Chronological Change of the Serum IgA/C3 Ratio Indicates the Efficacy of Tonsillectomy for IgA Nephropathy

Yoshio Shimizu1,2-4, Takashi Kobayashi2, Hitoshi Suzuki2, Yusuke Suzuki2, Satoshi Horikoshi1 and Yasuhiko Tomino2,4

1Nephrology Department, Juntendo University, Shizuoka Hospital, Izuokuni, Shizuoka, Japan
2The Clinical Research Project for Intensive Therapy of Chronic Kidney Diseases (CKD), Juntendo University Faculty of Medicine, Japan
3Shizuoka Medical Research Center for Disaster, Juntendo University, Japan
4Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan

Abstract

Background/aims: Although the serum IgA/C3 ratio is a good biomarker to predict the diagnosis, histological findings, and prognosis of IgA nephropathy (IgAN), the chronological change of the IgA/C3 ratio has not been discussed. The present study evaluates the chronological change of the IgA/C3 ratio.

Methods: The serum IgA/C3 ratio of 43 IgAN patients was measured at the time of biopsy and on the nearest consultation day in an outpatient clinic since April 30th, 2014. The change rate of the serum IgA/C3 ratio (⊿IgA/C3/year) was calculated. The correlation between ⊿IgA/C3/year and other parameters, including the change rate of serum creatinine (⊿Cr/year), clinical and histological grades, and the risk stratification for end-stage kidney disease (ESKD) in IgAN patients determined by Japanese Society of Nephrology (JSN).

Results: The patients with tonsillectomy had a smaller ⊿IgA/C3/year than those without tonsillectomy. ⊿IgA/C3/year was positively correlated with ⊿Cr/year. ⊿IgA/C3/year decreased along with the severity of histological grade, clinical grade, and ESKD risk. The patients with a combination of tonsillectomy and steroid pulse therapy show a strong down-regulation of ⊿IgA/C3/year and conserved their renal function. A multiple regression analysis revealed that significant enhancers for ⊿IgA/C3/year are tonsillectomy and ESKD risk grade 3, and that those for ⊿Cr/year are tonsillectomy, steroid therapy, and the clinical grade.

Conclusion: The serum IgA/C3 ratio does not only show the activity of IgAN, but also the chronological change of the IgA/C3 ratio indicates the efficacy of tonsillectomy for IgAN patients.

Keywords: Serum IgA/C3 ratio; Chronological change; IgA nephropathy; Tonsillectomy

Introduction

IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide [1] and is one of the leading cause of end-stage kidney disease (ESKD) [2]. IgAN is characterized by the presence of polymeric IgA1 deposits in glomerular mesangial areas [3-5]. Since it is necessary to perform a renal biopsy to diagnose IgAN, many efforts have been devoted to developing verified methods to predict IgAN without the biopsy [5-8].

Since it was revealed in 2000 that the patients with a serum IgA/C3 ratio >3.01 have a higher possibility of IgAN [5], the IgA/C3 ratio has been discussed as a useful clinical biomarker to predict the diagnosis, renal histological findings, and prognosis of IgAN [5-7,9-13]. However, there is no report focused on the chronological change of the IgA/C3 ratio.

The Japanese Society of Nephrology (JSN) published clinical guidelines for IgAN in 2011 (3rd version) [14]. The guidelines are based on the data from a multicentre retrospective cohort study [15]. These guidelines indicate new risk stratification for ESKD progression based on clinical histological severity. In these guidelines, IgAN patients are divided into four groups (low, medium, high, ultra-high) according to the possible risk of ESKD in 5 years.

A combined tonsillectomy and steroid pulse therapy for IgAN patients has been uniquely developed and performed in Japan [16-18]. A randomized control trial of the tonsillectomy and steroid pulse therapy showed a significant anti-proteinuric effect during a 1-year follow-up [19].

In the present study, the relationships between the chronological change of the serum IgA/C3 ratio and clinical, histological, and therapeutic factors are evaluated. The usefulness of the serum IgA/C3 ratio in daily clinical activities for IgAN patients and the close relationships between the chronological change of the IgA/C3 ratio and therapeutic options are revealed.

Patients and Methods

Patients

This study enrolled 43 IgAN patients who underwent renal biopsy in the Juntendo University Hospital and who were continuously treated in the outpatient clinic of the Juntendo University Hospital. The study was conducted according to the Declaration of Helsinki and was approved by the Institutional Review Board of the Juntendo University Hospital. Informed consent was obtained from all patients.

Copyright: © 2016 Shimizu Y et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Sample collection

At the time of renal biopsy and the nearest consultation day from April 30th, 2014, all patients provided blood and freshly voided samples. Serum and urine samples were determined in the clinical laboratory center of the Juntendo University Hospital. The level of urinary protein excretion was individually normalized to urinary creatinine (Cr) levels. The estimated glomerular filtration (eGFR) was calculated using the Japanese eGFR equation [19].

Calculation of ΔIgA/C3/year, ΔCr/year, and eGFR/year

The number days between the renal biopsy and the consultation in the outpatient clinic was determined as the observation period and converted to a fraction of a year. The serum IgA/C3 ratio at the time of the renal biopsy and on the consultation day was then calculated. The ΔIgA/C3/year was obtained using following formula:

\[\text{ΔIgA/C3/year} = (\text{IgA/C3 ratio on the consultation day} - \text{IgA/C3 ratio at the time of renal biopsy}) / \text{observation period (year)} \]

Histological analysis

All renal biopsy specimens were evaluated by immunofluorescence, light, and electron microscopy. For light microscopy, paraffin sections were stained with hematoxylin-eosin (HE), periodic acid-Schiff (PAS), and periodic acid methenamine silver-Masson trichrome (PAM-MT).

Histological severity was graded according to the JSN histological grading criteria for IgAN patients [14]. The patients who had a percentage of the affected glomeruli of <24.9 % of the total number of glomeruli were classified as histological grade (H-grade) I, 25 to 49.9 % as H-grade II, 50 to 74.9 % as H-grade III, and >75 % as H-grade IV.

Glomerular lesions, including global sclerosis, segmental sclerosis, and crescents (cellular, fibrocellular, and fibrous), were evaluated as affected. The grades were appended with ‘A’ when there were acute lesions, including cellular and fibrocellular crescents, and with ‘C’ when there were chronic lesions, including global sclerosis, segmental sclerosis, and fibrous crescents. When there was observed acute and chronic lesions simultaneously, the grades were supplemented with ‘A/C’ [14,20,21].

Clinical grading and risk stratification of the progression to end-stage kidney disease (ESKD)

The clinical severity at the time of renal biopsy was determined according to the clinical grading criteria of JSN [14]. Patients with urinary protein excretion <0.5 g/day were graded as clinical grade (C-grade) I, urinary protein excretion ≥ 0.5 g/day and an eGFR ≥ 0.6 ml/min/1.73m² as C-grade II, and with urinary protein ≥ 0.5 g/day and an eGFR<0.6 ml/min/1.73m² as C-grade III. The combination of the H-grade and C-grade of each patient was stratified as low, medium, high, and ultra-high risk (Table 1) [14].

Statistical analysis

Categorical data were compared by chi-square test and post hoc residual analysis was performed to identify the categories responsible for a significant chi-square statistic. Data are expressed as proportions, mean ± SE as appropriate. Continuous variables are compared using an unpaired t-test or a one-way analysis of variance (ANOVA), as appropriate. Correlate variables are evaluated using the Spearman’s rank correlation coefficient test. A multiple regression analysis was performed to determine the influencing factors for ΔIgA/C3/year or ΔCr/year using the candidate factors extracted in the univariate analyses. Statistical analyses were performed using JMP 10.0 statistical software (SAS Institute, Cary, NC, USA) or Js-STAR (ver. 2.9.9). A P value<0.05 was considered significant.

Results

Patient characteristics

The mean age of all the subjects at the renal biopsy was 41.7 years. The mean observation period was 6.8 years. During this period, urinary protein excretion and serum creatinine (Cr) levels increased from 1.8 to 2.1g/g Cr and from 1.1 to 2.9 mg/dl, respectively. eGFR and the IgA/C3 ratio decreased from 64.8 to 50.8 ml/min/1.73m² and from 3.4 to 2.6, respectively. Tonsillectomy was performed in 56% of the patients and steroid therapy was adopted in 30% of the patients (Table 2).

More than two third of the patients were classified into the histological grades 1 and 2. There were no patients in grade 4. While the patients who had dominantly active glomerular lesions were observed in histological grade 1, those with chronic glomerular lesions were distributed in every grade (Figure 1a). The patients with active lesions were significantly more than the expected value and those with active and chronic lesions were less in the histological grade 1. Interestingly, those with active lesions significantly reduced and with active and chronic lesions gained in the histological grade 2 (p<0.05, Figure 1a).

Histological grade did not directly correlate with the clinical grade. The patients with clinical grades 1 and 3 were similarly distributed in all histological grades while those with clinical grade 2 were decreased along with the progression of histological severity (Figure 1b). The distribution of estimated ESKD risk for grade 1 (low risk), 2 (middle risk), 3 (high risk), and 4 (ultra-high risk) was 11%, 53%, 33% and 3%, respectively (Figure 1c). While the distribution of the patients with or without tonsillectomy was not significantly influenced by histological grade or ESKD risk (Figures 1d and 1f), tonsillectomy was selectively performed for the patients in clinical grade 2 and avoided the patients in clinical grade 3 (p<0.05, Figure 1e).

<table>
<thead>
<tr>
<th>Age at biopsy (year)</th>
<th>Male (n=26)</th>
<th>Female (n=17)</th>
<th>Total (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.1 ± 3.0</td>
<td>38.0 ± 2.7</td>
<td>41.7 ± 2.1</td>
<td></td>
</tr>
<tr>
<td>51.4 ± 2.7</td>
<td>44.0 ± 2.6</td>
<td>48.5 ± 2.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation period (year)</th>
<th>Male (n=26)</th>
<th>Female (n=17)</th>
<th>Total (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2 ± 0.6</td>
<td>6.0 ± 0.6</td>
<td>6.8 ± 0.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urinary protein excretion at biopsy (g/lCr)</th>
<th>Male (n=26)</th>
<th>Female (n=17)</th>
<th>Total (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7 ± 0.4</td>
<td>1.9 ± 0.3</td>
<td>1.8 ± 0.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serum creatinine at biopsy (mg/dl)</th>
<th>Male (n=26)</th>
<th>Female (n=17)</th>
<th>Total (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6 ± 0.4</td>
<td>3.1 ± 1.7</td>
<td>2.1 ± 0.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serum creatinine at outpatient clinic (mg/dl)</th>
<th>Male (n=26)</th>
<th>Female (n=17)</th>
<th>Total (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 ± 0.1</td>
<td>0.9 ± 0.1</td>
<td>1.1 ± 0.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serum creatinine at outpatient clinic (mg/dl)</th>
<th>Male (n=26)</th>
<th>Female (n=17)</th>
<th>Total (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 ± 0.8</td>
<td>2.0 ± 0.8</td>
<td>2.9 ± 0.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eGFR at biopsy (mL/min/1.73m²)</th>
<th>Male (n=26)</th>
<th>Female (n=17)</th>
<th>Total (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65.4 ± 6.3</td>
<td>63.9 ± 7.1</td>
<td>64.8 ± 4.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eGFR at outpatient clinic (mL/min/1.73m²)</th>
<th>Male (n=26)</th>
<th>Female (n=17)</th>
<th>Total (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1 ± 8.0</td>
<td>56.6 ± 8.4</td>
<td>50.8 ± 5.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serum IgA/C3 ratio at biopsy</th>
<th>Male (n=26)</th>
<th>Female (n=17)</th>
<th>Total (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7 ± 0.3</td>
<td>2.9 ± 0.2</td>
<td>3.4 ± 0.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serum IgA/C3 ratio at outpatient clinic</th>
<th>Male (n=26)</th>
<th>Female (n=17)</th>
<th>Total (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 ± 0.3</td>
<td>1.9 ± 0.2</td>
<td>2.6 ± 0.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tonsillectomy (+/-)</th>
<th>Male (n=26)</th>
<th>Female (n=17)</th>
<th>Total (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/14</td>
<td>12/5</td>
<td>24/19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steroid therapy (+/-)</th>
<th>Male (n=26)</th>
<th>Female (n=17)</th>
<th>Total (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/20</td>
<td>7/10</td>
<td>13/30</td>
<td></td>
</tr>
</tbody>
</table>
Univariate analysis for ΔIgA/C3/year

There was no significant difference in the mean ΔIgA/C3/year between male and female patients (Figure 2a). Patients who had undergone tonsillectomy had a smaller ΔIgA/C3/year than those without tonsillectomy (-0.19 ± 0.15 vs. -0.05 ± 0.18, p<0.01) (Figure 2b). Patients who had undertaken steroid therapy did not show a significant difference in ΔIgA/C3/year compared to those without steroid therapy (Figure 2c).

While neither ΔUP/year nor ΔeGFR/year significantly correlated with ΔIgA/C3/year ($r^2=0.025$, p=0.31; $r^2=0.055$, p=0.14, respectively) (Figures 2d and 2e), ΔCr/year significantly correlated with ΔIgA/C3/year ($r^2=0.072$, p<0.05) (Figure 2f).

ΔIgA/C3/year and histological grades, clinical grades, ESKD risk, and tonsillectomy

ΔIgA/C3/year tended to decrease along with the severity of the histological grade, clinical grade, and estimated risk for ESKD, and the patients in the high risk group for ESKD showed a significant decrease compared to those in middle risk group (Figures 3a-3c). ΔIgA/C3/year of the patients with tonsillectomy showed a decrease in the severity in histological grade, clinical grade, and advanced ESKD risk. In contrast, there was no tendency between ΔIgA/C3/year and these grades in the patients without tonsillectomy (Figures 3d-3f). ΔIgA/C3/year of the patients in histological grade 3 with tonsillectomy revealed a greater decrease than those without tonsillectomy (p★<0.05) (Figure 3d).

While patients in each clinical grade without tonsillectomy showed no significant difference in ΔIgA/C3/year, significant differences in ΔIgA/C3/year are observed between clinical grades 1 and 2 in the IgAN patients with tonsillectomy (p★<0.05) (Figure 3e). Patients in clinical grades 2 and 3 show a marked difference with or without tonsillectomy (p★<0.05, p★★<0.01, respectively) (Figure 3e). Patients with tonsillectomy in higher risk for ESKD group reveal a significant reduction of ΔIgA/C3/year compared to those in middle risk group (p★<0.01) (Figure 3f). While there was a significant difference in ΔIgA/C3/year between the patients in the high risk group and the ultra-high risk group without tonsillectomy, the value is higher in ultra-high risk group (p<0.05) (Figure 3c).

ΔCr/year and histological grades, clinical grades, and ESKD risk

ΔCr/year is not significantly different among the histological grades (Figure 4a). The patients in grade 3 showed a more significant elevation of ΔCr/year than those in grade 2 (p<0.05) (Figure 4b). Similarly, patients with an ultra-high risk for ESKD revealed a significantly higher level of ΔCr/year than those with a middle risk for ESKD (p<0.05) (Figure 4c).

Comparing patients with or without tonsillectomy, the tonsillectomized patients showed a smaller ΔCr/year and a significant difference of ΔCr/year among patients in histological grade 2, clinical grade 3, and high risk for ESKD (p<0.05, p<0.05, and p<0.01, respectively) (Figures 4d-4f).

Effects of combination therapy with tonsillectomy and steroid therapy

The smallest ΔIgA/C3/year was observed in patients who had undergone both tonsillectomy and steroid therapy, and it was
The year revealed to be significant influencing factors for less patients who were only treated with tonsillectomy revealed significantly less than in the patients without treatment (p < 0.01). The △Multivariate regression analysis for Cr/year was almost 0 in the patients with dual therapies and it was

Figure 2: Correlation between △IgA/C3/year and clinical parameters. a-c) Comparison among the categorical data. The patients with tonsillectomy showed a more significant decrease in △IgA/C3/year than those without tonsillectomy (p ★★ < 0.01); d-f) Regression analysis △IgA/C3/year and △UP/year, △eGFR/year, and △Cr/year. △IgA/C3/year and △Cr/year are significantly correlated (r2 = 0.072, p < 0.05).

Figure 3: Influence for △IgA/C3/year by histological and clinical grades and ESKD risk (a-c) and with or without tonsillectomy (d-f). a) △IgA/C3/year of the patients in each histological grade not significantly different; b) As the clinical score increases, the △IgA/C3/year of the patients decreases, but there are no significant differences; c) The patients categorized with severe ESKD risk show a more decreased △IgA/C3/year. There is significant difference between the estimated middle risk group and high risk group (p ★ < 0.05); d) △IgA/C3/year is significantly different in histological grade 3 patients with or without tonsillectomy (p ★ < 0.05) and significant differences of △IgA/C3/year are observed between the patients with or without tonsillectomy in grade 2 and 3 (p ★★ < 0.01, respectively); e) There is a significant difference in △IgA/C3/year between the middle risk group and the high risk group among the patients with tonsillectomy (p ★★ < 0.01). A significant difference of △IgA/C3/year of patients without tonsillectomy is observed between the high risk and ultra-high risk groups (p ★ < 0.05).

Multivariate regression analysis for △IgA/C3/year and △Cr/year

Tonsillectomy and the patients with a high-risk for ESKD are revealed to be significant influencing factors for △IgA/C3/year (p = 0.0004 and p < 0.05, respectively) (Table 3a). In model 1, for △Cr/year, tonsillectomy, steroid therapy, and patients with clinical grades 1 or 3 were found to have a significant influence (p = 0.008; p < 0.05; p < 0.05 and p < 0.01, respectively) (Table 3b). In model 2, in which △IgA/C3/year was adopted as a substitute for tonsillectomy, similar results were obtained. IgA/C3/year, steroid therapy, and clinical grades 1 or 3 were found to have a significant influence (p = 0.005; p < 0.05; p < 0.0001, respectively) (Table 3b).

Discussion

This research focuses on the chronological change of the serum
IgA/C3 ratio in IgAN patients and it is shown that significantly correlates to [24]. Clearance kinetics and renal deposition analyses of soluble IgA1 significantly more pIgA1 than control subjects by pokeweed mitogen. Patients is significantly higher than those with a middle risk (p < 0.05). IgA/C3/year is significantly different between the patients with or without tonsillectomy in histological grade 2 (p < 0.05); clinical grade 3 (p < 0.01). Tonsillectomy -0.16 0.08 -2.15 0.04 steroid therapy -0.19 0.07 -2.56 0.001** Steroid therapy -0.04 0.03 -1.31 0.2 ESKD risk grade 1 0.2 0.11 1.76 0.09 ESKD risk grade 2 0.09 0.05 1.81 0.08 ESKD risk grade 3 -0.12 0.05 -2.23 0.03** Table 3: a) Multivariate regression analysis of influencing determinants for IgA/C3/year; b) Multivariate regression analysis of influencing determinants for Cr/year; c) Multivariate regression analysis of influencing determinants for Cr/year (model 2). IgA/C3/year is adopted as a possible determinant instead of tonsillectomy. Similar results are obtained.
activate the complement system [26]. The serum C3 level is lowered by glomerular deposition of plgA1 or IgA1-IgG immune complexes. It is suggested that serum elevated IgA1 (plgA1) and lowered C3 induce a sensitivity to IgA/C3 ratio-indicating disease activity of IgAN patients [28].

\[\Delta \text{IgA/C3/year} \] is not significantly different between patients in each histological and clinical grade (Figures 3a and 3b). There is a significant difference in \(\Delta \text{IgA/C3/year} \) between the middle and high risk groups for the progression to ESKD (Figure 3c). While the histological and clinical grade groups are from cross sectional data at the time of renal biopsy, ESKD risk is estimated based on a cohort study in Japan [15] and this stratification is including a chronological concept as well as \(\Delta \text{IgA/C3/year} \). It is suggested that both \(\Delta \text{IgA/C3/year} \) and ESKD risk are influenced by the treatments.

Since macroscopic hematuria is observed after upper respiratory infection and is driven by stimulating tonsils in IgAN patients, a relationship between tonsillar infection and IgAN has been argued [29]. The tonsil is a mucous lymphatic organ and polymeric IgA1 (secretory IgA1) is secreted on the mucous membrane. A part of this polymeric IgA1 is considered as a nephritogenic IgA1. The plasma cells, which produce nephritogenic plgA1 may transfer into bone marrow [30]. These plasma cells produce circulating nephritogenic plgA1 and glomerular depository CICs are formed. A combined tonsillectomy and steroid pulse therapy has been developed and performed in Japan [16–19]. This phenomenon indicates that the huge impact on IgA/C3/year is driven by tonsillectomy. It is interesting that steroid pulse therapy has been developed and performed in Japan [16–19]. The objective of this therapy is to decrease plasma cells producing nephritogenic plgA1 in the tonsils and to prevent the cells from transferring to bone marrow [31].

Among the patient groups of clinical, histological, and ESKD risk, there are significant differences in \(\Delta \text{IgA/C3/year} \) among patients with or without tonsillectomy (Figures 3d-3f). Moreover, \(\Delta \text{IgA/C3/year} \) is significantly down regulated in the patients of the higher clinical grades and ESKD risk (Figures 3e and 3f). Similarly, significant differences of \(\Delta \text{Cr/year} \) are observed between the patients with or without tonsillectomy (Figures 4d-4f). \(\Delta \text{Cr/year} \) of the patients with tonsillectomy is suppressed to almost zero (Figures 4d-4f). These finding indicate that tonsillectomy does not only down regulate \(\Delta \text{IgA/C3/year} \), but also inhibits the rise of serum Cr.

It is suggested that steroid therapy has an additive effect on tonsillectomy since there is a significant difference in \(\Delta \text{IgA/C3/year} \) between the combination of tonsillectomy and steroid therapy, and tonsillectomy alone (Figure 5a). It is difficult to evaluate the effect of steroid mono-therapy for \(\Delta \text{Cr/year} \) because it is significantly suppressed by the combination of tonsillectomy and steroid pulse therapy, and by tonsillectomy alone (Figure 5b).

Tonsillectomy and ESKD risk grade 3 have been indicated as significant enhancers for \(\Delta \text{IgA/C3/year} \) by a multiple regression analysis (Table 3a). It is suggested that the patients in the higher ESKD risk grade have a higher level of \(\Delta \text{IgA/C3/year} \) and are more down regulated by tonsillectomy than those in lower risk grades. Tonsillectomy, steroid therapy, and clinical grades 1 and 3 are significant enhancers for \(\Delta \text{Cr/year} \) (Table 3b). A similar analytic result is obtained when \(\Delta \text{IgA/C3/year} \) is used instead of tonsillectomy (Table 3c). This phenomenon indicates that the huge impact on \(\Delta \text{IgA/C3/year} \) is driven by tonsillectomy. It is interesting that steroid pulse therapy is extracted as significant enhancer for \(\Delta \text{Cr/year} \) and it may reflect various pharmacological characteristics of steroids, including anti-inflammatory effects as well as the inhibition of producing nephritogenic plgA1.

Conclusion

The serum IgA/C3 ratio might show the disease activity of IgAN patients at the time of sample collection and it is also suggested that tonsillectomy is effective against IgAN by an analysis of the chronological change of the serum IgA/C3 ratio.

Acknowledgements

The authors are grateful to Mr. Kaoru Sasao for his clerical assistance. This study was supported by a grant in a part by The Clinical Research Project for Intensive Therapy of Chronic Kidney Disease: a collaborative project between Kowa Co. Ltd., Kyowa Hakko Kirin Co. Ltd., Mitsubishi Tanabe Pharma Corporation, and Novartis Pharma, and by JSPS KAKENHI grant number 26461238. Shizuoka Medical Research Center for Disaster, Juntendo University is supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2015-2019.

References

