alexa Centrosome Centering and Decentering by Microtubule Network Rearrangement | Open Access Journals
ISSN: 2168-9431
Single Cell Biology
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Centrosome Centering and Decentering by Microtubule Network Rearrangement

Gaëlle Letort1* and Mithila Burute2

1Institut Curie, Mines Paris Tech, Inserm, U900, PSL Research University, F-75005, Paris, France

2Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands

*Corresponding Author:
Gaëlle Letort
Institut Curie, Mines Paris Tech, Inserm
U900, PSL Research University
F-75005,Paris,France
Tel: +33 1 40 51 90 00
E-mail: gaelle.letort@curie.fr

Received date: February 15, 2017; Accepted date: February 27, 2017; Published date: March 01, 2017

Citation: Letort G, Burute M (2017) Centrosome Centering and Decentering by Microtubule Network Rearrangement . Single Cell Biol 6: 158. doi:10.4172/2168-9431.1000158

Copyright: © © 2017 Letort G, et al. This is an open-access article distributed under the terms of the creative commons attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Single Cell Biology

Abstract

Seeing is believing but not necessarily understanding. Advances in microscopy techniques have allowed us to watch cellular machinery at work. For example, sequence of events imaged during cell division revealed important cytoskeletal and shape transformation of cell. Understanding how forces that bring about spindle pole movement are balanced during cell division requires additional tweaking to the system than mere observations. Elegant experimental setup such as laser microsurgery or optical tweezers can be used to identify components of force balance.

Commentary

Seeing is believing but not necessarily understanding. Advances in microscopy techniques have allowed us to watch cellular machinery at work. For example, sequence of events imaged during cell division revealed important cytoskeletal and shape transformation of cell. Understanding how forces that bring about spindle pole movement are balanced during cell division requires additional tweaking to the system than mere observations. Elegant experimental setup such as laser microsurgery or optical tweezers can be used to identify components of force balance. However, it remains experimentally challenging to precisely perturb only one parameter of the system without disturbing the rest of its components. Therefore, after more than hundred years after knowing that the centrosome is located at the center of the cell, exact contribution of forces that maintain centrosome at the geometric cell center are still not identified. Moreover, changes in force components necessary for centrosome offcentering during morphogenetic processes such as ciliogenesis and cytotoxic T cell activity are poorly understood. Theoretical approaches provide a way to test and understand physiologically relevant configurations of cytoskeleton organization.

In the work of Letort et al., we used the power of numerical simulations, using Cytosim, to study the main parameters controlling pushing and pulling forces transmitted to the centrosome through microtubules and their effect on its positioning [1]. Cytosim is highly flexible software with agent-based approach (each microtubule is treated as a separate individual) to simulate large systems of cytoskeletal filaments with associated proteins and molecular motors [2] to understand genesis of different cytoskeleton organizations. By using this software, we identified, in conditions like in-vitro experiment, different regimes in which centrosome is robustly centered, off-centered or in an unstable equilibrium where a shift from centering to off-centering did not require large perturbations. Importantly, these considerations revealed a major feature of microtubule network property: when the network is in a reactive conformation e.g., if individual microtubules have a certain freedom of motion such as gliding or pivoting, only small perturbations whether external or internal, are sufficient to trigger centrosome repositioning. Morphogenetic events involve dramatic changes in internal organization and cell shape and it seems very plausible that the cell attains the reactive conformation of microtubule network to efficiently respond to the environmental cues and accordingly transit to different states.

Epithelial to mesenchymal transition (EMT) is one such important morphogenetic process of embryo development, where cells transit from cohesive to single cell migratory state. In an experimental scenario of EMT, centrosome off-centering was observed to correlate with a change of tubulin density [3]. Cytosim simulations confirmed that a reactive microtubule network conformation was indeed sensitive to microtubule density and caused centrosome off-centering. Moreover, the simulations predicted the main contribution of pushing forces of microtubules in the centrosome off-centering process. The experimental validation of this prediction indeed showed that by globally altering the microtubule properties such as microtubule stabilization, final cell phenotype could be controlled through centrosome repositioning during EMT.

The power of numerical simulations lies within their ability to identify a minimal set of parameters that governs the behaviour of a biological system and to test their precise contribution. This is often very challenging to assess from the experimental work because of the limitations with the degree of manipulation of the biological system. The real strength of mathematical modelling and numerical simulations can be exploited when combined with in-depth knowledge of biophysical properties of the system. A good mathematical model will not only explain the experimental observation but also predict behaviours of the system ahead of our experimental capabilities.

For example, let’s say, while contemplating different cellular configurations, you wonder where the centrosome would be if the cell takes the shape of a penguin. Then you can just ask Cytosim, where is the centrosome in a penguin-shaped cell? And you will have the answer… (Figure 1).

single-cell-biology-penguin-shaped

Figure 1: Where is the centrosome in a penguin-shaped cell?

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

Article Usage

  • Total views: 405
  • [From(publication date):
    March-2017 - Aug 23, 2017]
  • Breakdown by view type
  • HTML page views : 367
  • PDF downloads :38
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords