Classifying Musculocutaneous Nerve Variations Depending on the Origin

Lina Leng, Huaying Liu, Tiantao Wang, Li Liu and Daowen Si*

School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, Hebei Province, PR China

*Corresponding author: Daowen Si, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, Hebei Province, PR China; Tel: +86 0315 3725241; E-mail: sidaowen@126.com

Keywords: Musculocutaneous nerve; Anatomical variation; Classification; Peripheral nerve repair; Anesthesia

Abstract

Variations of the musculocutaneous nerve (MC) are not common. Much has been reported on the relationship in between the MC and the coracobrachialis muscle as well as the connections between the MC and median nerve. However, the classification of MC variations according to the origin of MC is seldom seen. We observed and analysed a total of 160 upper limbs from 80 adult cadavers to record anatomical variations in the MC. These variations were classified into five groups depending on the origin of MC: Group 1: The normal type. Classic description found in textbooks (142 arms, 88.75%); Group 2: Multi-branch type. Two or three branches originated from the lateral cord of the brachial plexus, dominating the corresponding muscles. (3 arms, 1.87%); Group 3: Mixed type. The lateral cord of the brachial plexus and median nerve sent branches to constitute the MC respectively. (1 arm, 0.63%); Group 4: Absence type. The MC originated from the median nerve directly. (5 arms, 3.12%); Group 5: Combining type. The MC originated from the lateral cord of the brachial plexus, then gave branches to the corresponding muscles, and finally joined the median nerve (9 arms, 5.63%). The new classification proposed is thought to make easy our clinical practice and to avoid errors caused by anthropometric differences.

Introduction

The brachial plexus innervates muscles, joints, and skin of the upper limb by means of supracavicular and infracavicular branches. The latter come from the lateral, medial, and posterior cords of the brachial plexus. The lateral cord gives rise to the lateral root of the median nerve, the lateral pectoral nerve, and the musculocutaneous nerve (MC). The musculocutaneous nerve is the continuation of the lateral cord of the brachial plexus. It pierces the coracobrachialis muscle and descends laterally between the biceps and brachialis muscles and supplies all the muscles in the anterior (flexor) compartment of the arm. Variations from the normal pattern were observed in detail.

Results

Through the observation of the 160 cases of specimens, we classified the variations into five main groups (Table 1).

Group 1, The Normal type: The musculocutaneous nerve is the continuation of the lateral cord of the brachial plexus. It pierces the coracobrachialis muscle and descends laterally between the biceps and brachialis muscles and supplies all the muscles in the anterior (flexor) compartment of the arm. Variations from the normal pattern were seen in 142 (88.75%) of the whole sample of 160 cadavers (Figure 1).
Figure 1: The normal type (Group 1). MC is the continuation of the lateral cord of the brachial plexus (L). It pierces the coracobrachialis muscle and descends laterally between the biceps and brachialis muscles and supplies all the muscles in the anterior (flexor) compartment of the arm. (L: Lateral Cord of the Brachial Plexus; M: Medial Cord of the Brachial Plexus; MN: Median Nerve; MC: Musculocutaneous Nerve; UN: Ulnar Nerve; CN: Medial Antebrachial Cutaneous Nerve; AA: Axillary Artery).

Group 2, The Multi-branch type: Two or three branches which were separated from the lateral cord of the brachial plexus formed the MC and dominated the corresponding muscles. This group occurred in 3 (1.87%) of the 160 dissected limbs (Figure 2).

Figure 2: Multi-branch type (Group 2). Two branches (CB, the common trunk between BB and B) originated from the lateral cord of the brachial plexus. (L: Lateral Cord of the Brachial Plexus; CB: Branch to Coracobrachialis; BB: Branch to Biceps Brachii; B: Branch to Brachialis; MN: Median Nerve; MC: Musculocutaneous Nerve; LCN: Lateral Cutaneous Nerve; UN: Ulnar Nerve; CN: Medial Antebrachial Cutaneous Nerve; AA: Axillary Artery).

Group 3, The Mixed type: The lateral cord of the brachial plexus and median nerve sent branches to constitute MC respectively. In other words, the MC originated from the brachial plexus and median nerve. It occurred in 1 (0.63%) of the 160 dissected limbs (Figure 3).

Figure 3: Mixed type (Group 3). The MC originated from the brachial plexus and median nerve. In this case, CB originated from the brachial plexus, BB and B originated from median nerve. (CB: Branch to Coracobrachialis; BB: Branch to Biceps Brachii; B: Branch to Brachialis; MN: Median Nerve; LCN: Lateral Cutaneous Nerve; UN: Ulnar Nerve; CN: Medial Antebrachial Cutaneous Nerve; AA: Axillary Artery).

Group 4, The Absence type: the MC originated from the median nerve directly, which means that it is a branch of the median nerve. We called it as absence of MC. It occurred in 5 (3.12%) of the 160 dissected limbs (Figure 4).

Figure 4: Absence type (Group 4). The MC originated from the median nerve directly, which means that it is a branch of the median nerve. In the above two cases, BB, B and LCN originated from the median nerve. (BB: Branch to Biceps Brachii; B: Branch to Brachialis; LCN: Lateral Cutaneous Nerve; MN: Median Nerve).

Group 5, The Combining type: The MC originated from the lateral cord of the brachial plexus, then gave branches to the corresponding muscles, and finally joined the median nerve. It occurred in 9 (5.63%) of the 160 dissected limbs (Figure 5).
Many ways to classify variations in the MC have been described. Kosugi et al. [3] classified the MC variations by the number and direction of the connecting branches into five groups. Group 1: pattern without communication. Group 2: A communicating branch from the MC to the median nerve. And it was subdivided into three subgroups. Subgroup A: the origin of the branch was before the musculocutaneous nerve entered the coracobrachialis. Subgroup B: the communicating branch passed through the muscle. Subgroup C: the communicating branch originated after the nerve exited the muscle. Group 3: a branch running form the median nerve to the MC. Group 4: Both the above communications (Groups 2 and 4) were present in the same limb. Group 5: other patterns. Clinically, they expounded that the palmar nerves of the upper limbs were originally formed of one common trunk and three main nerves branched off as differentiation occurred. In addition, from a clinical point of view, such taxonomy is of great importance during flap dissections, posttraumatic evaluations of the arm or peripheral nerve repair [33]. Nevertheless, the differences of the origin of MC may not be paid enough attention to.

Yang et al. [24] classified the distribution of motor fascicles to biceps and brachialis. The innervation pattern of the biceps was divided into three types. Type I: a primary motor branch bifurcates into two secondary nerve branches, each separately innervating the long and short heads of the biceps. Type II: two primary motor branches from the main musculocutaneous nerve trunk. The proximal branch innervates the short head of the biceps and the distal branch innervates the long head of the biceps. Type III: primary motor branch from the main musculocutaneous nerve trunk that bifurcates into two secondary branches to individually innervate the two heads of the biceps, plus an additional primary branch, distal to the former that innervates the distal part of the biceps at its common belly. And the innervation pattern of the brachial muscle was divided into two types. Type I: Single primary branch innervating the brachialis from the main musculocutaneous nerve trunk. Type II: two primary branches that innervate the brachialis from the main musculocutaneous nerve trunk. On clinical, they documented the innervation of the biceps and brachialis in detail, which enable ready location to their motor nerves. And the point where the motor branch arose from the main MC trunk has also been recorded. The method is meaningful and easy to apply in surgical contents during the management of complex problems of the nervous system whereas, they placed more emphasis on the relation to the biceps and the brachialis muscle. Besides, Yang et al. [24] used cadaveric upper limb specimens disarticulated at the shoulder. That the brachial plexus was sectioned at the level of the cords might disturb the measurements.

Choi et al. [20] described three patterns of connections between the MC and the median nerve. Pattern 1: Fusion of MC and median nerves. Pattern 2a: Single connecting branch between the musculocutaneous and median nerves. Pattern 2b: Two or three branches from the MC joining to form one anastomotic branch to the median nerve. Pattern 3: Two connecting branches between the median and musculocutaneous nerve were present. Clinically, they presented a unified classification including their own results and those of others, and analyzed the related morphological features of their variation and distribution by side and gender. This musculocutaneous-median nerve connection has been considered clinically important for the correct interpretation of clinical neurophysiology; understanding the anatomy of anterior repairs for trauma to the shoulder, and in the understanding of median and musculocutaneous nerve dysfunction [30,34] Flatow et al. and Sonck et al.). But variations of MC not only exist between the MC and MN, there are still some other more complex variations. This method of classification may not be comprehensive.
In addition, a simple three-point classification, which was based on the position of the origin of the anastomotic branch in relation to the coracobrachialis muscle, but omitting many morphological details, has been proposed [4]. And some classifications focus on the absence of the MC has also been suggested [8,25-27]. Further classification systems have been used making it difficult to compare studies [25,28-32,35].

These varied approaches to classification made us review previous studies and reclassify the results together with our data. Their disadvantages also led us to be more focused and cautious. To avoid these, the following classification is put forward. In this article, five groups of classification methods based on the origin of the MC were illustrated.

Group 1: Classic description found in text books (88.75%, Figure 1).
Group 2: Two or three branches originated from the lateral cord of the brachial plexus, dominating the corresponding muscles (1.87%, Figure 2).
Group 3: The lateral cord of the brachial plexus and median nerve sent branches to constitute MC respectively. In other words, the MC originated from the median nerve directly, which means that it is a branch of the median nerve (3.12%, Figure 4).
Group 4: The MC originated from the lateral cord of the brachial plexus, then gave branches to the corresponding muscles, and finally joined the median nerve (5.63%, Figure 5).

<table>
<thead>
<tr>
<th>Different Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kosugi et al. [3]</td>
<td>By the number and direction of the connecting branches of the MC</td>
</tr>
<tr>
<td>Yang et al. [24]</td>
<td>By the innervation of the biceps and brachialis</td>
</tr>
<tr>
<td>Choi et al. [20]</td>
<td>By the connections between the MC and the median nerve</td>
</tr>
<tr>
<td>Venieratos and Anagnostopoulou [4]</td>
<td>By the position of the origin of the anastomotic branch in relation to the coracobrachialis muscle</td>
</tr>
<tr>
<td>Buch-Hansen et al. [25]</td>
<td>By the absence of the MC</td>
</tr>
</tbody>
</table>

The variations of MC are clinically important for surgeons, orthopaedists, and anaesthetists performing pain management therapies or regional anaesthesia to the upper limb. On the one hand, during flap dissections, unexpected nerve damages could arise especially by surgeons who are familiar with routine course of peripheral nerves and their relationship with neighbouring structures but inexperienced in variations (Ibrahim et al.). Any injury to musculocutaneous nerve in a patient with this kind of variation presents as double nerve injury, which makes the diagnosis more problematic. On the other hand, although anterior approach for internal fixation of humeral fractures seems to be safer than the posterior approach because of high risk of radial nerve damage in posterior approach, again the surgeon should be familiar with the neurovascular variations in arm not to cause an iatrogenic damage to these structures during their retraction for exposure of fracture line. Additionally, blocking techniques can be used on MC because the control of flexion spasticity at the elbow is often important in the treatment in certain types of cerebral or spinal cord damage [36]. Thus, a more precise knowledge of the MC than that found in classical anatomical texts is of great need. Surgeons should be aware of these nerve variations. Our methods are meaningful and easy to apply in surgical or clinical contents during the management of complex problems of the nervous system. And the variations of MC should be given much attention during clinical investigation and management of disorders of the upper limb.

Acknowledgments

We thank Dr. Zhang Xuyin for providing some suggestions of the bodies that were used in our study, and Mr. Jia Xusheng of the dissecting room for help during preparation of material.

References