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Introduction
When the number d of candidate predictor variables is small, 

a linear prediction model can be chosen by computing a reasonable 
criterion (e.g., AIC, Mallow’s Cp, BIC, CV) for all possible subsets 
of the predictor variables. However, the computational burden of 
this approach increases very quickly as d increases. This is one of 
the main reasons why step-by-step algorithm like forward selection 
(FS) is popular. But when the data sets contain outliers and other 
contaminations, classical FS procedure yields poor results, and often 
fails to select important covariates that would have been chosen if there 
were no outliers and other contaminations in the data sets. On the 
other hand, it is not logical to predict future outliers without having 
knowledge about the radical mechanism that produces these outliers.

Classical FS algorithm has been expressed in terms of sample 
means, variances and correlations [1]. Robust FS is obtained by 
replacing these classical sample quantities by their robust counterparts 
[1]. As a stopping rule, partial F-test procedure is used. The focus of this 
work is not to fit a final model but to check the adequacy and stability 
of the robust model. Khan et al. [1] checked the adequacy of the robust 
model by giving outliers to the noise variables and their corresponding 
response values. In this study, the adequacy of the robust model has 
been checked by giving outliers in several ways through a simulation 
study.

The rest of the paper is organized as follows. In §2, the classical FS 
is reviewed. In §3, the robust version of the algorithm is reviewed. In 
§4, a simulation study is presented for the comparison of robust FS and 
standard FS. In §5, a real data application is presented. And finally, §6 
is the conclusion.

FS Algorithm Expressed in terms of Correlations
Let X1,X2,…,Xd be n dimensional predictor variables and Y be the 

n dimensional response variable. Each variable is standardized with 
mean 0 and variance 1. The FS procedure begins with the assumption 
that there are no predictor variables in the model other than the 
intercept. The first predictor (X1, say) selected for entry into the 
equation is the one which has the largest absolute correlation |r1Y | with 
Y, and the residual vector Y – r1YX1 is obtained. For entering all the 
other predictor variables into the competition, they are ‘adjusted for 

X1’. That is, each Xj is regressed on X1, and the corresponding residual 
vector Zj.1 (which is orthogonal to X1) is obtained. The correlations of 
these Zj.1 with the residual vector Y – r1YX1 called the partial correlations 
between Xj and Y ‘adjusted for X1’ decide the next variable (X2, say) to 
enter the regression model. All the other predictor variables are then 
‘adjusted for the first two selected variables X1 and X2’ for entering into 
further competition, and so on. This procedure of adding one predictor 
variable at each step is continued, until a stopping criterion is met. Let 
the correlation between Xj and Y be rjY and RX be the correlation matrix 
of the predictors X1,X2,…,Xd Let us assume, without loss of generality, 
X1has the maximum absolute correlation with Y Then, X1 is the first 
variable that enters the regression model. The predictors in the current 
regression model are active predictors a. The remaining candidate 
predictors (d-a) are inactive predictors. The second predictor X2 (say) 
that enters the regression model is the one that has the maximum 
absolute partial correlation |rjY.1| with Y.

FS steps in correlations

FS algorithm is summarized in terms of correlations among the 
original variables as follows [1]:

1. To select the first covariate Xm1, determine m1=argmax |rj|

2. To select the kth covariate (k=2,3,…), calculate 
1 ( 1). kjY m mr

−


, 

which is proportional to the partial correlation between Xj and Y adjusted 
for Xm1…,Xm(k-1) and then determine 

1 ( 1)
arg max | |. k

m rjY m mk −
=



 .

Stopping rule for FS

At each FS step, once the “best” covariate (among the remaining 
covariates) is identified, a partial F-test can be performed to decide 
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whether to include this covariate in the model (and continue the 
process) or to stop. The new “best” covariate enters the model only if 
the partial F-value, denoted by Fpartial, is greater than F(0.90,1,n-k-1) 
(say), where k is the current size of the model including the new 
covariate. Here again, the required quantities can be expressed in terms 
of correlations among the original variables, which is shown below.

When (k-1) covariates X1,X2,…,Xk-1 are already in the model, and 
without loss of generality Xk has the largest absolute partial correlation 
with Y after adjusting for X1,X2,…,Xk-1 the partial F-statistic for Xk can 
be expressed as:

( ) 2
.12 ( 1)

partial 2 2 2
1 2 .1 .12 ( 1)

1  

1
kY k

Y Y kY k

n k r
F

r r r
−

−

− −
=

− − − −






 


.

Robustification of FS Algorithm
Simple robustification of FS algorithm is achieved by replacing the 

non-robust ingredients of FS algorithm by their robust counterparts 
[1,2]. For the initial standardization, the choices of first countable 
robust center and scale measures are straight forward: median (med) 
and median absolute deviation (mad). Most available robust correlation 
estimators are computed from the d-dimensional data and therefore 
are very time consuming [3]. On the other hand, robust univariate 
approaches [4] are very sensitive to correlation outliers (outliers that are 
not detected by univariate analyses but affect the classical correlation).

One solution is to derive correlations among pairs of variables from 
an affine-equivariant bivariate covariance estimator. A computationally 
efficient choice is the bivariate M-estimator defined by Maronna [5]. 
Alternatively, the robust correlation estimator of Gnanadesikan and 
Kettnring [6] or the related orthogonalized Gnanadesikan Kettnring 
estimator [7] can be used. For very large, high-dimensional data sets, we 
need an even faster robust correlation estimator. Huber [4] introduced 
the idea of univariate winsorization of the data and suggested that 
classical correlation coefficients be calculated from the winsorized 
data. Alqallaf, et al. [8] re-examined this approach for the estimation 
of individual elements of a high-dimensional correlation matrix. For 
n univariate observations X1,X2,…,Xn, the transformation is given by

ui=ψc ((xi-med(xi))/mad(xi)), i=1,2,…,n,

where the Huber score function c(x) is defined as ψc(x)=min{max{-
c,x},c}, with c a tuning constant chosen by the user (e.g., c=2 or c=2.5). 
Note that in our case, med(xi)=0 and mad(xi)=1, because med and mad 
are used to robustly standardize the data. This univariate winsorization 
approach can be computed very rapidly, but unfortunately it does not 
take into account the orientation of the bivariate data.

To remedy this problem, Khan et al. [2] proposed a bivariate 
winsorization of the data based on an initial robust bivariate correlation 
matrix R0 and a corresponding tolerance ellipse. Outliers are shrunken 
to the border of this ellipse by using the bivariate transformation 

( )min / ( ),  1c D=u x x  with x=(x1,x2)
t Here D(x) is the Mahalanobis 

distance based on R0. Notice that c is a tuning constant that was chosen 
to be c=5.99 the 95% quantile of the 2

2χ  distribution. The choice of R0 
is discussed later.

The initial correlation estimate

Choosing an appropriate initial correlation matrix R0 is essential 
for bivariate winsorization. In principle, we could use any robust 
bivariate scatter estimate, but for computational convenience, Khan 

et al. [2] proposed a new method called adjusted winsorization. This 
method considers quadrants relative to the coordinate-wise medians 
(which is considered as 0 due to the robust standardization of the data) 
and uses two tuning constants to perform univariate winsorization of 
the data. A larger tuning constant, c1, is used to winsorize the points 
lying in the two diagonally opposed quadrants that contain majority of 
the standardized data (called the “major quadrants”). A smaller tuning 
constant c2 is used to winsorize the remaining data in the other two 
quadrants. In this article, we used c1=2 and 2 1c hc= , where h=n2/n1,n1 
is the number of observations in the major quadrants and n2=n-n1. 
The initial correlation matrix R0 is obtained by computing the classical 
correlation matrix of the adjusted winsorized data. The adjusted 
winsorization handles correlation outliers much better than univariate 
winsorization. By using bivariate winsorization, the outliers are 
shrunken to the boundary of the larger ellipsoid and thus appropriately 
down-weighted so that a robust correlation estimate is obtained. 
Although the initial adjusted winsorization and the resulting bivariate 
winsorization are not affine-equivariant, they can be computed very 
rapidly and can appropriately handle correlation outliers

Stopping rule for RFS

The classical correlations in the partial F statistic are replaced 
by their robust counterparts to form a robust partial F statistic. For 
stopping rule, standard F distribution is used as in §2.

A Simulation Study
A simulation study is accomplished analogous to Khan et al. [1] so 

that the performance of robust FS and classical FS can be compared. 
To perform the simulation study, d=50 candidate predictor variables 
are considered out of which a=9 or a=15 are non-zero target predictor 
variables. No-correlation case and two different correlation cases i.e., 
moderate-correlation and high-correlation cases which exist among 
the target predictor variables are considered. These cases are described 
below:

For the no-correlation case, independent predictor variable 
Xj~N(0,1) is considered and the response variable Y is generated using 
the a non-zero predictor variables with coefficients [1,2,9] which 
is repeated three times for a=9 and five times for a=15. The rest of 
the candidate predictors are considered as noise variables whose 
coefficients are zero. The variance of the error term is chosen in such a 
way that the signal to noise ratio equals to 2.

For the moderate-correlation case, three latent variables are 
introduced which are responsible for the systematic variation of both 
the response and the covariates, but are not active covariates. The linear 
model is created as follows:

Y=7L1+6L2+5L3+ε=Singnal+ε,

where Lj~N(0,1) , i=1,2,3 and ε is a normal variable with mean 0 and 

standard deviation 110 .
2

=σ  When a=9, a set of candidate predictor 

variables d=50 is created as follows. Let,

Xji=Li+eij, i=1,2,3; j=1,2,3 and Xk=uk, k=1,2,3,…,41,

where all eij~N(0,1) and uk~N(0,1). Thus, the true correlation between 
these covariates is 0.5.

Similarly, for the high-correlation case, a similar linear model is 
created as in moderate-correlation case and a set of candidate predictor 
variables d=50 for a=9 is created as follows. Let,
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Xij=Li + δeij, i=1,2,3; j=1,2,3 and Xk=uk, k=1,2,3,…,41.

Here, δ is a fixed constant which is chosen to be 0.5 so that the 
correlation between these covariates is 0.80.

For the no-correlation, moderate-correlation and high-correlation 
cases, 1000 data sets each of size 200 is generated. Each data set is 
randomly divided into a training sample of size 100 and a test sample 
of size 100. We considered data without outliers, and also with 10% 
and 15% outliers or bad leverage points. 10% and 15% of bad leverage 
points are obtained by generating the errors with mean 50 and standard 
deviation 1. While at the same time all or parts of the corresponding 
predictor variables are contaminated. The contaminated predictor 
variables are generated with mean 500 and standard deviation 1.

Process of contamination of the training data

For contamination of the training data, at first a number of rows 
is randomly chosen and the covariates of these rows were replaced 
by large positive numbers. The corresponding response values were 
also replaced by large positive numbers. The corresponding response 
values were also replaced by large numbers. To contaminate the 
training sample with 10% of bad leverage points, the probability that 
any specific row of the training sample will be contaminated is 1-(1-p)z. 

That is,
ln(0.90)1 expp

z
 = −  
 

, where z is the number of predictor 

variables whose values and their corresponding response values are 
contaminated. Similarly, for 15% of bad leverage points, the probability 

will be 
ln(0.85)1 expp

z
 = −  
 

.

For each of the no-correlation, moderate-correlation and high-
correlation cases, the training data sets are contaminated in different 
ways for measuring the adequacy of the robust model. Different cases 
of contaminations are given below:

•	 Case 1: All candidate predictor variables are contaminated.

•	 Case 2: All active predictor variables plus 5 first noise variables 
are contaminated.

•	 Case 3: All active predictor variables are contaminated.

•	 Case 4: All active predictor variables related to the two most 
important latent variables L1,L2 are contaminated.

•	 Case 5: Two active predictor variables related to each of the 
three latent variables L1,L2 and L3 are contaminated.

•	 Case 6: Most important active predictor variables plus first 10 
noise variables are contaminated.

•	 Case 7: First three active predictor variables related to the most 
important latent variable L1 are contaminated.

At first the training data is used for fitting the obtained models 
by applying each of the classical and robust FS methods. Then the 
test data is used for testing the significance of the fitted models. Both 
the classical and robust models are fitted by using a regression MM-
estimator because of its high breakdown point which is 0.5, and high 
efficiency at the normal distribution [10].

For each simulated data set, 10% trimmed mean of squared 
prediction error on the test sample is recorded. The average, standard 
deviation (SD) and median absolute deviation (mad) of the three 
quantities i.e., mean squared prediction error (MSPE), noise variables 

and target variables are shown in parentheses.

At first the performance of the classical and robust methods in 
clean data for the no-correlation, moderate-correlation and high-
correlation cases is presented.

Table 1 depicts that the performance of classical FS and robust FS 
is comparable for the no-correlation, moderate-correlation and high 
correlation cases in clean data.

All candidate predictor variables

In this case, the values of the d=50 candidate predictor variables 
and their corresponding response values are contaminated. Table 2 
represents the results for the no-correlation case in contaminated data. 
It shows that the test error produced by robust FS is much smaller than 
for the classical FS for both 10% and 15% outliers cases. The median 
absolute deviations and standard deviations are much smaller for the 
robust method than for the classical one. Also, the model selected by 
robust FS contains less noise variables than the classical FS. At the same 
time, more we increase the percentage of outliers in the training data, 
more the robust method performs very well while the performance of 
classical method is quite poor. Because classical FS selects more noise 
variables in the final model as the percentage of bad leverage points is 
increased. On the other hand, robust method selects less noise variables 
for the cases of 10% and 15% outliers. For example, for a=5 when we 
increase outliers from 10% to 15%, the average of the noise variables 
decreases from 0.9 to 0.6. Thus, we say that the robust method fits the 
final model with a small number of predictor variables by producing 
less test error compared to the classical method.

Tables 3 and 4 present the results for the moderate-correlation and 
high-correlation cases respectively. Here, the conclusions of the results 
for both the correlation cases are same as the no-correlation case [11-14].

All active predictor variables plus 5 first noise variables

In this case, the first 14 and 20 predictor variables are contaminated 
for a=9 and a=15 respectively, and the corresponding values of the 

Cases Method a=9 a=15
MSPE Noise Target MSPE Noise Target

No-correlation FS 80.8 4.6 9 145.4 4.0 15
(17.9) (2.4) (0.05) (35.1) (2.3) (0.5)
(16.3) (1.5) (0) (30.7) (3.0) (0)

RFS 89.9 10.0 9 164.3 9.3 14.8
(23.1) (7.2) (0.1) (46.1) (6.6) (0.7)
(21.2) (5.9) (0) (21.2) (5.9) (0)

Moderate-
correlation

FS 58.1 4.8 6.5  52.1 4.1 8.3

(12.4) (2.5) (1.1) (11.1) (2.3) (1.3)
(11.9) (3.0) (1.5) (9.7) (3.0) (1.5)

RFS 60.4 6.7 6.5 54.2 6.0 8.4
(13.5) (3.9) (1.1) (11.8) (3.7) (1.6)
(12.6) (3.0) (1.5) (11.1) (3.0) (1.5)

High-correlation FS 37.4 4.7 5.8 34.8 4.0 6.7
(7.3) (2.5) (1.0) (7.0) (2.3) (1.1)
(7.3) (3.0) (1.5) (6.4) (3.0) (1.5)

RFS 39.8 7.8 5.9 37.7 7.5 7.2
(8.8) (5.6) (1.1)  (27.8) (6.1) (2.2)
(8.0) (4.5) (1.5) (8.6) (4.5) (1.5)

Table 1: Performance of the classical FS and robust FS in clean data for the no-
correlation, moderate-correlation and high-correlation cases.
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response variable are also contaminated. Table 5 represents the results 
for the no-correlation case. It shows that the robust FS has less MSPE 
than the classical FS when a=9 active covariates are considered for both 
10% and 15% outliers cases. Also the robust method fits the model with 
less noise variables than the classical method. But when we increased 
the number of active predictor variables from a=9 to a=15 in the model, 
the robust FS produces more test error than the classical FS. Despite of 
producing more test error, robust method includes less noise variables 
in the final model than the classical method. The conclusions of the 
results for the moderate correlation and high-correlation cases are also 
similar as in the no-correlation case.

In all other contamination cases, the conclusions of the simulation 
results are similar as in Case 1 and Case 2. So, the results of other 
contamination cases are not included.

Real Data Application
In this section, a real-data set is used to evaluate the robustness and 

scalability of robust FS method.

Breast cancer data

This data set was used for the KDD-cup 2008. We considered the 

Outliers Method a=9 a=15
MSPE Noise Target MSPE Noise Target

10% FS 222.9 11.4 6.0 421.1 9.9 9.5
(144.5) (3.0) (1.6) (191.0) (2.7) (2.3)
(103.8) (3.0) (1.5) (161.6) (3.0) (3.0)

RFS 95.4 0.7 8.0 289.7 0.9 8.8
(46.6) (1.2) (1.5) (100.8) (1.2) (2.9)
(33.1) (1.5) (1.5) (105.0) (1.5) (3.0)

15% FS 340.5 14.1 5.4 545.5 12.1 8.8
(212.0) (3.1) (1.6) (232.9) (3.0) (2.1)
(192.3) (3.0) (1.5) (216.4) (3.0) (1.5)

RFS 141.7 0.5 6.2 370.3 0.6 5.8
(62.6) (0.9) (2.0) (101.2) (1.0) (2.7)
(64.8) (0) (3.0) (96.1) (1.5) (3.0)

Table 2: Case 1: Performance of the classical FS and robust FS in contaminated data for no-correlation case.

Outliers Method a=9 a=15
MSPE Noise Target MSPE Noise Target

10% FS 80.3 11.22 3.3 67.9 9.6 5.1
(42.3) (3.0) (1.4) (35.0) (2.7) (2.0)
(20.2) (3.0) (1.5) (16.0) (3.0) (1.5)

RFS 59.7 1.3 4.2 55.5 1.0 4.9
(12.1) (1.5) (1.0) (11.2) (1.3) (1.2)
(11.6) (1.5) (1.5) (10.5) (1.5) (1.5)

15% FS 105.2 14.1 3.6 86.2 12.0 6.0
(136.6) (3.1) (1.5) (132.4) (2.8) (2.2)
(32.8) (3.0) (1.5) (24.6) (3.0) (3.0)

RFS 61.1 0.7 3.6 58.5 0.6 4.1
(12.5) (1.0) (0.9) (11.6) (1.0) (1.1)
(11.2) (1.5) (1.5) (10.9) (0) (1.5)

Table 3: Case 1: Performance of the classical FS and robust FS in contaminated data for moderate-correlation case.

Outliers Method a=9 a=15
MSPE Noise Target MSPE Noise Target

10% FS 54.4 11.3 3.5 46.3 9.6 5.2
(34.3) (3.0) (1.4) (23.0) (2.7) (2.0)
(19.4) (3.0) (1.5) (15.0) (3.0) (1.5)

RFS 37.3 1.1 3.5 36.3 0.9 3.8
(7.3) (1.4) (0.8) (6.8) (1.4) (1.0)
(6.6) (1.5) (0) (6.6) (1.5) (1.5)

15% FS 69.0 14.1 3.8 53.8 11.9 6.3
(84.4) (2.9) (1.5) (70.1) (2.9) (2.2)
(29.1) (3.0) (1.5) (19.5) (3.0) (3.0)

RFS 37.5 0.7 3.2 36.8 0.6 3.3
(7.6) (1.0) (0.5) (7.3) (1.0) (0.7)
(6.6) (1.5) (0) (6.8) (0) (0)

Table 4: Case 1: Performance of the classical FS and robust FS in contaminated data for high-correlation case.
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training data set which consists of a total of n=102,294 candidates, 
each described by 117 feature variables. We used the first 101 feature 
variables with a total of n=50,000 observations in our analysis. The first 
variable is considered as the response variable, and the remaining 100 
variables are considered as the candidate predictor variables. n=50,000 
observations are divided into a training sample of size n=25,000 and a 
test sample of size n=25,000. When the classical FS and robust FS are 
applied to this training data set, the classical FS selects a huge model 
with the following 63 covariates:

(32, 59, 19, 42, 33, 23, 11, 89, 14, 81, 30, 51, 8, 9, 66, 17, 34, 5, 39, 
79, 25, 99, 43, 58, 57, 1, 31, 65, 15, 24, 36, 78, 45, 82, 92, 6, 10, 62, 53, 7, 
88, 68, 71, 22, 13, 46, 16, 60, 44, 91, 90, 4, 64, 76, 63, 67, 72, 38, 29, 84, 
83, 28, 12),

While the robust FS selects a model with only 13 covariates as 
follows:

(32, 59, 42, 19, 14, 90, 31, 71, 68, 66, 39, 96, 75).

The 10% trimmed mean of squared prediction error for both the 
methods are 0.005. That is, the robust FS fits a good model by using 
only 13 predictor variables, while the classical FS does the same thing 
by using 63 predictor variables.

We really don’t know whether this data set is contaminated or not. 
To check the scalability and robustness of robust FS, this data set is 
contaminated in three different ways. These contamination cases are 
described below:

Case 1: The response variable is contaminated.

This data set is contaminated by replacing one small value of the 
response variable (say 24532th value 0.1070976) by a large value 100. In 
the contaminated data set, classical FS selects a different model with the 
following 12 covariates:

(32, 59, 42, 19, 23, 11, 33, 91, 14, 8, 43, 71),

while robust FS selects the same model as before containing same 
number of predictor variables.

Case 2: The predictor variables are contaminated.

This data set is contaminated by replacing one small value of the 
predictor variable 32 (say 15023th value 0.5222431) by a large value 522. 
When both the classical FS and robust FS methods are applied to this 
contaminated data set, robust method selects the same model as before 
but classical FS selects a different model containing 62 covariates.

Case 3: Both the response and predictor variables are contaminated.

This data set is contaminated by replacing one small value of the 
predictor variables 20 (say 9001th value 0.692335) by a large value 160 
and the corresponding value of the response variable (0.1446717) by a 
large value 180. Again in this case, robust FS selects the same model as 
before, but classical FS selects a model containing 52 covariates which 
is different from the previous model.

Conclusions
In this study, we considered the problem which arises when we 

select a linear prediction model for large high-dimensional data sets 
that may be clean or possibly contain a fraction of contaminations. At 
the same time, our goal was to achieve robustness and scalability. The 
performance of the classical FS and robust FS is compared through a 
simulation study and real data application. In simulated data sets, the 
performance of robust FS is comparable to standard FS for the no-
correlation, moderate-correlation and high-correlation cases in clean 
data. We also compared the performance of robust FS and classical 
FS by contaminating the simulated data sets in different ways. Robust 
FS has performed much better than standard FS. As we increased 
the percentage of bad leverage points in the simulated data sets, the 
robust FS has performed much better than the standard FS for the 
no-correlation, moderate-correlation and high-correlation cases. In 
almost all the contamination cases, the classical FS produced more test 
error, and also included more noise variables than the robust FS. In 
some contamination cases, the robust FS produced almost same test 
error but included less noise variables than the classical FS. Overall the 
performance of robust FS is better than the classical FS. In real data 
set, when we replaced some observations by bad leverage points, the 
model selected by classical FS changes frequently and produces more 
test error than robust FS. From the simulation study and real data 
example, it is proved that the robust FS outperforms the classical FS in 
contaminated data.
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