Cocaine Antagonists; Studies on Cocaine Self-Administration

Takato Hiranita*

Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), USA

*Corresponding author: Takato Hiranita, Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road Jefferson, AR 72079-9501, USA, E-mail: takato.hiranita@fda.hhs.gov

Received date: August 25, 2015; Accepted date: August 28, 2015; Published date: September 03, 2015

Copyright: © 2015 Hiranita T. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Editorial

A series of recent studies by Dr. Jonathan Katz demonstrated preclinical efficacy of several compounds functioning as a cocaine antagonist using a drug self-administration procedure in rats. For example, 1) the atypical dopamine uptake inhibitors (Figure 1) JHW 007, AHN 2-005 [1,2], and RTI-371 [3, 2) the σ receptor (σR) antagonist (Figure 2) rimcazole and its analogues SH 3-24 and SH 3-28 [4], all were able to shift dose-effect curves of cocaine self-administration down in a dose-dependent fashion when pre-treated.

Their dose-dependent insurmountable antagonism of cocaine self-administration was relatively specific because comparable responding maintained by presentations of food pellets was insensitive to active doses of these compounds that decreased maximal responding maintained by cocaine injection [1-4]. The pattern of antagonism was similar to effects of the μ-opioid agonist methadone on heroin self-administration [5]. On the other hand, none of them maintained self-administration responding above vehicle levels when substituted cocaine [1,3,4], d-methamphetamine, heroin or ketamine [5]. However, the pattern of substitution was different from that of methadone since methadone can substitute for heroin or d-methamphetamine [5]. An excellent review article recently discussed potential mechanisms underlying their action as a cocaine antagonist [6]. There are several relatively viable mechanisms underlying their cocaine-antagonist effect.
However, pretreatment with a σ₁R antagonist dose-dependently shifted down dose-effect curves of cocaine self-administration when combined with a standard dopamine uptake inhibitor [4]. Thus it appears that DAT/σ₁R dual inhibition can result in an insurmountable antagonism of reinforcing effects of cocaine. Interestingly all above-referenced compounds function as a cocaine antagonist except RTI-371, which also have considerable affinity to the DAT as well as σ₁Rs (Table 1) relative to the standard dopamine uptake inhibitors except RTI-336.

<table>
<thead>
<tr>
<th>Compound</th>
<th>DAT Kᵢ [nM] (3H)WIN 35,428</th>
<th>σ₁ Kᵢ [nM] (3H)(+)-Pentazocine</th>
<th>σ₂ Kᵢ [nM] (3H)DTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocaine</td>
<td>76.6³ (72.6 - 80.5)</td>
<td>5.190⁹ (3,800 – 7,060)</td>
<td>19,300⁹ (16,000 - 23,300)</td>
</tr>
<tr>
<td>AHN 2-005</td>
<td>8.82⁶ (8.13–9.56)</td>
<td>15.5⁹ (13.2–18.3)</td>
<td>28.5⁹ (23.6–34.4)</td>
</tr>
<tr>
<td>JHW 007</td>
<td>12.0⁴ (11.2–12.8)</td>
<td>2.40⁶ (2.07–2.80)</td>
<td>12.0⁹ (10.0–14.4)</td>
</tr>
<tr>
<td>Methylphenidate</td>
<td>65.8⁴ (61.2 – 70.8)</td>
<td>6,780⁹ (4,520 – 10,200)</td>
<td>37,400⁹ (21,200 – 66,100)</td>
</tr>
<tr>
<td>Nomifensine</td>
<td>21.0⁴ (18.9 – 23.3)</td>
<td>8,240⁹ (5,360 – 12,700)</td>
<td>65,200⁹ (54,300 – 78,300)</td>
</tr>
<tr>
<td>RTI-336</td>
<td>10.8⁴ (8.27–14.0)</td>
<td>5,180⁹ (3060–8780)</td>
<td>365⁹ (21.4–6220)</td>
</tr>
<tr>
<td>RTI-371</td>
<td>7.81⁴ (6.93–8.79)</td>
<td>15,800⁹ (10,100–24,900)</td>
<td>353⁹ (187–665)</td>
</tr>
<tr>
<td>Rimcazole</td>
<td>96.6⁴ (77.3 – 121)</td>
<td>883⁷ (661 – 1,180)</td>
<td>238⁹ (171 – 329)</td>
</tr>
<tr>
<td>SH 3-24</td>
<td>12.2⁴ (10.8 – 13.8)</td>
<td>22.9⁷ (18.5 – 28.2)</td>
<td>20.0⁷ (15.7 – 25.6)</td>
</tr>
<tr>
<td>SH 3-28</td>
<td>188⁴ (166 – 213)</td>
<td>19.0⁴ (15.3 – 23.6)</td>
<td>47.2⁴ (40.4 – 55.2)</td>
</tr>
<tr>
<td>WIN 35,428</td>
<td>5.24¹,⁶ (4.92 – 5.57)</td>
<td>5,700⁹ (4,060 – 8,020)</td>
<td>4,160⁹ (3,120 – 5,550)</td>
</tr>
</tbody>
</table>

³Garcés-Ramírez et al. (2011) [12]
⁴Hiranita et al. (2014a) [5]
⁵Kopajtic et al. (2010) [13]
⁶Hiranita et al. (2011) [4]
⁷Hiranita et al. (2014b) [3]
†The value for affinity of WIN 35,428 at the DAT is Kd values obtained from homologous competition studies. The values reported for all compounds were determined using identical assay conditions.

Table 1: Inhibition by various compounds of specific binding to the DAT and σ₁, or σ₂ receptors. The values listed are Ki values (nM) with SEM or 95% confidence limits in parentheses.

However, the atypical dopamine uptake inhibitor RTI-371 and the standard dopamine uptake inhibitor RTI-336 both commonly have high affinity to the DAT as well as σ₂Rs, and low affinity to σ₁Rs (Table 1) and their effects on cocaine self-administration were quite different since pretreatment with RTI-336 potentiated cocaine self-administration [3]. Therefore, these findings suggest that σ₁Rs are responsible for the DAT/σ₁R dual inhibition of cocaine self-administration. However, due to quite low affinity of RTI-371 to σ₁Rs, DAT/σ₁R dual inhibition appears to be sufficient but is not essential for induction of a cocaine-antagonist action.

Differences in Kinetic Variables

Studies on in vivo binding to DAT demonstrated slower apparent rates of occupancy with the DAT by several cocaine antagonists AHN 2-005, JHW 007, and RTI-371 relative to the standard dopamine uptake inhibitors cocaine, GBR 12909 or RTI-336 [3,14-16]. Thus the slower association rates with DAT might result in a cocaine-antagonist action. However, a study introduced several atypical dopamine uptake inhibitors with fast association rates with DAT in mice [17]. Therefore, it appears that the slower association rates with DAT are not essential for induction of a cocaine-antagonist action, either.
Conformational Differences in DAT Binding

Studies evaluating accessibility of the sulphydryl-reactive reagent [2-(trimethylammonium)ethyl]-methanethiosulfonate to an inserted cysteine (1159C), which is accessible when the extracellular DAT gate is open but inaccessible when it is closed, indicated that cocaine and its analogue WIN 35,428 bind an open DAT conformation to synapse clefts (outward-facing conformation), whereas several atypical dopamine uptake inhibitors (AHN 2-005, and JHW 007) bind a closed conformation (inward-facing conformation) [5,18]. Thus binding to the inward-facing conformation appeared to be important for a cocaine-antagonist action. However, as with cocaine, it was shown that the cocaine antagonist RTI-371 and the standard dopamine uptake inhibitor RTI-336 both bind the outward-facing conformation of the DAT. Further, as with JHW 007, the standard dopamine uptake inhibitor GBR 12909 was found to bind the inward-facing conformation [5]. Therefore the conformational differences in DAT are again not prerequisite for induction of a cocaine-antagonist action, either.

In summary, none of these hypotheses uniformly explained the cocaine-antagonist action. Thus it is likely that a cocaine-antagonist action can be generated from several pathways and there might be no uniform pathway to induce a cocaine-antagonist action. Nonetheless, future studies on a cocaine-antagonist action should result in development of medications for cocaine abuse. In addition, such studies would also contribute to identification of medications for attention-deficit hyperactivity disorder (ADHD) with lower potential for abuse since the typical dopamine uptake inhibitor methylphenidate (Ritalin®) is currently prescribed for ADHD patients. Actually the cocaine antagonist AHN 2-005 is currently under development as a potential medication for ADHD [19].

Acknowledgment

The present work was supported by the Division of Neurotoxicology/NCTR/U.S. FDA. The information in the present article is not a formal dissemination of information by the FDA and does not represent agency position or policy.

References: