highlight the paracrine signaling of
different skin cells and different external factors that influence the cell
migration, proliferation and differentiation. A relatively mature
understanding of this knowledge is critical towards the development of
improved skin substitutes. The stem cells not only have high
proliferation and differentiation capacity but they can also be isolated
and propagated easily, hence they could be a potential source of cells
for wound healing applications. Nevertheless, it is still important to
conduct more preclinical studies to evaluate the potential risks of
malignant teratoma formation, amount of cell-dosage administration
and long-term adverse effects of these stem cells. These valuable
insights would provide significant benefits to patients with chronic
wounds or severe burns and the vast potential of skin substitutes has
yet to be fully discovered.
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