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Abstract

The purpose of the article is to describe all 2-dimensional subalgebras and all corresponding reductive pairs of
Lie algebra g of all 2 x 2 real matrices. This Lie algebra is 4-dimensional as a vector space, it's not simple, and it's
not solvable. The evaluation procedure utilizes canonical bases for subspaces that were introduced. Part | of the
article contains necessary basic information. In Part Il, all 2-dimensional subalgebras of the given Lie algebra g
are classified. All reductive pairs {h, m} with 2-dimensional subalgebras h are found in Part Ill. The separate article
contributes classification of all 3-dimensional subalgebras and its reductive pairs. Together, both articles give the total
classification of all subalgebras and all reductive pairs of Lie algebra g.
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Introduction

Katsumi Nomizu introduced reductive homogeneous spaces at his
fundamental manuscript [1,2] where the author investigated invariant
affine connections and Riemannian metrics on them. Sagle and Winter
at their article [3] analyzed algebraic structures generated by reductive
pairs of simple Lie algebras. One more problem that concerns to this
article is classification of subalgebras of low dimensional Lie algebras.
For example, Patera and Winternitz classified all subalgebras of
real Lie algebras of dimensions d=3 and d=4 at the manuscript [4].
Their classification of subalgebras of real Lie algebras was done by
a representative of each conjugacy class where the conjugacy was
considered under the group of inner automorphisms of Lie algebras.
All the articles mentioned above have stimulated this research of all
2-dimensional subalgebras and their reductive pairs of Lie algebra g of
all real 2 x 2 matrices. In contrast to the article [5], the current research
is utilized a different method. Our method involves canonical bases for
subspaces [1] that allow us to find all 2-dimensional subalgebras and
the corresponding reductive pairs of the given Lie algebra g. This article
finalizes the total classification of reductive pairs of the considering Lie
algebra. New knowledge concerning the structure of Lie algebra g is
important for Algebra, Geometry, and Physics.

Part I. Basic information and necessary statement

We remind some information for the readers’ convenience that
includes the basic statement about canonical bases from the article [1].

Definition 1: Let g be Lie algebra, h be Lie subalgebra of g. If there
exists a subspace m of g such that g=h®m and [h, m]cm, then {h, m} is
called a reductive pair of g, and {g, h, m} is called a reductive triple. We
say also that subspace m is a reductive complement for / at g.

Lie algebra g and its standard basis

This Lie algebra contains all 2 x 2 matrices over the field of all real
numbers. The standard basis of this algebra consists of the next four
matrices

- |1 0f - |0 I|— [0 O] - |0 O
e = ,8 = 6 = e = .
{0 O} {O 0} L 0} {0 1}

It is well known that the Lie multiplication operation [A, B] for
any two square matrices A and B of the same size is defined to be [A,
B]=AB-BA. According this rule, the fundamental nonzero products of
the basic vectors (matrices) eT, e, e, a can be computed:

I e e I s I
[el,ez}—ez,[el,eg}——e},[ez,e}}—el—e4,[ez,eA}—ez,[e3,e4J——e3 ()
All other products of basic vectors are zeros.

Canonical bases for 2-dimensional subspaces of 4-dimen-
sional vector space

Let h=Span {ﬁ,E } be any 2-dimensional subspace of a
4-dimensional vector space g generated by linearly independent vectors
d=ae +ae, +ae,+a,e, ,and b =be +bye, +b,e, +b,e, . According the
article [1], all canonical bases for 2-dimensional subspaces h are:

(1) Z1:‘3—1""136—3""1455 E:e—z"'bza"'bAe—At 5

2) 5:3—1*’“2%"'“45 Eze—ﬁb@;

(3) a=e¢ +aye, +a,e;,b=¢,;(4) a=e,+ae,b=e,+he,;

(5) a—e +ae,b=e.;(6) a=ebt.

Bases of the type (1) form 4-dimensional manifold, bases of
the type (2) form 3-dimensional manifold, bases of the type (3)
form 2-dimensional manifold, bases of the type (4) form another
2-dimensional manifold, bases of the type (5) form 1-dimensional
manifold, and the basis (6) is a unique one. These manifolds are
interested to be studied but the main goal of this article is different.
About terminology: we will say just a basis (1)-(6) instead of a manifold
of bases.

Part II. 2-dimensional subalgebras of Lie algebra g

Now we start to determine when a 2-dimensional subspace
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h= Span{ﬁ,B} is subalgebra of Lie algebra g Obviously, the 6
nonequivalent canonical bases listed above should be used to analyze
any subspace h. The condition [h, h]ch will be checked for each of
these 6 canonical bases. The table (*) of products from Part I will be
used when a product Lﬁ,E J is computed.

Let a=¢ +aye, +a,e,, b=e, +be, +be, be the basis (1) for h.
Evaluate the product La‘, b J . We have

[E’BJ: lgﬁ%;s+a4;4,;z+b3;;+b4;4J=;rb]a*a3(€T*a)*azbgf%gwwsg :

This product L[j, b J should be located into the subspace h, i.e.
[575J= xa+ yZ. So, we have the following conditions for x, y and for
the components of @ and b :

x=—a, y=la, xu3+yb3:—b3—a3b4+u b

by xa+yb=a..

The last 2 conditions generate the next system of 2 equations for
a,a,b, b,
-a} +(1-a,)b, =-b, —ab, +a,b,, — a,a, + (1-a,)b, =a,,
or 2(1-a,)b, =a,’ —ab,, (1-a,)b,=(1+a,)a,.

To solve this system of equations, consider two cases: a,=1, and
a#1.If a =1, then a,(a,~b,)=0, 2a,=0. So, a,=0, a,=1, and b,, b, are any

components. The first set of 2-dimensional subalgebras is:
h = Spane; + e, e, +b,e; +b,e,} -

1+a —a.al
If a#l, then b4:—4a3, b 9ads

l-a, 3:(1_‘14)2’
2-dimensional subalgebras is:

and a new set of

2
aa;” — l4+a, —
e +—ae,}, a2l
(1-a,) l-a,

Let a=e¢ +a,e, +a,e,, 5:23+b424 be the basis (2) for h.

h, = Spanie, + a,e, + a,e,,e, —

Evaluate the product [a,b} :
[&,ﬂ :[g]+a2e‘2+a4a,e‘3+b48‘4} :—%+az(;—a)+a2b4g+a4% =xa+yb.
This vector equality generates the next system of 2 equations for
a,a, b E
a,’ =a,b,, a,a,+(a,—1)b, =—a,.
l+a

The 2™ equation gives the result b, :174% (a,#1), and the 1*
—a,

equation produces b,=a, or a,=0. If a,=0 then b4=0. If b4=a, then a,=0.
If a,=1 then a,=0. So, three new sets of 2-dimensional subalgebras are
obtained:

h, = Spanfe, + a,e,e;} (a21), h,=Spanie, +a,e,.e, +ae,},
hy = Spczn«{g1 + a,% +b4;4} .
Let a = Zl + az;2 + alzs , b=e, bethe basis (3) for h. Compute the
product [a,i—)}:

[a,b} = [el +a,e, +a3es,e4} =a,e, —a,e; =xa+ yb.

The last vector equality generates the values x=0, y=0, and we
have immediately a,=0, a,=0. This means that the following abelian
subalgebra is obtained:

hs = Spane, e,} .

Let a=e, +ae,, h= ;3 + b4e—4 be the basis (4) for h. Evaluate the
product [a,b} , and determine when it belongs to h. We have:
|:Zlal;i| = |:‘?2 + aﬂja% + b@} = (g; - a) +b4g + a4;3 =xa+ yB-
The last vector equality is impossible because basic vector €, can’t

be generated by vectors b and b . This means that no subalgebra exists
with the basis (4).

Let a = g; + %%,B = ej be the basis (5) for h. Evaluate the product

[C—I,B} , and determine when it belongs to h. We have:
[05])=[a +aee |=a-ag =5+ 35
The last vector equality is satisfied if and only if a,=0. So, the
following subalgebra is obtained 4, = Span{e,,e,} .

Let a e3,l;:e4 be the basis (6) for h. Evaluate the

product [4,1;}, and determine if it belongs to h. We have

[5,13} = [ej,aJ =—e = —a € Span{a,b} .

So, the new 2-dimensional subalgebra A, = Span{e,,e,} of Lie
algebra gis found.

The next theorem summarizes all results of Part II.

Theorem 1: Lie algebra g has two different 2-parameters sets of
2-dimensional subalgebras:

Iy = Spante, +e,.e, +bye; +be,} ;

aa’ — l+a,

2 63
(I-a,) I-a,
different 1-parameter sets of 2-dimensional subalgebras.

asa} , a2l three

h, = Span{e, + a,e, +a,e,,e, -

hy =SP””{€T + 045@}, a, #1, by 25170"{;1 +azgae-3 + aza‘f’ h :Span{e‘, +a’g +b4a}

and three special 2-dimensional subalgebras,
hy=Spanfe,.e.}; hy =Spanie,.e,}; h = Spanie;.e,} -

Part III. Reductive pairs with 2-dimensional subalgebras of
Lie algebra g

How many of 2-dimensional subalgebras & form reductive pairs {4,
m} of Lie algebra g? To answer this question, we will find all reductive

complements m for each subalgebra h such that the conditions [k, m]cm
and g=h®m are satisfied. A complement m for any 2-dimensional

subalgebra h should be a 2-dimensional subspace, and we can describe
it as m = Span{c,d} where vectors ¢ and d form some canonical
basis for m. Remind all canonical bases for 2-dimensional subspaces:
(1) c=e +cie, +c,e,, d=e, +dye, +d,e, ;
2) E:zl+c2;2+c4aa Z1.:‘?3"'01453
() c=e +c,e, +cie,d=e,;(4) c=e,+c,e,,d=e,+d,e, ;
(5) c=e, +cie;,d=e, ;(6) c=e,d=e, ,.
We start to utilize five sets of 2-dimensional subalgebras and three
special 2-dimensional subalgebras listed in below Theorem 1.
Theorem 1: Subalgebra 7, = Span{g1 + Z,Z + b3;3 + b4a} .

Find all reductive complements for A, if they exist.
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Let c=e +cpe,+c,e,d=e,+d,e,+d,e, be the basis (1)
for a possible reductive complement m. Multiply basic vectors
a=e+e,b=e,+be,+he,,by C and d .

|:a,c:| = |:eI +e,,6 +ce+ cAeJ =-ce;+ce,=0 ;itis the identity.

[a,d} = [e, +e,,e, +d,e +d4e4J =e,—de,—e,+de,=0; it’s
the identity.
I:E’E:I=|:;z+b1g3+b4a’g|+czg+c4g4:|=7;2+Cs(gl7a)+ﬂ4g+bsgsszc4e:+b4czg=

5o+,

So, x,=c,, y=c~1, x3c3+y3d3:b3—b3c4+b4c3, x3c4+y3d4:—c3.

[‘»g]=[g+bx€:+b4;ag+d1;x+d4;4} =d3(glfa)+d4;27bz(gl7;4)’b3d4a7b4g+
b, d.

dye =x,c+y,d

So, x4:d3—b3,y4:d4—b4, x4c3+y4d3:—b3d4+b d x4c4+y4d4:h3—d3.

473

The conditions above generate the following system of 4 nonlinear
equations for components € Cp dy d E

032 +(¢c, —Ddy =b, —byc, + byc;, c3c4+(c4—1)d4:—c3,

(d,~b,)c,+(d~b)d,=—bd+bd, (d~b)c+(d-b)d,=b—~d,.

It makes sense to solve the system in two different cases: ¢,=1, and
c,#l.

If c=1 then ¢,=0, (dA—b4)d3:b4d3—b d

., 2(d~b)=(b~d)d,. We
see that ¢ = ;1 + a ,and d is some vector determined by the last two
equations above. This pair {h,, m} with m= Span{e—1 +e—4,3} is not a
reductive pair because the intersection 4 N m = {e, +e,} #0 isn’t zero
vector for any d .

1<|-C4 _b4 b4_d

e ds =S T b d, =%y b,
-, I-¢, ¢, +1

and (d, —b,)c; +(d, —b,)d, = b,d, —bd, .

If c#l, then d, =

Utilizing the 1* formula for d,, we compare two different values for
d,. The corresponding procedure is long, we omit details. At the end of
it, we obtain the following equation for c ;:

¢, =b,(1-c)e, —=b,(1-¢c,)* =0.(*)

Substitute now formulas for d, and d, obtained above into the
3" equation that was not used before: (d,~b,)c,+(d,~b)d,=b,d.~b.d,
Simplifying step by step this equation and utilizing several times the
equation (**), we obtain the following result: c,c,=0. So, ¢,=0 or ¢,=0.

If ¢,=0 then from the equation (**) we obtain ¢,=1 or b,=0.
For ¢=1 we have d,=b,, d,=0, and the following pair appears
h = Span{e, + ¢,.e, + bye; + bye,}, m=Spanie, +e,.e, +be,} . This
pair is not reductive because the intersection i Nm = {E; + ej} is not
zero vectors. For the case b,=0 we have d,=0, d,=0. The corresponding
pair for this case is /= Span{a+a,g+b4a}, m, = Span{a +c45,a} .
This pair is reductive if b 70, ¢ %L

If ¢,=0 then d=c,, d,=0, and c, is the solution of the equation
¢} —b,c, —b, =0 . We have the following reductive pair:
h = Span{eT + ej,g + bza + b4a}, m, = Sp(m{gl + Cs%,; + 635} > C3¢b4, and

¢, is the solution of the equation ¢,” —b,c, b, =0.

2. Let c=¢ +c,e, +c,e,,d =e,+d,e, , be the basis (2). Multiply
Vectors j_g pe b

b=e, +be,+be, by ¢ and d . We have:
[a,q=[;+a,g+czg+c4e‘4J=czg—czg=();it is the identity.
[a,d} = [el +e,,e + d4e4J =—e, +e, =0; it is the identity.

[b,c] :I:ez +bye;+b,e,,e +c,e, +04e4] =—e, +c,e, +be, —bic,(e, —e,)—bc,e; —
-b,c,e, =x;c+ y,d.

So, x,==b,c,, y,=b,~b.c

4Gy Lo X,6,=C~1=b,c, x.c+y.d=b.c,.

472
[553] = [gz+bz;3+b4;4’gs +d4;:| = (a—a)ﬁaa—@d@w@ =x4E+y4;l.

So, x,=1, y4=b4—b3d4, x4c2=d4, x,c,

+y,d=1.
We obtain the next system of 4 equations for the components c,,
d;

C4’ 4
—b3022 =¢,—1-b,c,,— by, +b(1-c,)d, =bc,, ¢, =b,, ¢, +(b, —bd,)d, =-1-

Analyzing this system of 4 equations, we obtain the following
solution of it (details are omitted): d =¢, ¢,=0, and c,is the solution of
the equation byc,” —b,c, —1=0. The corresponding reductive pair is:

h = Span{eT + ej,g +b3;3 + b4a}, my = Span{eT + 02;2,23 + cza} >
where byc,” —b,c, -1=0.
3. Let ¢ = e—1 + Cze—2 + 03;3, d= ej , be the basis (3). Multiply vectors

a= e—l +a, b= g +b3e—3 +b4€—4 , by ¢ and d. We obtain the following
products:

[E,EJ = [eﬁl +e,,e + czeﬁ2 + ge?} = czg - 0353 —czg + c3eﬁ3 =0; it is
the identity.
[21,3} = F] + a,a} =0; it is the identity.
[b.c]=]e+bethenateeree |=—e +ee +he ~be(e-e)-bee -
be,e, = x3E + yﬁ‘
[B’Zﬂ = [g + bsg; +b4z47;4} = g _b353: = x42 + y43-
The third and fourth equalities generate the following conditions:
x,=c,~b.c,, y=b.c,—c, x,c,=~1-b,c,, x,c,.=b+bc, x,=0, y,=0, x c,=1,

372 472
x,c,==b..

These conditions produce the obvious contradiction: 0=1. This
means that no reductive pair for h, exists when the complement has
the basis (3).

Let c=e,+c,e,, d =e;+d,e, be the basis (4). Multiply vectors
a=e+e,b=e +be;+be, by ¢ and d . We have two identities
|ac|=0,[ad|=0,and

|:i7,2:|:[g+b36:+b4a,e:+c4€-§;:|:Q%*bﬂé*%)*@@%*@%:x32+y321;,

[Z”ﬂ{gwsgﬁb@,;ﬁd@]=(a—a)+d4a—b3d4a+b4a=X4Z’+y43~

The product ¢,d can’t be generated by vectors ¢,d . So, no
reductive complement with basis (4) exists for subalgebra h,.
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Let c=e,+ce,d=e, be the basis (5). Multiply vectors

&=a+€4,5=g+b3g+b4;4,by5 and d . We have:
[a,g}:[gl_,_a’g_,_%a}:g_cse:_g_,_qa:6;it is the identity.
[5,8} [e] + a,a} 0 ; it is the identity.
[b.c]=[e+be+hene +ee |=c@-e)-bye —e) +bee —bye, =x,c+ yyd,

[1—),3} = [e: +b3e—3 +b4e—4,e—4J = Z —b3g3 = x42+y43.

The solution for those vector equations is c,=0, b =0. As the result,

the following pair A = Span{el+e4,e2+b e4} m= Span{ez,eA} is

obtained but it is not a reductive pair because c= e3, d= e4

6. Let c= e3, d= 64 be the basis (6). Multiply vectors
a= eT +a, b :g+b3%+b4a by C and d . We have two identities
|:ZZ,Ei| = 6 ,[;z,ﬂ :6, and

[B7E:| = [Z +b3g +b4av;3:| = (gl _a)+b4;3 = x32+y33,

[5’3} = [g +bag +b4€7,a = ‘Z _b3g = x42 + y43-
The products [B,E} and [5,3} are not generated by vectors ed.

This means that no reductive complement with the basis (6) exists for
subalgebra h,.

2

— — - — a,a,” +a, —

Sub algebra £, = Span{e, + aje, +a,e,,e, ——=— a4 ase,}, a,#1.
4

— +1
(1-a,)’ 1-
Find reductive complements for k, if they exist.

let c=¢ +c,e+c,e,, d=e,+d,e;+d,e, be the basis (1) for a
possible reductive complement . Multiply basic vectors @ , b by ¢, d. We
have:

[5’2]:[a*’asg"'azsa’a*'cse-s*'%a]:’ng"'asa’ascz;e‘z*'%c}e—s:XIE*’ylg-
So,xl:O,y:O,xlc3+yld =a,~c—a.c+a.c, 1c4+yld4:O
I:ZLE}:I:;l'*'asgz"*'%a’gz‘*'dzg*'dzza:l:g_dsg_as(a_a)_a3d4a_a4%+
a,dse; =x,c+ y,d.

So, x,=—a, y,=a,, x2c3+y2d3 d -a, d +a4d3, Xx.c +y2d4:a3.

+a, —— = = — - — —
—aa3e4,e1-%—c‘~,e3-¢—c4e4 =—e,+¢(e —e)+c,e, —
Uy

aa’ —  aa’ — l+a, — - =
e +— e+ ——ace, = X0+ yd.
(1-a,)’ (1-a,) l-a, ~
2
_ _ a,a, 1+a,
So, x,=c,, y,.=¢,~1, x;¢; + y,d; = 1—a) (¢, =D+ 4 a,c, »
4 4
x,ctyd,=—c,.

2
|:b=dj|: €= s zez+1+7a
(1—614) 1-

a4 ae,,e, +d,e, +d4e4}:d3(e, —e)+d,e, +
4

2 2
a,a, — aa — = l+a, — l+a — - =
S —de+— 2 (e —e) ——a,e, +—adse, = x,c+ y,d.
(1-a,) T o(-a) l-a, - l=a, ="
2 2
a,a 1+a a,a,d l+a
X, =dj 43 7o Ve = a4 — “a3,x4cz+y4d3: = 42 4a3d3,
(1-a,) l-a, (1-a,) 1-a,
So,

2
a,a
X4Cy +J’4d4 = _ds - (lja} )2
4

From the equalities above, we obtain the following system of 7
nonlinear equations for components c,, c,, d,, d,:
a3—c3—a3c4+a4c3:0,

—a,c+(1-a)d=-d—-ad+ad,
d =4

ac+(1-a,)
a,a;
(-a,)’

4y . +(d71+a4 ), = a,a;’ d+1+a4
4

(1-a,)? l-a (1-a) " 1-aq,

lJra4

CSC4+(C4—l)d4=—C3, csey + (¢, —dy = (¢, =D+

+a,
—taycy»
—a,

aa;’

[d, + aydy>

a,a;’

(-a)

2
a,a,

L+ (-a)

—— e, +(d, - a;)d, =~d; ~

The 1% equation gives us ¢, =

:M, the 3 equation gives d, = “ ay, and the 4®
21-a,) 1=
l+c,

—C, . .
ta,, the 2™ equation gives
—a,

3

equation gives ¢, = ¢, - Substitute the values found for c,, d,, d, into

l-¢,
the 5 equation, and simplify the corresponding expression. We obtain
the identity 1—c =1, Substituting the values found for Cyp d3, d , into
the 6" equation, we obtain the identity 0=0 as well. Substitute the same
values for ¢, d, d, into the 7" equation. Simplifying the corresponding

expression, we obtain the equation 2c¢+c,(1-a,)=0. This

a,—1
equation has two solutions for c,: ¢, =0 or ¢, = 4T . So, we obtain two

pairs for subalgebra k.. The first pair is {h,, m } where:

2
a,a; — l+a, —
- —a,e,},a,#1,

h, = Spanie, + a,e; +a,e,,e, ————e+
(I-a,) I-a,

a; — . R . .
= Span{e, + e3,e2+173e4}. This pair is reductive if

4 4
a3¢0, a 4;arEO.

The second pair is {h,, m,} where:

2
aa,” — l+a, —
473 4
ae,},a#l,

hz = Span{el + a,e; +a4e4,ez —WGS ﬁ

-a, — a,—1—— af
ae; + e,,e,+
2(1-a,) 2 1-

l1+a,
76+
a,) 2(1-a,)

m, = Span{e—l + 35} )

This pair is reductive if a3#0, a4=—1.

2. Let c= eﬁ'1 + czg; +64;4, d= g; +d4a be the basis (2) for a
possible reductive complement . Multiply basic vectors g, » from
h,by ¢ and 4. We have:

[a,c] :[el +ae, +a,e,e + e, +c4eJ =c,0, + a0, —aic,(e —e,) —ac,e —a,c.e, =
xc+yd.

So, x,=—a,c,, y,=a,—a,c, x,c,=c,~a,c,, X

C4+yld4:a3c2
[a,d} :[el +a,e, +a,e,,e, +d4e4] =—e,—a,d,e; +a,e; =x,c+y,d.

So, x,=0, yzza4—a3d4—1, x,¢,=0, x2c4+y2d4:0.

2 2
[5 E}: L. L Wy 1+a, U e e e e e |=—e tee——1B oy
> 2 Pe] 3€4,6 T 6,6 TC, €6 ) TC6 — PRE)
(I-a,) 1-a, (1-a,)
2 2
a,a - — aa; — l-a,
L —23 (e, —e)+c,——e ace,fxc+yd
2 2 1 4 4 2 537 3 3 3
(I-a,) (1_a4) l-a,
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2

a,a a,a, 1+a
x3:(]_4a3)2 2 V3 = (- a) (54 1), x3C2:C4_1_1_a4 asc,,
So, 4 4
a,a
X0, + yyd, = _(174;4)2 &}
- = — a4a32 — l4+a, —— — - — —
[b,d}z ez—me3+l_—a3e4,e3+d4e4 =(e,—¢)+de, +
4 4
aa’ — l+a

=
et ——ae=x,cty,d.
(-a,) 1-a,

a,a;’ l+a
d, + Lay» x4C2:d4’ x4c4+y4d4:_1'
(-a,) 1-q,
These equalities produce the system of 7 nonlinear equations for
components c,, ¢, d4:

So, x,=1, V=

—a3022=cz(1—a4) —a,cc +(a—ac)d=ac, (a—ad-1)d=0,

2
a,a, 2 I1+a,
——=—c, =c,—1- a,c,’
(17a4)2 2 4 1-a, 362
2
a,a; 495 a4a3
———c,c,+(c,—1
T TP R TR
2 1+a
d:C,c+%d2+ ‘ad,=-1.
42 G (1_a4)2 4 1-a, 3¢y

Consider two cases for the system. If c,=0 then ¢ =L d =0, and from
the last equation ¢,=—1. We obtain a contradiction, so the system has
no solution at this case.

1 ,and from
@

the 2 equation we obtain a,c,=0. The last equation gives two possible
results: a,=0 or ¢,=0. If a,=0 then from the 4® and 7* equations we
obtain the contradiction ¢,=1, ¢,=—1 again. So, ¢,=0. Substitute the
values of ¢, d,, c, into the 4® equation, the 5" equation, and the 7*
equation. We obtain the identities at all these cases. So, the following
reductive pair appears:

Let c,#0. Then from the 1* equation we have ¢, =

2
— — - — a, — l1+a, —
hz=Span{el+a36‘3+a4e4,e2—(l a}) e +1_ “ase4}:a4¢1>
4
TS Db el Pl Y
m, = Span{e, + e,e + e,}» a7V,
3 3

3. Let c= 6—1 + 02;2 + c;%, d= 6—4 be the basis (3). Multiply basic
vectors a, b by ¢ and d.
One product is very important for this case. Compute [B,J] :

2
- =1 |= aa’ — l+a, ——| — aa’ —
bd|=|le,——2—e,+—ae,e |=¢ —3 e,
[ } |:2 (l—a4)23 1—a434 4 ) + (-

=x,c+y,d.
a4)

2
a,a
So, x,=0, y,=0, x,¢,=1, X0 =25

Td-a)’
This product [5,3] produces the obvious contradiction x,=0,
x,¢,=1. So, subalgebra h, has no reductive complement with basis (3).

4. Let c= g; + 0424, d= g; + d4a be the basis (4). Multiply vector
p from h, and vector d - We have:

2
[b d} e - Gatts qe;+1+a4
(I-a)” " 1-a,

1+a

2
aa —
2 —d,e +
(I=a)”

ae,,e, +d4e4}=(e, —e,)+d,e, +

Yy e =y d
ae; =x,c+y,d.

—-a,

This product [E,ﬂ contains vector e—1 which can’t be generated

by vectors € and d . This means that h, has no reductive complement
with basis (4).

5.Let ¢ = e: + 0323, d= a be the basis (5). Multiply basic vectors
b, b by & and d . We have:

I:a,c]:[e, +a,e, +a,e,,e, +czeJ =e,—ce,—a,(e, —e,)—ae, +a,c,e; =xc+ y,d >

[a,d} [e1+a3e3+a4e4,e4J a3e3—xzc+y2d>

2 2

= = -  aa — l+a, —— — - — a,a - —

[b,c}:[ez_(]j; B 63+17a4 a3e4,ez+cse3}:c3(el—€4)+(lj %)z (e,—e,)—
4 4

alra) o 1ta, o

l-a -a i

4 4
== |— a4’ — l+a, ——| — a4a3 -
[b,d}: e-———e+——ae,e |=e+ —x4c+y4d
(17674) 17”4 (1 a4)

Vector equalities [a,q and [[;,EJ give immediately a,=0, ¢,=0. So,
we obtain the following pair &, = Span{e, +a,e,,e,}, m = Spanie,,e,}

which is not reductive because 7, "m#0 .

6. Let Eze—g, d= a be the basis (6). Multiply vectors a,b by ¢

and d . We have:

[a,c} [e +aye, +aAe4,e3J e3 +a463 =x c+yld )

[a,d} :[el +ae, + a4e4,e4} =—ae, =X,c+ ),d >

77 | a4a3 — l+a,
[b,c}{ez I—a.) 3+1

+ - —
a3e4,e3 (e, e4)+1 a;,e3 X,¢+ y,d.
a, a

4
The product [b,c} contains vector ¢ which can’t be generated by

vectors ¢ and 4 . This means that h, has no reductive complement
with basis (6).

Subalgebra &, = Span{a + a&j,ej} . This subalgebra has no
reductive complement at all. The corresponding evaluation procedure
is long as that for subalgebra h,, therefore it’s omitted.

Subalgebra £, = Span{e—l + aze:,e: + aza} .

Find reductive complements for h, if they exist.

1. Let E=a+czg+c4;4 , gze—2+d g+d 6—4 be the basis (1) for
a poss1ble reductlve complement m. Multiply basic vectors a= e +a, ez )
b=e,+a,e, by C and d . We have:

e T e I - = - .=
[a,c}—[e,+a2ez,el+c3el+c4e4]— c,e;, —a,e, +a,c,(e, —e,) +a,c,e, =x,c+ yd

[a,;’] :[91 +a,e,,e +d3;3+d4;4] =e,—d,e, +ayd,(e,—e,) + a,d,e, = X,c+ y,d >

[b,c} = [e3 +a,e,,6 +cye +c4e4] =e —c,e,+a,c,e; =x;c+ y,d >

[13,3] = [E; + aze-we-z + daa + d@] = _(;1 - Z) - d4‘2 - azgz + azdaa = x42 + yAJ :
These vector equalities produce the following system of equations:
acd+(1+ad)d,=—d,

accrad(c1)=—c,accrad(c1)=—ac,a,

adc+(1+ad)d=-ad,c=1+ac,-adc=ad~d,c=1-ad,.

27374 273
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This system of equations has the solution: ¢,=1+a., d, :—%jl,
a
a,c, +2 . :
d, =——"— a,#0. If a,=0 then the system of equations generates
L)

the contradiction ¢ =1 and ¢ ,=—1. S0, we obtain one new reductive pair:

h, = Spanie, + a,e,,e, +a,e,} >

a,c, +1— a,c;+2
2 G-

e}

m, = Spanie, +c,e + (1+a,c)e, e, -
a, a4,
2. Let c=¢+c,e,+ce,, d=e+d,e, be the basis (2) for a

possible reductive complement m. Multiply basic vectors a= gl +a,e,,
Eze_;-kazej of h, by C and d . We have:

[a,cj| = [el +a,e),e +cye, +c4e4} =ce, —a,e, +a,c,e, =x,c+yd>
[a,d} [el +a,e,,e,+d 64} e3 +a,(e, —e,)+a,d,e, =x,c+y,d »

[b,c} = [63 +a,e,,e +c,e, +c4€J =e,—¢ (e —e)—ce;—a,c,e; =x;c+ y,d

[1—),3} = [e: + aza,;} + d@j} = —d4€—3 + az;3 = x42 + yﬁ.

The system of equations has two solutions: a,=0, c,=0, d =0,
and a,20, ¢,=0, d4:0, c,=1. For the first case, the corresponding pair
h, = Spanie,.e;}

m= Span{e—1 +c42,e:} is not reductive because s, "m #0 . For
the second case, the corresponding pair 7, = Span{(zl + aza,e: + aze:} ,
E = a + 026_2. + C3% is reductive if a,=0.

3. Let c= a + ngz + C3g3 R d= 6—4 be the basis (3) for a possible
reductive complement m. Multiply basic vectors a= gl + azg ,
5:%+a2;4 of h, by C and d . We have:

[a,c] :[e, +a,e,,e +cye +czez] =c,e, —cie, —a,e, +a,cy(e —e)=xc+yd>
[a,d} = [el + azez,ed =a,e,=x,c+y,d >
[b,c:| =|:e3 +a,e,,e +cye, +cze3:| e, —c,(e —e,) +a,cie, —a,c,e, = x;c+ yyd >

[b d}z[e3+a264,ed e3—x4c+yd , where x,=0, y =0.

The last vector equality generates a contradiction 63 =0, so
subalgebra h, has no reductive complement with basis (3).

4. Let ¢= 6‘2 +C4€4 ,d= e e+d 6‘4 be the basis (4) for a p0551b1e
reductive complement m. Multiply basic vectors
E:%+azej of h, by C and d . We have:

a= e1 +a2e2 )

[ZI’EJ:[51+“2;2.7%+C4;4}:g+azc4g:x12+y13’

[5’3} [el+azgae—3+de4:| e3+a2(el e—4)+a2d4e_2:x25+y23»
[B’E]:[gﬁazagﬁqa=—(a—a)—c4;3—a25:x35+y33,
[6]= [0+ a0+ 2] =~ + 08 = 8+ 3,

The product [b C} contains vector €, that can’t be generated by ¢

and d , so subalgebra h , has no reductive complement with basis (4).

5.Let c=e,+cje,, d = 64 be the basis (5) for a p0531ble reductlve
complement m. Multiply basic vectors a =e, +a,e, , b= e +a, e4 of
h4 by ¢ and d . We have:

[5,5] = |:e—1 + azg’e—z + C3e—3:| = Z2 _Cze—s + az%(e—l —ej) = xlz + ylzl; ’
[a,d} :[el +a2ez,e4} =a,e, =x,c+y,d >
[b,c} = |:€3 +a,e,,e, +c3e3} =—(e —¢,)+a,c,e;,—a,e, =x,c+y,d >

[5,3} [es +aze4,e4J e3 —x4c+y4d

The product [b,c} contains vector a that can’t be generated by

vectors E, d,so subalgebra /1, has no reductive complement with basis (5).

6. Let E:Z, d —84 be the ba51s (6) for a p0551ble reductive

complement m. Multiply basic vectors a= e] +a,e,, b= e3 +a, e4 of
h, by C and d . We have:

[5—1,2} [e +a2e2,e3} e3 +c12(e1 e—4) = x12+y13 )

[a,d} = [el + a2e2,e4J =a,e,=x,c+y,d>

[5.5]=[a+aea]=aa=xi+nd.

[5,3} [e3 + azaan e3 = x4c+ y43

The system of vector equations has the solution a,=0. The
corresponding pair 5, = Spanie,,e;} , m=Spanie,,
because i, "m#0 .

e,} is not reductive

Subalgebra p, = Sp(m{e—l i e—bg i b@} .

Find reductive complements for h, if they exist.

Let ¢ = 2‘1 +cag3 + 042 , d=e,+d,e,+d,e, be the basis (1) for a
possible reductive complement m. Multiply basic vectors a=¢, +e,

and b=e, +b,e, of h by C and d . We have:
[;,,g}:[;ﬁg,;ﬁ%gma}:_03;3+c3g:6,it is the identity;
[l;,;}:[;3+b4a,gl+c3;3+04;}:é—c4;3+b4c3e‘3:x32+y33 , it is

the identity;
[Ba2:|:|:e—3+b4a7e—1+cza+c4a:|:;3_C4g+b4c3e—3:x32+y33 >
x3=0,y3=0;
[};’3}:[‘3—3+b4a’;z+dse—z+d4€—d:_(a_a)_dzza_bzoe—z+b4d3;1:x42+y43 '
The solution for the system of vector equalities is c,=1+b,c,,

d _ l+bg d _ 2+4bg

3T b 2 0 %4 b
4 4
pair  h =Span{e +e,,e, +h,e,}>

, b, #0. This solution produces the

but it is not reductive because
h50m={2+c3e—3+(1+b4c3);4}¢6' If b,=0 then the system of
equalities has no solution because the contradiction c¢=1, ¢,=-1
appears.

Let ¢ = eT + czg + c4a , 4 =e + e, bethebasis (2) for a possible
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reductive complement m. Multiply basic vectors a= eT +e, and
l;=e:+b4ej of h_by C and d . We have:

[&,E} = [21 + a,; + ng + 6424} = ng _ng = 6 - it is the identity;

[ZLEJ |:el + e4,e3 +d QJ e3 + e3 =0 - it is the identity;

[Z),Z’] =[a+b4555+52;z+042} =;3_Cz(g1_a)_04;3_b4025 =x32+y32 ;

[B,ﬂ = [Z3 + b@;,;3 + d@} = —d4;3 + b423 = xAE + yﬁ .

These vector equalities generate the following system of equations:

¢,(b,—c,)=0, (1—)d,=(1+c,)c,, d,(b,~d,)=0.

The system has four different solutions: ¢,=0, d,=0; ¢,=0, ¢,=1,
d=b;

czzb4, =1, dA:O; c2:b4, ¢,=0, d4:b4.

These solutions produce the following pairs: k = Spanie, +e,,e, +b,e,},
m, = Spanie, +c,e,,e;}5 hy = span{a + ej,ej +b4a} »

m=Spanie, +e,.e; +b,e,} h =Spanie, + e, +bye,}

m, = Span{gl + b@ - ;4’;3} ;
hy = Span{e, +e,,e;+be,} > m= Span{a+b4g,g3 +b424} .

Two pairs {h,, m } and {h,, m,} are reductive if b,#0, other pairs are
not reductive.

Let E:g]+c2e:+cze: s d= ej be the basis (3) for a possible
reductive complement m. Multiply basic vectors a=e¢ +e¢, and
B=;3+b4z4 of h, by C and d . We have:

[&,EJ:[e—l+ez—4,e71+czg+c3a}:czg—czgfcae—3+c3a:6 - it is the
identity;

[&,3} = [g] + a,a} =0 - it is the identity;

[I;,E} = [;3*'[74;4’;1*'025*'53;3} = Z—cz(;—a) —b4025+b4c3;3 = x3E+y33 >

[I;,d} [eﬁ-bq,e& e3—x4c+y4d

The product [7),3} generates a contradiction ¢, = (. So, subalgebra
h, has no reductive complement with basis (3).

let c=e,+ce,, d :g+d4a be the basis (4) for a possible
reductive complement .

_ Multiply basic vectors a= ei + e: and b= e, +b,e, of h, by C and
d . We have:

[Z:,Z-} |:€|+;4,5+(,4€4:| e, —e, =0 -itis the identity;

[&,3} [el +e,.e+d eJ —e, +e, =0 - itis the identity;
[Z’ZJ=[;3+b4a,;z+0424}=(a—a)—c4e—3—b45=x35+y33’
(50]-[6 b8 + 4] o i

The product [I;,E} contains vector E{ that can’t be generated

by vectors ¢,d . This means that subalgebra h, has no reductive

complement with basis (4).

5. Let ¢= g + c3e~3 ,d= ej be the basis (5) for a possible reductive
complement m. Multiply basic vectors a= ;1 + a and p = e: + b4e—4 of
h, by ¢ and d . We have:

[5,5}=[E+e7,ej+c£]=a—czg—a+c3%=6 - it is the identity;
[‘;’ﬂ = [g} + a’a} = () - itis the identity;
[b,c} = [93 +b,e,6, +c3e3} =—(e,—e,)—bye, +b,ce; =x;c+ yyd >

[l;,ﬂ [e;+beA,e4] e3—x4c+y4d

The product [IS,E} contains vector el that can’t be generated
by vectors E,E This means that subalgebra h, has no reductive
complement with basis (5).
c=e, d=e,
complement  m.

be the basis
Compare

(6) for a possible
m = Span{e,,e,}  and

6. Let
reductive

h = Span{e, +e,,e; + be,} . It’'s obvious that m M/, = {e, +b,e,} . So,
this pair s not reductive.

Subalgebra & = Span{gl,a}

Let E:a+c3g3+042 . d :;2+d3;3+d42 be the basis (1) for a
possible reductive complement m. Multiply basic vectors 5=e: and
b=e, of h. by € and d . We have:

[a,c} [el,el+cse3+c4e4J —c;e, =x,c+yd>

[&,EJ :[e—ls;z +d3%+d@} = e—z_d3a =x22+y23 ’

[b,c} [e4,e] +cye, +c4e4J Ge =xc+y,d>

[B,d} |:e4,62 +d e3 +d eJ e2 +d e3 —x4c+y4d

The system of the vector equations has the solution ¢,=0, d3:0, d =0.
The corresponding subspace m = Span{e, +c,e,,e,} is not a reductive
complement for h because h; Nm = {e,+c,e,} #0.

Let ¢ = e1 +c, e2 + c4e4 , d = e, +d,e, bethe basis (2) for apos51ble
reductive complement m. Multiply basic vectors a= e1 and b= e, ofh,
by C and d . We have:

[0¢]=[aa+am +oa]=an = vi+d-

[a.d]=[c e +de,|=-e =x,c+y,d>

[b,c} [e4,e] +ce, +c4e4} —c,e, =x,c+ y,d>

[5.3)=[e+da =2 =ni+nd
The system of the vector equalities has the solution ¢,=0, d,=0.
The corresponding subspace m = Span(z1 + CAeTUe?} is not a reductive

complement for h_ because. s ~m ={e, +c,e,} # 0

Let E:a+czg+c3g, d =e, be the basis (3) for a possible
reductive complement m. It is obvious that &, Nm={e,} #0, so

subalgebra i has no reductive complement with basis (3).
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Let ¢= 62 +C4€4 , d= e3 +d e4 be the bas1s (4) for a p0551ble
reductive complement m. Multiply basic vectors a= e1 and b= e4 of
h, by € and d . We have:

[0.¢]=[eer +cier = =+
[a.d]=[ae+d, | =& =x,i+ yad
[5:5])=[aa +ca |5 =xi+ nd>

[5.3)=[ae+d.2]=a=xi+nd

The system of the vector equalities has the solution ¢,=0, d,=0. We
obtain the new reductive pair j, = Span{e—‘l,a} , my = Spanie,, e} .

Let ¢= 5 +c3% , Z{ = 6—4 be the basis (5) for a possible reductive
complement m. It is obvious that &, Nm = {ej} #0 in this case. So,
subalgebra i has no reductive complement with basis (5).

Let c=¢,, d=e¢,
complement m. Consider this pair m = Span{e;,e,} , m = Span{e;,e,} . It's

be the basis (6) for a possible reductive
obvious that 4, "m0 So, subalgebra h  has no reductive complement
with basis (6).

Subalgebra #; = Span{g,a}

Let 22;14'033—34'045 , 3:g+d a+d a be the basis (1) for a
possible reductive complement m. Multiply basic vectors a=e, and
b= [ ofh7 by C and d . We have:

[&,3]=[Zz,22+d3?3+d4eﬂ=d3(21—a)+d4e—2=x22+y23,
[a.d]=[ene;+die,+die,]|=d(e—e) +dye, = x,c+ 1,d
[5.6]-[ee +ea+eq |- aa=xi+nd,
[5.d]=[ee;+de,+d,e, | =, +dye,=x,c+y,d -

The solution of the system of vector equations is ¢,=0, d,=0,
d,=0. This solution produces the following pair /, = Span{e,,e,},

m= Spam{gl + 046—4,5} that is not reductive because h,Nm= {;2} 20.

Let c=¢ +c,e, +cue,, d=e,+de, bethe basis (2) for a possible
reductive complement m. Multiply basic vectors a= e2 and b= e, ofh,

by ¢ and d . We have:
[0.¢)=[Ga+eeren]--a+es =i+ nd:
[a.d]=[ene+dis |- @ -+ dies = xic + 1d
[5.5)=[ena +eei e,y | =—ests = xi+ vid
[5.d])-[ee+de]=e=xi+pd-

This system of vector equations has no solution because of the
contradiction ¢,=1 from the product [E,EJ) and ¢,=—1 (from the

product [5,3 ). This means that subalgebra h, has no reductive
complement with basis (2).

Let Z:Zl+czg+c3ej . d :a be the basis (3) for a possible
reductive complement m. Subalgebra k. has the basis ¢=e¢,, b=e,.
It's obvious that /. ~m ={e,} # 0 so subalgebra h, has no reductive

complement with basis (3).

For the bases (4), (5), and (6) we have the similar cases as for the
basis (3). Subalgebra h_ has no reductive complements at all.

Subalgebra /4, = Span{%,a}

Let ¢ = e] +c3e‘3 +cAe4 ,d= e2 +d e3 +d e4 be the basis (1) for a
p0551b1e reductive complement m. Multiply basic vectors a=e, and

b=e, ofh,by ¢ and d . We have:
[a.c]=[ene+ee +ee |=e—ce=xc+yd
[a.d]=[ene,+de;+die;|=~(e—e) ~dye, = x,c + y,d
[b.c]=[ene+ee+ee,|=ce =xc+pd,

[l;,dJ |:€4,€2 +d,e, e +d eJ —e, e, +d ez —x40+y4d

The system of vector equations has no solution because the
contradiction ¢,=1, c,=—1 appears. This means that subalgebra h, has
no reductive complement with basis (1).

Let c=¢ +Cye, +¢,e,, d =e; +d,e, bethebasis (2) for a possible
reductive complement m. It is obvious that the corresponding pair
by = Span{ej,ej} , m= Span{;1 + czg + qa,e: + d4;4} is not reductive
because s, "m = {;3+d4;4} £0 .

For the bases (3), (4), (5), and (6) we have the similar situations

like for the bases (1) and (2). The subalgebra h, has no reductive
complements with all these bases.

The next theorem describes all different reductive pairs that were
found.

Theorem 2: Each reductive pair {h,m} with 2-dimensional
subalgebra h and 2-dimensional complement m of Lie algebra g is equal

to one and only one pair from the next list of them:
L. h = Spanie, +e,,e, +b,e;} » m, = Spanie, +c,e,,e,} » b,20, ¢, #1;

= Span{e, + ¢;e;,¢, + c;e,} , where

—be; —by=0;

2. hlepan{a+a,a+b3;3+b4a}, m,

. . . 2
csib ' and ¢, is any real solution of the equation ¢;

3. h=Spanie +e,e, +be +he), m, = Spanie +c,e,,e, +c,e,} » Where

¢, is any real solution of the equation b, —b,e,—1=0

2
a,a +a, —
443 4
—a,e,},a,#1,

- - 1
4. h, = Spanie, + a,e, + a,e,.e, —m% + 4
Ty Ty

m, = Span{eT + a} where a,#0, a,#0.

——  a
—epez+1—
4 4

a,a’ ;+1+a
(I-a) ° 1-

5. hz=Span{g,+a3gz+a4a,e~2 a194}> a,#1, a#0,

a4¢—1,
— — -1—— 2 1+
a, a Gt a, et a,

(1-ay) 2(1-a,

364}'

- 3
m, = Span{e, + ae, +—2
, = Spanie, 2(1_%)33 )

2
a,a,;, — l4+a, —
3 4
—48 e +—tase,}> a7

6. h, :Span{a+a3;3+a4a,e—2
(I-a,) l-a,
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— 4 -1——
m, = Span{e, + ——e,,e, +

3 3

a,—1

e} » 4,70.

7. h, = Spanie, + a,e,,e, + a,e,} ,

ac,+1— ac,+2—
23 273

—e,——22—e¢,},a,70.
2 2

m = Span{g1 + cseﬁ3 +(1+ayc, )a,g -

8. h4 = Span{a+azg,g+aza} , my = Span{g] +€7,%} s az;tO.
9. hy = Span{a+a,;3+b4g} , m, = Span{e, +c4e—4,g3} » b,20.
10. h, = Spanie, +e,.¢; +b,e,}» m, = Spanie, +b,e, - e,,e;} » b0,

11. hy = Spanie,.e;}» m = Span{e,.e;}

Remark: It is unknown yet which reductive pairs from Theorem

2 are equivalent with respect to the inner automorphisms of the given
Lie algebra.
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