Chinese FDA Approved Fungal Glycan-Based Drugs: An Overview of Structures, Mechanisms and Clinical Related Studies

Zijing Zhou, Zhekrung Han, Yangyang Zeng, Meng Zhang, Yidi Cui, Lingling Xu and Lijuan Zhang*
School of Medicine and Pharmacy, Ocean University of China, Qingdao, China

Abstract
Edible mushrooms have been used not only as food and nutraceuticals but also as important ingredients in traditional Chinese medicines for centuries. Pharmaceutical active components from different types of mushrooms have been extracted and studied by scientists all over the world during the past 50 years, and many biological functions, such as antitumor, immunomodulating, anti-oxidative, anti-inflammatory, and hypoglycemic activities, have been reported in peer reviewed English journals. Interestingly, the purified polysaccharides or glycans possess many reported functions of medicinal mushrooms, which make them potential drug candidates. However, glycans are a mixture of polysaccharides having variable numbers of monosaccharides, linkages, and molecular weight distributions as well as multiple biological functions that are hard to conceive as drugs by traditional standard in that a drug should have one structure and one function. On the other hand, multiple ingredients with multiple beneficial effects are essence of traditional Chinese medicines. Subsequently, glycans from different types of medicinal mushrooms are partially purified and trialed as oral and/or injectable drugs in China. Without serious safety concerns of mostly hot water extracted glycans from edible mushrooms and/or the cultured mycelium, eight of them are approved by Chinese Food and Drug Administration (SFDA) and used clinically in China since 1980s. This review article provides basic clinical information of the fungal glycan-based drugs in China and also summarizes structures, functions, and animal studies of fungal glycans conducted by scientists world-wide. Understanding fungal glycan-based drugs at molecular biology level would be central for improving the clinical efficacy of current glycan-based drugs and for designing effective clinical trials of glycan-based drugs in future.

Keywords: Fungal glycan base; Chinese FDA; Mushrooms; Polysaccharides

Introduction
Polysaccharides or glycans are located at intracellular, cell membrane, and extracellular spaces serving energy storage, structure, signal transduction, and system regulatory purposes in all living organisms. Among them, animal glycans have been extensively studied at genetic levels. Knocking out a series genes responsible for biosynthesis or modifications of glycans in different animal model systems reveals that animal glycans are indispensable for cell division [1], for animal development [2], and for maintenance of proper immunity and homeostasis in adult animals [3]. For example, endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses [4]. Moreover, life-saving drug heparin, one type of glycans purified from animal tissues, remains to be an un-replaceable anticoagulant drug in modern medicine after 78 years of clinical use [2]. Furthermore, 20 different kinds of animal glycan-based drugs have preceded through clinical trials and are used clinically world-wide not only as anticoagulant but also used together with other conventional drugs for cancer treatment with an annual sale over $7 billion dollars [5]. These facts indicate glycan-based drugs are not different from other biological drugs either from views of modern molecular biology or from views of their clinical importance.

Like animal cells, fungi synthesize different types of glycans located in intracellular, cell wall, and extracellular spaces. Moreover, fungi possess several unique glycans that are not made by animal cells, such as chitin, β-glucans, and heteroglycans. In addition, glycans-peptide, glycan-lipid, and glycan-protein complexes isolated from fungi also have potent biological activities. This review article provides basic information of eight fungal glycan-based drugs in China and also summarizes peer-reviewed literatures about structures and biological functions of the fungal glycans at cell- and animal levels along with clinical studies that have been conducted by scientists world-wide.

Eight Fungal Glycans-Based Drugs Approved By Chinese Food and Drug Administration (SFDA)

According to published reports, water-soluble glycans are the most active pharmacological components tested in over 300 kinds of glycans extracted from either plants or fungi [6]. Thus, all eight glycans-based drugs approved by SFDA are hot water extracted glycans either from edible mushrooms and/or from cultured mycelium. Table 1 summaries the basic information of the 8 drugs including imagine of the medicinal mushrooms, starting materials for glycans extraction, type of drugs approved, specified glycan contents, drug number granted by SFDA, clinical indications, and published clinical studies [7-65].

As shown in Table 1, glycan contents of the eight approved drugs range from 30% to 93%. There are no specifications about monosaccharide compositions, glycan structures, molecular weight, or biological activity for these approved drugs due to inherent structural diversity of glycans. Taking Ganoderma lucidum glycans as an example, 16 different types of glycans with different monosaccharide compositions, different glycan linkages, and different molecular weight have been purified and identified by applying additional purification schemes when hot water extracted glycans are used as starting materials (Table 2). Therefore, these drugs are not “pure” or a single type of glycans.

*Corresponding author: Lijuan Zhang, Ocean University of China, 5 Yushan Road, Qingdao, China, Tel: +86-532-82031615; E-mail: lijuan Zhang@ouc.edu.cn

Received June 06, 2014; Accepted November 29, 2014; Published December 06, 2014

Copyright: © 2014 Zhou Z, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Table1: Eight fungal glycan based-drugs.
B - Glucans are glycans that contain only glucose as structural components and are linked with β - glycosidic bonds. β - glucans are the simplest and the most studied fungal glycans. The biologically active fungal β - glucans are those comprising β(1,3)-linked-glucose with side-chains of glucose with β(1,6) linkage. As shown in Table 2, the six β - glucans purified from *Ganoderma lucidum* are either water soluble or insoluble with molecular weight ranged from 5.2 x 10^3 to 1.0 x 10^5 Da. Therefore, β - glucans are not pure glycans. β -glucans can bind to six identified receptors on cell surface of immune cells (Figure 1) [66-73]. The β - glucan and receptor interactions can activate multiple signaling transduction pathways directly or indirectly through macrophages, monocytes, dendritic cells, natural killer cells, B-cells, T-cells and neutrophils. β -Glucans also stimulate the release of cytokines, such as tumor necrosis factor (TNF-α) and several interleukins. Activating the immune cells explain the immunomodulating and antitumor activities of β - glucans. However, not only fungi but also bacteria, plants, and algae synthesize biological active β - glucans. Moreover when present in animal blood circulation, tissues, or organs, the published clinical reports indicate that these drugs have been used for treating tumor [12], gastrointestinal cancers [13-18], primary liver cancers [19], hepatitis [20, 21], malignant pleural effusion [22-27], and HIV [28].

Table 2: Different glycans isolated from *Ganoderma lucidum*.

<table>
<thead>
<tr>
<th>Source</th>
<th>Extraction method</th>
<th>Backbone</th>
<th>Major monosaccharide</th>
<th>Mw</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruiting bodies</td>
<td>Hot-water extraction. Ethanol fractionation, DEAE-cellulose and gel chromatography</td>
<td>β-Arabinofuranosylglucan, α-Arabinofuranosylglucan</td>
<td>Glucose, xylose, arabinose</td>
<td>4 x 10^4</td>
<td>[164]</td>
</tr>
<tr>
<td>Fruiting bodies</td>
<td>Hot water and alkali extraction</td>
<td>Water-soluble heteroglycans</td>
<td>Glucose, Galactose, Mannose, Arabinose, Xylose, Fucose</td>
<td>–</td>
<td>[165]</td>
</tr>
<tr>
<td>Culture of mycelium</td>
<td>–</td>
<td>Water-insoluble β-glucan Glucose</td>
<td>–</td>
<td>–</td>
<td>[165]</td>
</tr>
<tr>
<td>Fruiting bodies</td>
<td>Alkal-extraction at 25°C and 65°C.</td>
<td>Linear α-glucan</td>
<td>Glucose</td>
<td>–</td>
<td>[166]</td>
</tr>
<tr>
<td>Spores</td>
<td>Hot-water extraction. DEAE-cellulose and Sephacryl S-200HR</td>
<td>β-Glucan</td>
<td>Glucose</td>
<td>1 x 10^4</td>
<td>[130]</td>
</tr>
<tr>
<td>Fruiting bodies</td>
<td>Hot-water extraction. DEAE-cellulose and gel-filtration chromatography</td>
<td>α-Heteroglycans β-Heteroglycans</td>
<td>Glucose, Galactose, Mannose</td>
<td>8.3 x 10^3</td>
<td>[131]</td>
</tr>
<tr>
<td>Extracellular</td>
<td>DEAE-Sepacel and Sephadex G200</td>
<td>α-Galactose</td>
<td>Galactose, Mannose, Glucose, Arabinose, Xylose, Fucose</td>
<td>2.2 x 10^4</td>
<td>[167]</td>
</tr>
<tr>
<td>Fruiting bodies</td>
<td>Hot-water extraction DEAE-Sepharose Fast-Flow and Sephacryl S-300</td>
<td>α-Galactose, α-Glucose</td>
<td>Galactose, Glucose, Fucose</td>
<td>1.2 x 10^4</td>
<td>[168, 169]</td>
</tr>
<tr>
<td>Fruiting bodies</td>
<td>Ultra-filtration. DEAE- Sepharose Fast-Flowand Sephacryl S-300</td>
<td>α-Galactose, β-Glucose</td>
<td>Galactose, Glucose, Fucose</td>
<td>–</td>
<td>[170]</td>
</tr>
<tr>
<td>Fruiting bodies</td>
<td>Hot-water extraction DEAE-cellulose-32 and Sephacryl S-200h</td>
<td>β-Glucan</td>
<td>Glucose</td>
<td>5.2 x 10^3</td>
<td>[171]</td>
</tr>
<tr>
<td>Fruiting bodies</td>
<td>Hot-water extraction DEAE Sepharose Fast-Flow and Sepharose CL-6B</td>
<td>α-Galactose, β-Glucose</td>
<td>Galactose, Glucose, Fucose</td>
<td>1.12 x 10^4</td>
<td>[172]</td>
</tr>
<tr>
<td>Fruiting bodies</td>
<td>Ultrasound/microwave assisted extraction DEAE Sepharose Fast Flow and Sephacryl S-500</td>
<td>β-Glucan</td>
<td>Glucose, Galactose</td>
<td>2.5 x 10^5</td>
<td>[173]</td>
</tr>
<tr>
<td>Spores</td>
<td>Hot-water extraction, graded ethanol precipiation, DEAE-cellulose and Sephacryl S-300</td>
<td>β-Glucan</td>
<td>Glucose</td>
<td>10.3 x 10^4</td>
<td>[174]</td>
</tr>
</tbody>
</table>

Lentinan from *Lentinus edodes*

Lentinan is a name given to β - glucans purified from *Lentinus edodes*. The antitumor property of lentinan was first reported by Chihara et al in 1970 [74]. Sasaki and Takasuka demonstrated that the primary structure of lentinan has β - (1-3)-glucose backbone with many (1-6)- β - glucose branches [75]. Lentinan-based drugs are available as capsules, tablets, and injections in China. The published clinical reports indicate that these drugs have been used for treating urticaria [12], gastrointestinal cancers [13-18], primary liver cancers [19], hepatitis [20, 21], malignant pleural effusion [22-27], and HIV [28].

In 1985, lentinan is approved as an adjuvant for stomach cancer therapy in Japan. The lentinan activates immune cells [76], promotes the T- and B-lymphocyte proliferation, and enhances the activities of NK cells. The lentinan also plays multiple roles in inducing α-interferon production and leukocyte infiltration into tumor tissues [77]. The biological activities of lentinan have been studied by using mouse-
rat-, chicken-, and pig-based animal models [76, 78-88]. These animal studies confirm that lentinan stimulate the productions of different cytokines and have antitumor and immunomodulating properties.

Polyporus glycan

Polyporus glycan is extracted from the sclerotium of *Polyporus umbellatus*. The major component of polyporus glycan is a β-glucan with a (1-3)-β-glucose backbone and (1-6)-β-glucose side chains with a molecular weight of approximately 1.6×10^5 Da [89].

Polyporus glycans have been commercially available as an immunomodulating drug since 1990. Based on published reports, the polyporus glycan-based capsules are effective in treating hepatitis B [29-33, 90,91] and the polyporus glycan-based injections reduce the recurrence of bladder cancer [33]. Polyporus glycan boosts the immune system and have anti-parasite properties [92, 93]. It is also used in treating leukemia and liver cancers [94,95]. Study has also shown that Polyporus glycans are effective in protecting liver from certain toxins [95]. Polyporus glycans are also used together with chemotherapy drugs to treat primary lung cancer, liver cancer, cervical cancer, nasopharyngeal carcinoma, esophageal cancer and leukemia.

Polysaccharide-K (PSK) or krestin

PSK or Krestin is a protein bound glycan isolated from cultured mycelium of *Polystictus Versicolor*. Glucose is the major monosaccharide found in PSK. PSK also contains arabinose, rhamnose, fucose, galactose, mannose, and xylose [96]. The glycans in PSK is highly branched. The molecular weight of PSK is around 1×10^5 Da and the protein component is covalently linked to the β-1,6 glucose side chain.

PSK-based drugs are available as capsules and dropping pills in China. The published clinical reports indicate that these drugs have been used for treating acute nonlymphocytic leukemia [34], colorectal cancers [35,36], gastric cancers [37-40], lung cancer [41], primary liver cancer [42-44], hepatitis[45-50], and hyperlipidemia [51].

PSK has increased the survival time of cancer patients in randomized, control studies, with stomach cancer (meta-analysis of 8,009 patients) [97], colorectal cancer (randomized, controlled study
<table>
<thead>
<tr>
<th>Glycans</th>
<th>Models</th>
<th>Effects</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganoderma lucidum glycan</td>
<td>Mouse</td>
<td>Enhance phagocytosis and cytotoxicity of macrophages</td>
<td>[125]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Enhance Lymphokine-activated killer cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Increase cytotoxic T lymphocyte cytotoxicity and NK activity</td>
<td>[134-136]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Stimulate spleen-cell proliferation and cytokine generation</td>
<td>[134, 137, 138]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Reduce tumor weight</td>
<td>[134]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Exert antitumor effect on solid tumor induced by Ehrlich’s ascites carcinoma cells</td>
<td>[128]</td>
</tr>
<tr>
<td></td>
<td>Nude Mouse</td>
<td>Reduce Human lung carcinoma xenograft size</td>
<td>[140]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Induce tumor apoptosis and enhance immunological effect</td>
<td>[141]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Enhance scavenging abilities on reactive oxygen species</td>
<td>[175]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Reduce ROS production and increase the activity of Manganese superoxide dismutase (Mn-SOD)</td>
<td>[142]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Increase insulin levels and decrease blood glucose</td>
<td>[143, 144]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Decrease total cholesterol (TC)</td>
<td>[143, 144]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Reduce serum triglyceride (TG)</td>
<td>[143]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>NO production</td>
<td>[139]</td>
</tr>
<tr>
<td>Ganoderma sinensis glycan</td>
<td>Mouse</td>
<td>Enhance levels of IL-2, IL-3, IL-4, interferon γ, TNF α, and IL-2R</td>
<td>[112]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Inhibit growth of Sarcoma</td>
<td>[78]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Increase production of cytokine in immune cells</td>
<td>[79, 80]</td>
</tr>
<tr>
<td></td>
<td>Nude Mouse</td>
<td>Trigger delayed-type hypersensitivity response against tumor-associated antigens</td>
<td>[81]</td>
</tr>
<tr>
<td>Lentinan</td>
<td>Chicken</td>
<td>Enhance serum antibody titer and promote lymphocyte proliferation</td>
<td>[82]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Improve bactericial ability of peritoneal and alveolar macrophages</td>
<td>[83]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Enhance sensitivity of colon 26 tumor to cis-diaminedichloroplatinum (II) and decrease glutataione transferase expression</td>
<td>[84]</td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td>Induce high level of alveolar macrophage activation</td>
<td>[85]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Induce TNF-α secretion of murine macrophages</td>
<td>[86]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Induce long-term potentiation in the rat dentate gyrus</td>
<td>[87]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Induction of cytotoxic peritoneal exudate cells</td>
<td>[176]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Stimulate the expression of cytokines</td>
<td>[88]</td>
</tr>
<tr>
<td>Polyporus glycan</td>
<td>Mouse</td>
<td>Enhance TNF- α, IL-1b, and NO production</td>
<td>[177]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Prevente the progression of renal injury and the subsequent renal fibrosis in Aristolochic acid nephropathy</td>
<td>[178]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Inhibit bladder carcinogenesis, which may be associated with upregulation of GSTP1 and NQO1 in the bladder</td>
<td>[179]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Down-regulate AQP2, and down-regulate AQP2 by down-regulating V(2)R</td>
<td>[180]</td>
</tr>
<tr>
<td>Krestin</td>
<td>Rat</td>
<td>Suppress metastasis induced by hepatic I/R</td>
<td>[100]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Inhibit bone Metastasis of Breast Cancer</td>
<td>[101]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Improve GALT inhibition caused by TPN</td>
<td>[102]</td>
</tr>
<tr>
<td>Pachymaran</td>
<td>Mouse</td>
<td>Increase thymus and spleen indices, lysozyme, catalase , superoxide dismutase activities, and total antioxidant capacity. Decrease xanthine oxidase activity and malondaldehyde levels.</td>
<td>[118]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Decrease MDA and increase GSH levels in serum cervical of rats with cervical cancer</td>
<td>[119]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Increase SOD, CAT, GPx, and GR activities in serum and cervical of rats with cervical cancer</td>
<td>[119]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Enhance antitumor activities</td>
<td>[120]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Increase macrophage activities and PFC, SRFC, DTH, IL-2 , IFN-γ, TNF-α, TCGF levels</td>
<td>[121-123]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Activate macrophage and induce of IL-1, IL-6 and TNF-α secretion</td>
<td>[181]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Lower plasma cholesterol level</td>
<td>[152]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Activate natural killer and dendritic cells and enhance antitumor immunity</td>
<td>[147]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Protective effect of pancreatic β-cells exerted by decreasing levels of oxidative stress and NO synthesis</td>
<td>[148]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Induce systemic tumor-antigen specific T cell response, increase infiltration of activated T cells into tumor and decrease number of tumor-caused immunosuppressive cells</td>
<td>[149]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Significantly lower systolic blood pressure (SBP) in diabetic Sprague-Dawley rats</td>
<td>[150]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Inhibit LPS-induced upregulation of NF-κB activation and the production of IL-1β, TNF-α, iNOS, ICAM-1, and COX-2</td>
<td>[151]</td>
</tr>
<tr>
<td>Maitake glycan</td>
<td>Mouse</td>
<td>Have radiation protection properties</td>
<td>[154]</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Increase plasma insulin level and the activities of hepatic hexokinase and glucose-6-phosphatase dehydrogenase, and decrease hepatic glucose-6-phosphatase level</td>
<td>[155]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Improve cognitive function via regulation of the CREB signaling pathway and cholinergic system in the hippocampus</td>
<td>[156, 157]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Increase cholinergic activity</td>
<td>[158]</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>Increase fecal neutral steroids, total bile acids excretion, and SCFA productions</td>
<td>[159]</td>
</tr>
</tbody>
</table>

Table 3: Animal studies of biological effects of Fungal glycans.
of 448 patients) [98], but PSK has produced mixed results with liver cancer [99]. Rat-based animal studies confirmed the anti-metastasis properties of PSK [100-102].

Three mechanisms are proposed to explain the clinical effectiveness of PSK in suppressing cancer relapse [103]. First, PSK improves host immune-competence by inhibiting the production and also by neutralizing immunosuppressive substances that are increased in cancer. Second, PSK activates immune cells such as lymphocytes, either directly or by regulating the production of various cytokines. Third, PSK acts directly on cancer cells. In addition, the effects of PSK on the production of various cytokines and nitric oxide (NO) have also been reported [104,105].

Ganoderma Sinensis glycans

Ganoderma sinensis glycans are purified from fruiting body of *Ganoderma Sinensis*. The major bioactive *Ganoderma sinensis* glycans are α/β -glucans, glycan-protein complex and water-soluble heteroglycans with different combinations of glucose, mannose, galactose, xylose, fucose as well as arabinose. The molecular weight of the glycans ranges from 10^3 to 10^6 Da [106].

Ganoderma sinensis glycan-based drugs are available as capsules. Published reports indicated the drug is used for neutralizing mushroom poisoning [10] and stimulate leukocytes productions in leukopenia patients [11]. Further studies showed that *Ganoderma sinensis* glycans enhance the immune responses in patients with advanced-stage cancer [107,108]. *Ganoderma sinensis* glycans also have potent antioxidant activities [109-111]. Mouse-based animal studies indicate that *Ganoderma sinensis* glycans enhance the levels of a variety of citokines [112].

Pachymaran

Pachymaran is a name giving to a heteroglycan isolated from *Poria Cocos*. Pachymaran consists of glucose, galactose, and mannose. It exhibits antitumor activities both *in vitro* and *in vivo* [113,114]. β-Glucan extracted from *Poria Cocos* is water-insoluble and has no antitumor activity, whereas its phosphorylated water soluble derivatives exhibits strong anti-S-180 tumor activities [115].

Pachymaran used for making the glycan-based injection drugs in China is isolated from mycelium of *Poria Cocos*. It is used for treating chronic pulmonary edema [52], insomnia [53], alopecia [54], and schizophrenia [55]. It prevents tumor metastasis through its immunomodulatory activities [116,117]. Mouse- and rat-based animal studies showed that pachymaran has potent antioxidative and antitumor activities [118-123].

Ganoderma Lucidum glycans

Ganoderma Lucidum glycans are composed of different variety of glycans as shown in Table 2. *Ganoderma Lucidum* glycan-based drugs are purified form spores and available as injections. Published reports indicated the drug improves endurance of cyclists [7] and helps patients are purified from fruiting body of *Ganoderma Lucidum*. Its glycans mainly consist of glucose along with xylose, fucose, galactose, and mannose. The ratio of protein to glycan in *Ganoderma Lucidum* is 7:3. The average molecular weight of *Ganoderma Lucidum* is greater than 1x 10^6 Da. Only Wu Rong D-fraction have antitumor activities [145].

Grifola Frondosa glycans used for drug production is isolated from cultured mycelium. The glycan-based drugs are available as capsules. Published reports indicated the drug is used for cancer treatment [56,57], impaired glucose tolerance conditions [58], and for treating polycystic ovary syndrome [59]. *Grifola Frondosa* glycans have also been used for cosmetic and other biological purposes [146].

Mouse and rat-based animal studies showed *Grifola Frondosa* glycans activate different types of immune cells [147] and regulate chemokine and cytokine productions [147-151]. *Grifola Frondosa* glycans also have antitumor [147], anti-oxidative [148], hypo-cholesterol [152], and hypo-systolic blood pressure [150] activities.

Tremella glycan

Tremella glycans are isolated from fruiting body of *Tremella fuciformis*. The most representative glycans in *Tremella fuciformis* is acidic heteroglucan where α - mannan constitutes the backbone with β - (1,2) xylose, β - (1,2) glucuronic acid, and minor amount of fucose on the side chains. Other glycans include several neutral heteroglycans comprising of xylose, mannose, and galactose.

Tremella glycan-based drugs are available as capsules in China. The drug is used clinically in treating mycoplasma caused pneumonia [60], chronic active hepatitis [61], diabetic [62], leukopenia [63-65] conditions. The drug also promotes neural cell growth and improves memory [153].

Mouse-based animal studies showed tremella glycans have radiation protection properties [154]. Tremella glycans increase plasma insulin level and the activities of hepatic hexokinase and glucose-6-phosphatase dehydrogenase and decrease hepatic glucose-6-phosphatase level [155]. Interestingly, tremella glycans improve cognitive functions through multiple distinctive mechanisms in rats [156-159].

Future Perspectives

There are multiple issues needed to be addressed before fungal glycan-based drugs are accepted by governments and clinicians worldwide, such as how to comprehend the pharmacodynamics of fungal glycan-based drugs at molecular level, how to standardize quality, composition, purity of the highly dispersed glycan molecules, and how to perform reliable pharmacokinetic studies. Compared to conventional small molecule- and protein-based drugs, the advantages of glycan-based drugs are their broad spectrum of therapeutic properties, relatively low toxicity, less drug-resistant issues, and relatively low costs. The disadvantages of glycan-based drugs are the inherited heterogeneity of their structures and functions, lack of tools to do proper structure analyses, and difficulty in establishing structure and function relationships. Thus, developing reliable biological assays and novel structural characterization tools might be critical in understanding the information encoded in the fungal glycans and to perform reliable pharmacokinetic and pharmacodynamic studies.

Acknowledgement

This work was supported by Natural Science Foundation of China (Grant No. 91129708). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
57. LIU A, ZANG LH, SUN QJ (2008) Clinical observation of effect on Grifola

52.

51.

48.

47. Shao W, Zhao DM, Zou QY (1980) PSK preparation and its clinical efficacy for

intracellular polysaccharide in the treatment of 47 cases of chronic hepatitis B.
Antibiotics: 129-131

in the treatment of 240 cases of chronic hepatitis B. Antibiotics: 101-104

in the treatment of hyperplasia. Chongqing Medical journal: 1306-1307

dema in patients with Chronic pulmonary heart disease (54 cases). Journal of
Practical Traditional Chinese Internal Medicine: 18:164

Traditional Chinese Medicine: 35-36

Traditional Chinese Medicine: 58

ceruloplasmin in chronic schizophrenia with treatment of Poria. Shaxi
Journal of Medicine: 14-15

trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in
breast cancer patients: immunological effects. J Cancer Res Clin Oncol 135:
1215-1221.

Frondosa Amylose against tumor. Journal of Shandong Institute of Light
Industry: Science and Technology: 22:43-45

capsules in the treatment of IGT. The Third International Conference of
Diabetes, Beijing China, p 3

frondosa) extract induces ovulation in patients with polycystic ovary syndrome:
a possible monotherapy and a combination therapy after failure with first-line

purification of the polysaccharides with marked antitumor activity, especially
leukemia, from Lentinus edodes (Berk.) Sing. (edible mushroom). Cancer

of polymorphonuclear leukocytes (PMN) induced by PSK in the peritoneal cavity
of tumor-bearing mice. J Kyoto Pref Univ Med 96: 927-937

purification of the polysaccharides with marked antitumor activity, especially
leukemia, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer

of polymorphonuclear leukocytes (PMN) induced by PSK in the peritoneal cavity
of tumor-bearing mice. J. Kyoto Pref Univ Med 96: 927-937

purification of the polysaccharides with marked antitumor activity, especially
leukemia, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer

polysaccharides and preparation of a compound beverage. Carbohydr Polym
73:289-294

4. Lull C, Wichers HJ, Savelkoul HF (2005) Antiinflammatory and
immunomodulating properties of fungal metabolites. Mediators Inflamm

tumor effects of lentinan in nude mice: roles of delayed-type hypersensitivity
reaction triggered by CD4-positive T cell clone in the infiltration of effector cells
into tumor. Jpn J Cancer Res 85: 409-417

enhance the adipogenicity of lentinan and improve the immune effect of ND

intraperitoneal and intranasal application of Lentinan on cellular response in
rats. Int Immunopharmacolog 2: 1641-1645.

enhances sensitivity of mouse colon 26 tumor to cis-diaminedichloroplatinum
(II) and decreases glutathione transferase expression. Jpn J Cancer Res 87:
1117-1178.

immunomodulating effects of BCG and Lentinan after intranasal application

in vitro activation of the cytotoxic function in human blood lymphocytes by

1. Ebina T, Kohya H (1988) Antitumor effector mechanism at a distant site in
the double grafted tumor system of PSK, a protein-bound polysaccharide

1. Tsuru S, Nomoto K (1983) Effects of PSK on specific tumor immunity to

1. Aigara I, Collado A, Garrido F (1997) Protein bound polysaccharide PSK enhances
more efficiently experimental metastases derived from H-2 negative
16:373-380.

tumoricidal activities of macrophages by protein-bound polysaccharide in tumor

of polymorphonuclear leukocytes (PMN) induced by PSK in the peritoneal cavity
of tumor-bearing mice. J. Kyoto Pref Univ Med 96: 927-937

