Changes of Carotenoids in Atlantic Salmon by Heat Cooking and the Singlet Oxygen Quenching Activities of the Artificially Produced Carotenoids

Ayako Osawa1, Kumiko Ito1, Nami Fukuo1, Takashi Maoka2, Hideki Tsuruoka3, and Kazutoshi Shindo1*

1Department of Food and Nutrition, Japan Women’s University, 2-8-1, Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
2Research Institute for Production Development, Division of Food Function and Chemistry, 15, Shinmomoto-morinocho, Sakyo-ku, Kyoto 606-0805, Japan
3Biotechnology Business Section, JX Nippon Oil & Energy Corporation, 2-6-3, Otemachi, Chiyoda-ku, Tokyo 100-8162, Japan

Abstract

Carotenoids are widely distributed in food such as vegetables, fruits, fish and crustacean animals, and are thought to play an important role in human health. Although the above materials are often heated for cooking, few studies have reported the change of dietary carotenoids by these processes. In this study, we analyzed the carotenoids in heated cooked (steamed, grilled, fried, and microwaved) Atlantic salmon fed mixtures of astaxanthin, adnirubin, and canthaxanthin, (6 : 3 : 1, all trans) (salmons ingested feed containing 80 mg Panafred AX/kg) for two years, using a silica gel HPLC column, and compared with carotenoids contained in raw salmon for the first time. As a result, the cis-carotenoids (9-cis astaxanthin, 13-cis astaxanthin, 13-cis canthaxanthin, 13-cis adonirubin) derived from salmon fed carotenoids were clearly increased in heat cooked salmon. The rates of cis-isomers/total (trans + cis-isomers) were microwave heating (21-32%), steaming and grilling (17-24%), and frying (14-21%), respectively. We also examined the singlet oxygen quenching activities of the isolated natural and cis-isomer carotenoids (trans- or cis-canthaxanthin, adonirubin, astaxanthin and adonixanthin), and concluded that there were no significant differences between trans and cis-isomers (IC50 2.4-7.4 μM).

Keywords: Carotenoids; Atlantic salmon; Singlet oxygen quenching activity; Heat cooking

Introduction

Carotenoids are C40 isoprenoid pigments (tetraterpenes) with long conjugated double bonds that possess colors ranging from yellow through to orange and red [1]. These pigments are widely distributed in food such as vegetables, fruits, fish and crustacean animals, and are thought to play important roles in human health, such as the prevention of cancer [2], metabolic syndrome [3], and eye disease [4], due to their antioxidative activity.

The Red color in wild Atlantic salmon (salmo salar) muscle derives from astaxanthin along with some minor carotenoids such as canthaxanthin, adnirubin, adonixanthin, zeaxanthin and antheraxanthin. These carotenoids originate from crustacean planktons, which are food for salmon, and salmon can store them in muscle and on the body surface. Also, salmon can reduce them on their body surface [5].

The structures of carotenoids change rapidly by oxidation or heat treatment. Since foods containing carotenoids are often heat cooked for eating, studies on the change of carotenoids in vegetables (broccoli, spinach, green beans, cabbage, carrots, tomatoes and potatoes) [6,7] and fruits (orange, peach, mango and papaya) by heat cooking processes (microwaving, boiling and steaming) were reported previously [8-11]. On the other hand, only a few studies on carotenoid changes by heat treatment exist for seafood (edible fish, shell and crustaceans) have been reported [12,13].

In this study, we analyzed carotenoids in several heat cooked (steaming, grilling, frying and microwaving) Atlantic salmon, fed astaxanthin, canthaxanthin and adonirubin, using a silica gel HPLC column and compared to those contained in raw salmon. This is the first report comparing the changes of carotenoids by exhaustive heat treatments.

Keywords: Carotenoids; Atlantic salmon; Singlet oxygen quenching activity; Heat cooking

Materials and Methods

Preparation of atlantic salmon

Four male farmed Atlantic salmon (1.335 kg, 1.367 kg, 1.478 kg and 1.644 kg) were used in this study. Two of them (1.335 kg and 1.478 kg) were used for isolating carotenoids from raw and cooked salmon fillets, and the others (1.367 kg and 1.644 kg) were used to isolate carotenoids for ‘O2 quenching activity. These were gifts from JX Nippon Oil and Energy Corporation (Japan, Tokyo). The muscle of each salmon were cut into 12 fillets (approximately 80 g/ fillet) and stored in a -80°C freezer.

Preparation of raw and cooked salmon

After defrosting for 12 hours at <5°C, the stored fillets were divided in to 5 groups (Group A-E, 4 fillets in each group). Each group was cooked as follows [Group A: uncooked, Group B: steamed over boiling

*Corresponding author: Kazutoshi Shindo, Department of Food and Nutrition, Japan Women’s University, 2-8-1, Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan, Tel: +81-3-5981-3433; Fax: +81-3-5981-3433; E-mail: kshindo@fc.jwu.ac.jp

Received March 18, 2014; Accepted May 27, 2014; Published June 19, 2014

Copyright: © 2014 Osawa A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
water for 12 min, Group C: heated on a medium open grill for 15 min, Group D: fried in oil at 180-200°C for 2 min, and Group E: microwaved for 4 min at full power [500 W maximum output]. The heat condition in each group was decided according to general cook books [14-16] to achieve over 75°C at the core.

HPLC analysis of carotenoids in cooked and raw salmon

The cooked fillets of each group (Group A-E) were cut into 15-20 cubes (2.0 cm×2.0 cm×2.0 cm, approximately), and extracted by stirring in 200 ml acetone for 1 hour at room temperature (×3 times). The extracts (600 ml) were added to hexane (600 ml) and H₂O (600 ml), and partitioned in a 2 l separating funnel. The upper layer (red) was collected and dehydrated with sodium sulfate anhydrate, and the amount of total keto-carotenoids (astaxanthin, adonixanthin, adonirubin, and canthxanthin) in the upper layer was assessed using an Optical Density (OD) of 470 nm [extinction coefficient (absorbance of 1% concentration) of 2,100 was adopted for quantification] [17].

Each extract was concentrated to dryness in vacuo to give red oil (3.8-4.5 g/80 g fillet). To analyses the carotenoids contained in each group, the red oil was dissolved in 5 ml hexane : acetone (82:18) solution and 10 µl of the solution was subjected to silica gel High Performance Liquid Chromatography (HPLC) (Cosmosil 5SL-II, 4.6 x 250 mm, Nacalai Tesque Inc., Kyoto, Japan) developed with hexane : acetone (82: 18) at a flow rate of 1 ml/min [using this condition, the standard carotenoids, trans-canthaxanthin (1), 13cis-canthaxanthin (2), trans-adonirubin (3), 13cis-adonirubin (4), trans-astaxanthin (5), 9cis-astaxanthin (6), 13cis-astaxanthin (7), and trans-adonixanthin (8) were eluted at Retention Time (Rt) 11.1 min, 11.8 min, 16.4 min, 18.9 min, 26.0 min, 32.0 min, 33.16 min and 34.7 min, respectively (Figure 1)]. The peaks of 1, 3, 5, 7 and 8 (Group A), and 1, 2, 3, 4, 5, 6, 7 and 8 (Group B-E) were observed in each experiment, and the amount of each carotenoid peak was calculated from the calibration curve of the standard (the average of 4 experiments is shown as the amount of carotenoid in Table 1).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Carotenoid (µg/g)</td>
<td>4.6 ± 0.6</td>
<td>5.5 ± 1.0</td>
<td>4.8± 1.0</td>
<td>5.3 ± 1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composition (% of total)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-canthaxanthin (1)</td>
<td>7.3 ± 1.1</td>
<td>5.0 ± 0.2</td>
<td>5.2 ± 0.8</td>
<td>5.4 ± 0.5</td>
<td>4.5 ± 0.8</td>
</tr>
<tr>
<td>cis-canthaxanthin (2)</td>
<td>n.d.</td>
<td>1.4 ± 0.2</td>
<td>1.7 ± 0.3</td>
<td>1.5 ± 0.1</td>
<td>2.1 ± 0.3</td>
</tr>
<tr>
<td>trans-adonirubin (3)</td>
<td>28.3 ± 3.5</td>
<td>20.4 ± 0.2</td>
<td>20.7 ± 1.3</td>
<td>21.1 ± 1.1</td>
<td>19.4 ± 1.0</td>
</tr>
<tr>
<td>cis-adonirubin (4)</td>
<td>n.d.</td>
<td>5.6 ± 1.2</td>
<td>6.0 ± 0.6</td>
<td>5.1 ± 0.7</td>
<td>7.5 ± 0.7</td>
</tr>
<tr>
<td>trans-astaxanthin (5)</td>
<td>50.1 ± 2.2</td>
<td>52.2 ± 2.0</td>
<td>50.7 ± 2.4</td>
<td>53.5 ± 1.2</td>
<td>47.8 ± 1.1</td>
</tr>
<tr>
<td>cis-astaxanthin (6 +7)</td>
<td>4.9 ± 0.4</td>
<td>10.7 ± 1.5</td>
<td>11.1 ± 2.1</td>
<td>9.0 ± 0.6</td>
<td>13.0 ± 1.3</td>
</tr>
<tr>
<td>trans-adonixanthin (8)</td>
<td>9.4 ± 6.5</td>
<td>4.8 ± 0.6</td>
<td>4.7 ± 1.1</td>
<td>4.4 ± 0.4</td>
<td>5.7 ± 2.0</td>
</tr>
</tbody>
</table>

*Table 1: Carotenoid content and composition in raw and cooked salmon muscle. Values are the means ± SD, n = 4 n.d.: not detected (Group A: raw, B: steaming, C: grilling, D: frying, E: microwaving). Significant difference compared with the group A: *p < 0.000, ** p < 0.05.*
acetone (2 l). The extracts were concentrated to a small volume (800 ml) were microwaved for 4 min, cut to small cubes, and extracted with
salmons was cut into 24 fillets (approximately 80 g/fillet), and the fillets
cis-carotenoids most abundantly. Two
treatment) which include
isolated from the fillets treated with microwave heating (group E
Spray Ionization Mass Spectrometry (HRESI-MS) was recorded with a
NMR software (version 3.0) (Bruker BioSpin). High Resolution Electro
Spectroscopic analysis
1H Nuclear Magnetic Resonance (NMR) spectra were measured with a
Bruker AVANCE400. Chemical shifts were referenced to
tetramethylsilane. Data processing was performed using Top Spin-NMR software (version 3.0) (Bruker BioSpin). High Resolution Electro
Spray Ionization Mass Spectrometry (HRESI-MS) was recorded with a
JEOL JMS-T100LP mass spectrometer. UV-VIS spectra were recorded with a
Hitachi U-3200.

Isolation of carotenoids in cooked salmon for \(^1\)O\(_2\) quenching activity

To examine \(^1\)O\(_2\) quenching activities, carotenoids [1-8] were
isolated from the fillets treated with microwave heating (group E treatment) which include cis-carotenoids most abundantly. Two
salmons were cut into 24 fillets (approximately 80 g/fillet), and the fillets
were microwaved for 4 min, cut to small cubes, and extracted with acetone (2 l). The extracts were concentrated to a small volume (800 ml), and partitioned between hexane-acetone (1:1)/H\(_2\)O. The upper
layer was concentrated to dryness (101.3 g), and applied to silica gel
chromatography [Silica GEL 60 (Kanto Chemicals) i.d. 30×200 mm, solvent: hexane]. The silica gel column was developed with hexane (500 ml), hexane-diethyl ether 1:1 (800 ml), diethyl ether (300 ml), and
diethyl ether -acetone 1:1 (300 ml), stepwisely. The diethyl ether
fraction I) and diethyl ether -acetone 1:1 (fraction II) elutes that
contained carotenoids were collected separately and concentrated to
give red oils (I: 91.4 mg, II: 25.3 mg), respectively.

Fraction I was applied to anion exchange column chromatography
(DEAE Toyopearl 650 M, Co., Ltd), [20×200 mm, solvent: hexane-acetone (1:1)] and developed with hexane-acetone (1:1). The eluted
red fractions were collected (100 ml) and H\(_2\)O (100 ml) was added to
partition between hexane-acetone/H\(_2\)O. The upper layer was
concentrated to dryness (18.8 mg), then applied to silica gel column
chromatography [Silica Gel 60 (Kanto Chemicals) i.d. 30×100 mm, solvent: CH\(_2\)Cl\(_2\)-acetone (100:1)] and developed with CH\(_2\)Cl\(_2\)-acetone (100:1). The red fraction was collected and concentrated to
dryness (10.1 mg), and then subjected to preparative silica gel HPLC using a
Cosmosil 55L-II column (4.6×250 mm) (Nacalai Tesque Co. Ltd.) under
the following conditions [flow rate: 1 ml/min, solvent: hexane-acetone (9:1), the maximum absorbance being monitored by DAD detector: 200-600 nm]. The red peaks at Rt 8.3 min (1), Rt 9.0 min
(2), Rt 14.9 min (3) and Rt 17.8 min (4) were collected separately and concentrated to
dryness to give pure 1 (3.2 mg), 2 (0.4 mg), 3 (0.7 mg), and 4 (0.2 mg), respectively.

Fraction II was subjected to preparative silica gel HPLC using a
Cosmosil 55L-II column (10×250 mm) (Nacalai Tesque Co. Ltd.) under
the following conditions [flow rate: 3 ml/min, solvent: hexane-acetone (85:15), the maximum absorbance monitored by DAD detector: 200-
600 nm]. The red peaks at Rt 19.9 min (5), Rt 23.8 min (6), Rt 24.7 min
(7) and Rt 25.7 min (8) were collected separately and concentrated to
dryness to give pure 5 (3.1 mg), 6 (0.5 mg), 7 (0.2 mg), and 8 (0.1 mg), respectively.

The identities and purities of the isolated compounds 1-8 were
checked by HRESI-MS and \(^1\)H NMR analysis.

\(^1\)O\(_2\) quenching activity

\(^1\)O\(_2\) quenching activity was examined by measuring methylene blue-sensitized photooxidation of linoleic acid [18]. To evaluate the
 crude carotenoids extracts (the extracts prepared for HPLC analysis) of
raw and cooked salmon, 80 µl of 0.025 mM methylene blue in hexane-
ethanol (1:1), 280 µl of 100 mM linoleic acid in hexane- ethanol (1:1) and
200 µl hexane-ethanol (1:1) with or without 80 µl extract solution
[total carotenoids 8 µM, 40 µM, and 80 µM in hexane (final total carotenoids concentration 1 µM, 5 µM and 10 µM)] were added to
macro glass vials (5.0 ml). To evaluate the isolated carotenoids, 80 µl
of 0.025 mM methylene blue in ethanol and 280 µl of 100 mM linoleic
acid in ethanol with or without 80 µl carotenoid [10 µl, 100 µl, and
100 0 µM in ethanol (final concenarion 1 µM, 10 µM and 100 µM)] were added to micro glass vials (5.0 ml). The vials were tightly closed
with a screw cap and a septum, and the mixtures were illuminated at
7,000 lux at 22°C for 3 hours in corrugated cardboard. Then, 100 µl of
the reaction mixture was removed and diluted to 3.0 ml with ethanol,
and absorbance at 235 nm was measured to estimate the formation
of conjugates dienes [19]. The value in the absence of carotenoid was
determined and \(^1\)O\(_2\) quenching activity was calculated relative to this
reference value. Activity is indicated as the IC\(_{50}\) (µM) representing the
concentration at which 50% inhibition was observed. The IC\(_{50}\) value
was calculated by averaging the data from triplicate experiments.

Results and Discussion

Carotenoid composition in raw and cooked salmon

The results of carotenoids analysis (total amount and composition of each carotenoid) of raw and 4 cooked (steamed, grilled, fried
and microwaved) salmon are listed in Table 1. Although no significant
differences were observed in the total carotenoids among Group A-E,
cis-carotenoids (2, 4, 6+7) in salmon were significantly increased by
heat cooking (Group B-E) (p<0.05). This observation indicates the
trans-isomers.

![Figure 2](image-url)
isomers from trans-carotenoids on cooking of vegetables (tomato and sweet potato leaves) has been reported in some previous reports [20, 21], this is the first report on the detailed changes of keto carotenoids (astaxanthin, adonirubin, adonixanthin and canthaxanthin) contained in fish and shellfish (Figure 1).

In this study, the heating time for group B-E was determined based on cookbooks [14-16] to examine the composition of carotenoids contained in cooked Atlantic salmon. The core temperature transition in salmon fillets by each heating method is shown in Figure 2, and the ratio of cis-isomers/total carotenoid (trans-cis) in each cooking treatment is shown as a bar graph in Figure 3. The ratio of each cis-isomer (2, 4, 6 and 7) was Group D (19-21%) < Group B and C (21-25%) < Group E (28-32%). The ratios of all cis-isomers in group E was significantly higher than some other groups (p<0.05) (Figure 3). Since the core temperatures by microwave cooking (88-94°C) were higher than those by steaming, open fire cooking, and frying (78-82°C) (Figure 2), these results are roughly explainable from their temperatures. Although the core temperatures of Group B, C and D were almost the same, the amount of cis-carotenoids was less in Group D than in Group B and C (Figure 2) (There were no significant differences (p>0.05) between these groups). This observation may be explainable by the shorter heating time in Group D.

The ratios of cis-isomers in each heat cooking treatment were astaxanthin (14-21%) < adonirubin (19-27%) < canthaxanthin (21-32%) (Figure 3). Since it has been reported that the β-ionone ring of carotenoids in salmon muscle was combined with hydrophobic pockets of protein (such as actomyosin) and the presence of carbonyl (C=O) and hydroxyl (OH) groups enhance this combination [22], astaxanthin may be more stable than canthaxanthin in salmon.

In this study, the total carotenoid amounts (cis + trans) in Group B-E was the same as in Group A, indicating no chemical reactions except the isomerization from trans to cis-isomers. Since the decrease of total carotenoids (cis + trans) by excessive heating was observed in previous studies on vegetables [20,21], we suppose that the same decrease may also occur in Atlantic salmon if the heating time is increased.

Singlet oxygen quenching activity of carotenoids in raw and cooked salmon muscle

First, we examined the O2 quenching activity on crude carotenoid extracts (organic layer) of raw and cooked salmon. Their IC50 values were calculated for 6.1 µM (Group A), 4.9 µM (Group B), 3.2 µM (Group C), 3.6 µM (Group D) and 2.6 µM (Group E). These observations indicated that cooking hardly influenced the O2 quenching activity of carotenoids when the total carotenoid amounts were not decreased.

We also examined the O2 quenching activities of the purified carotenoids 1-8 (purified from Group E extract). The IC50 values were 2.7 µM (1), 7.4 µM (2), 3.2 µM (3), 2.4 µM (4), 5.4 µM (5), 3.5 µM (6), 2.4 µM (7) and 2.5 µM (8), respectively. As far as we know, this is the first report concerning O2 quenching activities of cis-isomers 2, 4, 6, and 7. The trans carotenoid and the corresponding cis-isomer (1 vs. 2, 3 vs. 4, and 5 vs. 6 and 7) showed almost the same O2 quenching activities. These results support the equal O2 quenching activity between raw and cooked salmon extracts. Shimidzu et al. reported that increasing the number of conjugated double bonds (C=C) and the presence of carbonyl (C=O) or hydroxyl (OH) groups enhanced the O2 quenching activity [23], but cis-isomerization might not have affected O2 quenching activity in our study.

Liu and Osaka reported that cis-astaxanthin shows more potent antioxidative activity than all-trans isomer in a DPPH radical scavenging assay and a lipid peroxidation assay using rat microsomes [24]. Clifton et al. described that more cis-carotenoids (such as lycopene) are taken up by the animal body than trans-isomer [25]. Further biological evaluations of the carotenoids in cooked Atlantic salmon considering these points are in progress.

Acknowledgement

We thank Ms. Yui Kaseya and Ms. Nao Koue for their assistance in this work. This work was supported by a Grant-in-Aid for Young Scientists (B) No. 23700888 from MEXT Japan.

References

