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Abstract
Objectives: Biomarker quest for Alzheimer’s disease (AD) has gone a long way by studying various anatomical, 

physiological and biochemical parameters for detecting disease onset and predicting prognosis. Almost all the 
studies converge on the single hypothesis of the amyloid and Tau pathway. Recently, vascular hypothesis has 
evolved drawing attention towards a complex dynamic anatomical and physiological entity, neuro-vascular (NV) unit. 
Pathological changes at this level, altering the normal physiology such as auto-regulation and dynamics of blood brain 
barrier have been hypothesized as a probable basis for AD. This paper attempts to review the existing data on the 
vascular hypothesis and the current trends in analyzing the NV unit in AD.

Design: This review initially focuses on the cerebral NV coupling followed by the retinal neurovascular coupling 
that mirrors the cerebral pathophysiology. The pathophysiology and the potential tools to diagnose AD at the level of 
NV unit are analyzed. Further, it examines the drawbacks in existing methods for analyzing the same.

Findings: None of the current studies have emphasized the importance of studying the complex dynamic NV unit 
as a whole. This review strongly recommends the combination of vascular and neuro-glial parameters using objective 
methods for estimating the physiological and pathological changes in the NV unit.  

Discussion and conclusion: This review highlights the importance of retina for non-invasive estimation of 
the same. Also, novel algorithms for retinal image analysis have been proposed. The purpose of this review is to 
highlight the importance of retinal findings in neurodegenerative disorders and to create awareness among the neuro-
ophthalmologists, of the potential benefits of ophthalmological tools in screening dementia patients. 
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Introduction
The pathobiology underlying AD has been understood in a 

reasonable number of ways. Even after a century of its known existence, 
the amyloid-tau hypothesis takes the lead [1-2]. The pathobiology of 
AD as proposed by Braak [3] starts in the early childhood, progresses 
throughout the lifespan of the individual and culminates in end 
stage disease. This has raised the curiosity of the scientific world and 
generated various hypotheses. Next to amyloidogenic pathway is the 
vascular hypothesis where the neurovascular unit plays the central role.

Methodology 
In this review, the PUBMED search engine was used.

Period of review: 1976 to 2016.

Search terms used: 

1. Optical coherence tomography and Alzheimer’s disease

2. Retina and dementia.

3. Neurovascular coupling and Alzheimer’s disease.

Both human as well as animal model studies are included. A total
of 626 results were found and relevant articles highlighting the role of 
neurovascular coupling were selected. Recently two review articles were 
published on similar lines [4,5]. However, they fell short of analyzing 
the similarities and difficulties in analyzing the cerebral and retinal 
neurovascular units, which prompted us for this comprehensive review.

Neurovascular unit

NV unit is an anatomical structure complex comprising of the 
neuron, glia and the blood vessel which auto-regulates blood flow 
through the NV coupling phenomenon. Blood supply to the brain is 
majorly through large intracranial vessels, internal carotid arteries, 
middle cerebral arteries, anterior cerebral arteries, posterior cerebral 
arteries, vertebral arteries and the basilar artery. These large arteries 
branch out to wrap the brain surface under the pia mater, thus called 
pial vessels; which in turn give rise to arterioles called parenchymal 
vessels that penetrate the brain parenchyma. These different blood 
vessels are regulated by different mechanisms. Large intracranial vessels 
are regulated by the autonomic nervous system [6,7], whereas the pial 
and the parenchymal vessels are under complex regulatory mechanisms 
[8-11]. In specific, parenchymal blood flow is auto-regulated at the 
NV unit [12-14]. Several studies have explored the physiology of 
NV unit, involving the anatomical structures, the synapses and the 
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neurotransmitters released. In principal, synaptic activity increases the 
level of neurotransmitter specifically glutamate, which is taken by the 
NMDA receptors on the neuron and mGlu receptors on the astrocytes 
[15]. Complex intracellular pathways in the neuron and astrocytes lead 
to release of Nitric oxide (NO), EET and PGE2 that act on the vascular 
smooth muscle or pericytes, leading to alteration in vessel diameter 
thus regulating the blood flow [16-18].

Understanding the NV unit and coupling opened up gateways to 
explore the dynamic interactions underlying the normal physiological 
processes like memory, cerebral auto-regulation during sensory 
stimulus and motor task, and also in imaging techniques like blood 
oxygen level dependent signal(BOLD) fMRI [19]. This review focuses 
on the cerebral and retinal NV coupling in relation to AD. The detailed 
analysis regarding NV unit in brain function and disease is described 
elsewhere [20].

Cerebral neurovascular coupling in AD

In the late 1980’s a series of studies were published hypothesizing 
the role of blood flow dysregulation and cerebral hypoperfusion in AD 
[20,21]. Cerebral blood flow was significantly lower in the bilateral 
temporal lobes of AD patients compared to age matched controls. 
There was also a global cerebral blood flow reduction in more severe 
cases [22]. These observations were further supported by the findings 
of Montardi [23] and Eberling[24]. 

Dissecting the pathology at the three levels of NV unit 

Synaptic excitability: Cholinergic innervation is the drive for 
neuronal excitability in the hippocampal region which is lost in 
AD due to degeneration of Nucleus basalis of Meynert (NBM) [25]. 
Electrical excitation of NBM results in an increase in regional cerebral 
blood flow in the hippocampal region Vascular dysregulation in the 
hippocampal region of AD patients depresses glucose metabolism 
by down regulating the GLUT1 receptors of the vascular endothelial 
cells leading to neuronal damage [26]. This emphasizes the role of the 
synapse in blood flow regulation.

Vascular pathology: Thickening of basement membrane and 
accumulation of amyloid beta in the capillaries are observed in the 
mouse models of AD. In addition, smooth muscle cells involved 
in vascular contractility also show abnormal constrictions and 
degeneration [27,28].

Glia: Attwell et al. in 2010 [11] showed swelling and retraction of 
the astrocytic foot processes in the mouse model of AD.

With this complex pathobiology of AD, studying, analyzing and 
quantifying these dynamic changes at three distinct and integrated 
structures are critical tasks. Further diagnosing the disease based on 
these parameters remains a major hurdle as the diagnostic tool should 
have moderate sensitivity, specificity and preferably be noninvasive.

Diagnostic tools

The available diagnostic tools are Single Photon Emission 
Computer Tomography (SPECT), Transcranial Doppler (TCD) and 
Near Infrared Spectroscopy (NIRS). SPECT is the commonly used 
technique to assess regional cerebral blood flow [29]; but it has its own 
limitations. All previous studies so far discussed used SPECT which 
uses radioactive isotopes. TCD was first described by Aaslid and it 
evaluates the neurovascular coupling in humans in both health and 
disease [9,10]. It can also measure cerebral blood flow velocity in the 
main intracranial vessels non-invasively and with high accuracy. The 
findings in main blood vessels are reciprocated to the auto-regulatory 

mechanisms at the level of microvasculature which are physiologically 
different. The advantages of TCD are low cost, ease of use and good 
temporal resolution. NIRS technique helps to indirectly quantify the 
oxygenated and deoxygenated hemoglobin levels based on the relative 
transparency of the tissue to near infrared rays. Thus, it determines the 
cerebral autoregulatory mechanisms in sensory, motor and cognitive 
tasks. The results of TCD and NIRS techniques complement each other. 
TCD provides information on blood flow whereas NIRS provides 
information on the neuronal viability. Ideally these complementary 
inferences should be congruent to each other. But practically, only 
minimal congruence is noticed between them. The results quantified 
using semi-automated softwares introduced by Phillips et al. [8] can 
provide both temporal and amplitudanal relationship between neuronal 
excitability and cerebral auto-regulation. This could be considered as a 
preliminary step in the long journey towards the quantitative analysis 
of dynamic cerebral autoregulatory mechanisms.

Retinal NV coupling

Retina, an embryological derivative of the central nervous 
system (CNS), is a layered structure considered to be anatomical and 
physiological simulant of the CNS [30]. With this, it is inferred that the 
pathophysiological processes in the brain are reflected in the retina. In 
addition, retina is an easily accessible tissue hence it is explored in study 
of degenerative brain disorders [31,32].  NV unit of retina consists of 
the retinal ganglion cells, astrocytes, Muller cells (which are the retinal 
glial cells), microvasculature (branches of the central retinal artery from 
the ophthalmic artery) and the pericytes [33]. Dynamic NV coupling is 
also observed in retina similar to brain. Retinal blood flow is modulated 
by glial and synaptic interactions. The role of retinal glial cells in retinal 
vascular autoregulation is highly appreciated [34].

Retinal NV coupling in AD

Having an understanding about the physiological phenomenon of 
NV coupling in the retina and brain, it can be speculated that retina can 
mirror the dysregulatory mechanisms observed in NV unit of brain. 

Dissecting the pathology at three levels of retinal NV unit 
Inner retina: Structural changes are evident in the inner plexiform 

layer (IPL), ganglion cell layer (GCL) and retinal nerve fiber layer 
(RNFL) of patients with AD and Mild Cognitive Impairment (MCI) 
[35]. However, the layer that is initially affected remains unknown. 
Significant reduction of the ganglion cell neuronal density is observed 
in the temporal region at eccentricities of the central retina (0.0-0.5 
mm, 0.5-1.0 mm, 1.0-1.5 mm; 52%, 38% and 38%) of the AD patients. 
Number of ganglion cell neurons was reduced to 38.7% in the peripheral 
retina of AD patients compared to the control subjects [36,37]. Thinning 
of Ganglion cell-inner plexiform layer (GC-IPL) complex in all six 
quadrants (superior, superonasal, inferonasal, inferior, inferotemporal, 
and superotemporal) has been shown in AD patients.  It has also 
been showed that MCI patients have significant reduction in GC-IPL 
thicknesses [38]. Structural changes in the IPL are also observed in the 
transgenic mouse model of AD. There is a significant reduction (34.4%) 
in the ganglion cell dentritic complexity in these AD mice compared to 
the wild type [39].

Retinal Nerve Fiber Layer (RNFL): RNFL thinning was also 
demonstrated in few studies. Among a group of nine AD cases and 
eight age matched controls, significant thinning of the RNFL mainly 
in the superior quadrant was shown in AD patients [40]. RNFL layer 
thickness was measured in several clock hour positions in a cohort of 
25 AD patients, 26 MCI patients and 21 controls. It showed significant 
RNFL thinning specifically in 5 and 6 clock hour positions (inferior 
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quadrant) in the MCI group compared with AD group. MCI group had 
significant thinning in the temporal quadrant (8, 9, 10 o ‘clock positions) 
when compared to control group [41]. Typical double peak manner of 
the RNFL curve was also lost in AD patients [42]. Similar observations 
were made in the mild, moderate and severe AD patients [43]. These 
observations reflect the cerebral pathophysiology such as reduction 
in peripapillary RNFL thickness and macular GCC thickness with a 
significant increase in the global loss volume (GLV) rate in AD patients. 
Further, patients having thinner RNFL in the inferior quadrant had a 
greater chance of converting into AD with severe cognitive disturbances 
explaining the prognostic value of the RNFL assessment [44]. 

Blood vessel: Abnormalities of central retinal vessels and choroidal 
circulation are appreciated in AD pathophysiology. Venous diameter, 
blood velocity and blood flow differed significantly in AD cases [40]. 
Further using semi-automated software, Singapore1, vessel Assessment 
(S1VA) it was shown that venular caliber was narrowed, arteriolar and 
venular fractal dimensions were smaller, and arteriolar and venular 
tortuosity were higher in AD patients [45]. Persons with low cognitive 
testing scores (Delayed word recall-DWR, Digit symbol subtest-DST, 
Word fluency test-WT) were prone to have retinopathy as evidenced 
by microaneurysms, retinal hemorrhages, soft exudates, hard 
exudates, macular edema, intraretinal microvascular abnormalities, 
venous beading, neovascularization [46]. Subsequently, retinopathy 
prognosticates cognitive decline [47].

Choroid vasculature which is the main source of nourishment to 
the outer retina, including photoreceptor cells and Retinal Pigment 
Epithelium (RPE) was also abnormal in AD. Using Spectral Domain 
Optical Coherence Tomogram (SD OCT) and the Enhanced Depth 
Imaging (EDI) technique, subfoveal, temporal, nasal, superior, and 
inferior choroidal thinning was shown in mild to moderate AD patients 
[48]. This thinning also correlates with the cognitive scores [49].

Tools for Analyzing the Retinal NV Unit Components

Optical Coherence tomogram (OCT) is used to study retina. 
Spectral domain OCT, analyses individual layers with great precision. 
The doppler technology as an add-on to the Spectral OCT can be used to 
visualize changes in blood flow in the retinal circulation [50]. Enhanced 
Depth Imaging (EDI) OCT helps to visualize and analyze structures in 
the outer retina. Oxygen saturation of hemoglobin can be measured 
using imaging with spectrophotometric noninvasive retinal oximeter. 
Semi-automated software (S1VA) and Lie analysis [51] for analyzing 
the vasculature of the retina provide objective estimation of the burden 
of microvascular disease in the eye. Complexities in the geometrics of 
microvasculature are dealt with using brain inspired multi-orientation 
approach [51]. The same tool is hypothesized to be a game changer in 
analyzing the retinal images in neurodegenerative disorders. Semi-
automated softwares (calorimetric analysis software: Laguna ONhe) 
are also used in analyzing the optic disc color changes which are noted 
in neurodegenerative disorders like AD [52]. Thus, automated software 
and mathematical algorithms are used for vessel tracking, estimation 
of topographical parameters like vessel tortuosity, branching angle, 
junctional exponent and fractal properties.

Controverting Evidences

Having briefly described the existing literature on the individual 
components of the NV unit, we now highlight the lacunae in the 
knowledge of NV unit as a whole in AD and stress the importance of 
analyzing the unit holistically through studies contradicting the above 
results. It is shown that in a cohort of 21 AD patients and 21 controls, 
the mean peri-papillary RNFL thickness in all 4 quadrants were similar 

in AD and control subjects. The central subfield retinal thickness in the 
two groups did not differ either [48], contrasting the afore mentioned 
studies. Also, it is shown that there is no correlation between cognitive 
status (MMSE scores) and OCT parameters in AD patients [41]. The 
quadrant of the retina which shows RNFL thinning is highly variable 
in different studies [36,37]. Animal models of AD showed no change in 
the retinal ganglion cell number and retinal vasculature [53], which is in 
contradiction to the human autopsy study [37]. We speculate that these 
contradicting results in various studies point to the lack of integrated 
analysis of the NV unit as a whole and the lacunae in understanding the 
role of glia in NV coupling.

Discussion
The aim of this review article is to highlight the need for evaluating 

the NV unit as a whole rather than the individual changes at the level 
of individual structures within the unit, like the nerve or the blood 
vessel. Analyzing this complex structure in real time is indeed a tedious 
exercise. Retinal changes are not only specific to neurodegenerative 
diseases, they are also evident in eye diseases such as glaucoma, and 
age related macular degeneration, systemic diseases and cardiovascular 
disorders. The fact is that all these studies have considered a single 
structure in the complex NV unit and tried to correlate with the 
cognitive changes. None of these studies had combined vascular 
parameters with the neuro-glial interactions. Though neuro-glial 
interaction is itself a complex phenomenon in its own, it can still be 
studied. Combining all the parameters would be highly beneficial. This 
multi-parametric analysis will aid us in gaining more insights into 
the pathophysiology of the disease process in the retina and also will 
overcome the major hurdle of low sensitivity and specificity. Thus this 
article proposes the merging of different parameters; RNFL with any 
of the topographical parameters estimated objectively using automated 
softwares, can significantly differentiate patients with AD from control 
group. Later, using high end OCT, quantification of oxygen saturation 
in human retinal vasculature can be attempted. The geometry of 
individual cell scan is studied using Ultra High Resolution-OCT and 
the specific protein or chemical composition can be determined using 
Molecular imaging OCT. 

Conclusion
Thus, this review can serve as a bird’s eye view on the afore discussed 

problems and limitations associated with the individual parameter 
assessment and it also emphasizes a tangible solution of combining 
different approaches in a holistic way.
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