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Abstract
In this note we define a notion of Courant pair as a Courant algebra over the Lie algebra of linear derivations 

on an associative algebra. We study formal deformations of Courant pairs by constructing a cohomology bicomplex 
with coefficients in a module from the cochain complexes defining Hochschild cohomology and Leibniz cohomology.

Keywords: Courant algebra; Leibniz algebra; Lie algebra; Cohomology 
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Introduction
The aim of this article is to define a notion of Courant pair as a 

Courant algebra over the Lie algebra Der (A) of linear derivations on an 
associative algebra A and describe a one parameter formal deformation 
theory of Courant pairs. We construct a cohomology bicomplex using 
the Hochschild cohomology for associative algebras and cohomology 
of Leibniz algebras respectively.

The notion of Courant algebras was defined by H. Bursztyn and 
coauthors [1] in the context of reduction of Courant algebroids and 
generalized complex structures. It is used to interpret the moment 
map in symplectic geometry as an object which controls an extended 
part of the action of Courant algebras on Courant algebroids. By 
definition, a Courant algebra over a Lie algebra g is a Leibniz algebra 
L equipped with a Leibniz algebra homomorphism to the Lie algebra 
g. One special case of this type of algebras is an exact Courant algebra
where the Leibniz algebra homomorphism is a surjective map onto g
and the kernel of the map is an abelian Lie algebra [1,2]. In fact, any
Leibniz algebra L can be viewed as an exact Courant algebra over the
associated Lie algebra LLie obtained by taking the quotient linear space
L/Lann, where Lann is also called the Leibniz kernel of L is the module
generated by elements of the form [x,x] for x∈L. The notion of Leibniz
algebras were introduced by Bloh [3] under the name D-algebras and it 
is rediscovered by J.-L. Loday in connection with cyclic homology and
Hochschild homology of matrix algebras [4,5]. The (co) homology with 
coefficients in a representation associated to Leibniz algebras has been
developed in ref. [6]. Any Lie algebra is also a Leibniz algebra, as in the
presence of skew symmetry of the Lie bracket the Jacobi identity for the 
bracket is equivalent to the Leibniz identity. It is also important to note
that a Courant algebras can be viewed as a model to get Leibniz algebras 
in the form of hemisemidirect products (as introduced in ref. [7]) by
starting with a Lie algebra g and a g-modules. One of the Lie algebras
mostly encountered in geometry or in mathematical physics is the Lie
algebra χ(M) of smooth vector fields on a smooth manifold M. This Lie 
algebra (which is also a Leibniz algebra) can also be described as the
space of linear derivations on the associative algebra C∞(M) of smooth
functions on the given manifold. Here, we are interested in finding
Leibniz algebras as a canonical extension of the Lie algebra Der(A) of
linear derivations on an arbitrary associative algebra A both over the
same coefficient ring . This leads us to consider a notion of Courant 
pair denoted simply by (A,L). The deformation of algebraic and analytic 
structures are an important aspects if one studies their properties. 
They characterize the local behaviour in a small neighbourhood in the 
variety of a given type of objects.

A Courant pair (A,L) consists of an associative algebra A and a 

Leibniz algebra L over the same coefficient field , equipped with a 
Leibniz algebra homomorphism µ: L→g, where g denotes the Lie 
algebra of -linear derivations on A under the commutator bracket. 
If we replace the Leibniz algebra in the definition by a Lie algebra then 
what we obtain is a Leibniz pair (A,L) introduced by Flato et al. [8]. The 
notion of Leibniz pair was defined as a generalization of the Poisson 
algebras and a formal deformation theory is studied in ref. [8]. Later 
on it is found as a special case of a homotopy algebra introduced by 
Kajiura and Stashef [9]. They referred this as an open closed homotopy 
algebra (OCHA). A Lie algebroid or its algebraic counterpart, called 
a Lie-Rinehart algebra [10] is also a special type of Leibniz pair by 
considering associative algebras also to be a commutative algebra.

A Courant pair appears naturally when one consider a Lie algebroid 
[11] or more generally a Leibniz algebroid [12] (or Loday algebroid,
Courant algebroid [13,14]) over a smooth base manifold. In all these
cases the underline Lie algebra of the Courant algebras are considered
to be the Lie algebra of vector fields or space of linear derivations of the 
associative algebra of functions on the manifold. More examples can
be found if one allow Leibniz algebras in place of Lie algebra L in the
definition of a Leibniz pairs (A,L). Here, we consider this more general
case of Leibniz pair in the name of Courant pair which will form a
category containing the category of Leibniz pairs as a full subcategory.
The cohomology space is different if one consider a Leibniz pair as an
object in the larger category of Courant pairs.

The paper is organized as follows: In section 2, we recall the 
Hochschild cohomology of an associative algebra with coefficient in a 
bimodule, a Leibniz algebra cohomology complex with coefficient in 
a representation and the notion of Courant algebras with examples. 
Section 3 contains definition and various natural examples of the 
notion of Courant pairs. We discuss about representations or modules 
over a Courant pair as a suitable semi-direct products in the category 
of associative and Leibniz algebras respectively with corresponding 
modules. In section 4, we present the construction of a deformation 
bicomplex for a Courant pair (A,L) from Hochschild cohomology 
complex of the associative algebra A and Leibniz cohomology complex 
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for the Leibniz algebra L. In section 5 we define one parameter formal 
deformation of a Courant pair, define the notion of equivalence of 
deformations, and study rigidity. In the last section we discuss about 
the obstruction cochains that arises in extending deformation of finite 
order with given infinitesimal. We mentioned examples to show that 
one can find many more deformations of a Leibniz pair when it is 
deformed as a Courant pair by using the new bicomplex cohomology.

One of the main results in any deformation theory is to prove that 
obstruction cochains are cocycles. In our context, this consists of three 
parts; one arising from deformations of the considered associative 
algebra, one from the deformation of the Leibniz algebra and the other 
from deformation of the Leibniz homomorphism of a Courant pair. In 
ref. [15], Gerstenhaber showed that the obstruction cochains arising 
from deformations of associative algebras are cocycles and in ref. [16] 
Balavoine showed the obstruction cochains arising from deformations 
of Leibniz algebras are cocycles. The other part is done by a direct 
computation and given in below Appendix.

Throughout we will consider vector spaces over a field  of 
characteristics zero and all maps are -linear unless otherwise it is 
specified.

Preliminaries
Associative algebras and its cohomology

Definition 2.1: Let A be an associative algebra over , a bimodule 
M over A or, an A-bimodule is a -module equipped with two actions 
(left and right) of A.

A× M→M and M×A→M. 

such that (am)a′=a(ma′) for a, a′∈A and m∈M.

The actions of A and  on M are compatible, that is (λa)m = λ(am) 
= a(λm) for λ∈, a∈A and m∈M. When A has the identity 1 we always 
assume that 1m = m1 = m for m ∈ M.

 Given a bimodule M over A, the Hochschild cochain complex of 
A with coefficients in M is defined as follows. Set Cn(A,M) = Hom(An, 
M); n ≥ 0 where An = A⊗… ⊗A(n−copies). Let δH:Cn(A,M)→Cn+1(A,M) 
be the -linear map given by:

1 2 1 1 2 1 1 1
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Then 2 = 0Hδ  and the complex (C*(A,M),δH) is called the 
Hochschild complex of A with coefficients in the A-bimodule M. When 
M= A , where the actions are given by algebra operation in A we denote 
the complex C*(A,A) by C*(A). The graded space C*(A) is a differential 
graded Lie algebra (or DGLA in short) [15].

Definition 2.2: A graded Lie algebra L is a graded module L = {Li}
i∈ together with a linear map of degree zero, [−,−]:L ⊗ L→ L, x⊗y  
[x, y] satisfying:

(i)[x, y] = − (−1)xy[y, x](graded skewsymmetry)

(ii) (−1)xz[ x,[y,z]]+ (−1)yx[ y,[z,x]]+ (−1)zy[ z,[x,y]]= 0 (graded 
Jacobi identity)	

 for x, y, z ∈ L, where x denotes the degree of x.

A differential graded Lie algebra is a graded Lie algebra equipped 
with a differential d satisfying:

d[x, y]=[dx,y]+(−1) x[x, dy].

Remark 2.3: The shifted Hochschild complex C*(A,A) = C*+1(A,A) 
is a DGLA where the graded Lie bracket is also called the Gerstenhaber 
bracket.

Let φ be a Hochschild p-cochain and θ be a Hochschild q-cochain. 
The Gerstenhaber bracket of φ and  is the (p+q1)-cochain defined by:

[φ, θ] =φ °θ − (−1)(p−1)(q−1)
 θ ° φ,

Where,
1

( 1)
1 1 1 1 1 1

=0
( , , ) = ( 1) ( , , , ( , , ), , , ).
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i q
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i
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Also, note that if α0 is the associative multiplication, then δH can be 
written in terms of the Gerstenhaber bracket and the multiplication α0:

| |
0= ( 1) [ , ].H

ϕδ ϕ α ϕ−

Leibniz algebra and its cohomology

Now, we recall the definition of a Leibniz algebra and describe its 
cohomology.

Definition 2.4: A Leibniz algebra (left Leibniz algebra) is a 
-module L, equipped with a bracket operation, which is -bilinear 
and satisfies the Leibniz identity,

[x,[y,z]]=[[x,y],z]+[y,[x,z]] for x,y,z∈L.

In the presence of antisymmetry of the bracket operation, the 
Leibniz identity is equivalent to the Jacobi identity, hence any Lie 
algebra is a Leibniz algebra.

Remark 2.5: For a given Leibniz algebra L as defined above, the left 
adjoint operation [x, −] is a derivation on L for any x∈L. Analogously, 
Leibniz algebra (right Leibniz algebra) can be defined by requiring that 
the right adjoint map[−, x] is a derivation for any x∈L. In that case, the 
Leibniz identity appeared in the above definition would be of the form:

[x,[y,z]]=[[x,y],z]−[y,[x,z]] for x,y,z∈L.

Sometime, in the literature right Leibniz algebra has been 
considered. All our Leibniz algebras in the present discussion will be 
left Leibniz algebras unless otherwise stated.

Example 2.6: Let (g[−,−]) be a Lie algebra and V be a g-module 
with the action (x,v)x.v. Take L=g⊕V with the bracket given by:

[(x,v), (y, w)]L = ([x, y], x.w) for (x,v),(y,w)∈L.

Then (L,[−,−]L) is a Leibniz algebra. This bracket is called 
hemisemidirect product in ref. [7].

This shows that one can associate a Leibniz algebra L to a smooth 
manifold M. If g is the Lie algebra of Vector fields χ(M) over a smooth 
manifold M, then C ∞(M) is a χ(M)-module with the left action 
χ(M)×C ∞(M)→C∞(M):(X,f)X(f). It follows that L = χ(M)⊕ C∞(M) is 
a Leibniz algebra with the bracket given by:

[(X, f), (Y, g)]=([X,Y],X(f)).

There are various other sources to generate more examples of 
Leibniz algebras which may not be a Lie algebra.

Example 2.7: Let A be an associative -algebra equipped with 
a -linear map D : A→ A, such that D2=D. Define a bilinear map 
[−,−]:A⊗ A→A by:

[x, y]≔(Dx)y-y(Dx) for all x,y∈A.

Then (A,[−,−]) is a left Leibniz algebra. In general, A with the above 
bracket is not a Lie algebra unless D=id.
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Example 2.8: Let (L, d) be a differential Lie algebra with the Lie 
bracket [−,−]. Then L is a Leibniz algebra with the bracket operation [x, 
y]d≔ [dx, y]. The new bracket on L is called the derived bracket [17].

One can find more examples appeared in refs. [4-6,18,19].

Definition 2.9: Suppose L and L are Leibniz algebras, a linear map 
φ: L→ L′ is called a homomorphism of Leibniz algebras if it preserves 
the Leibniz bracket, i.e.

φ([x, y]L)=[φ(x),φ(y)]L′ for all x, y ∈ L.

Leibniz algebras with Leibniz algebra homomorphisms form a 
category of Leibniz algebras, which contains the category of Lie algebras 
as a full subcategory.

Let L be a Leibniz algebra and M be a representation of L. By 
definition [6,19], M is a -module equipped with two actions (left and 
right) of L,

[−,−]:L×M→ M and [−,−]:M ×L → M.

such that for m∈M and x, y ∈L following hold true,

[m, [x, y]]= [[m,x],y]+[x,m,y]]

[x, [m, y]]=  [[x, m],y]+[m,[x,y]]

[x, [y,m]] =  [[x, y],m]+[y, [x,m]].

Define CLn(L;M)≔Hom(L⊗n,M), n ≥ 0. Let:

δn:CLn(L;M)→CLn+1(L;M)

be a -homomorphism defined by:

(δ nψ)(X1, X2, …, Xn+1)
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Then (CL*(L;M),δ) is a cochain complex, whose cohomology is 
denoted by HL*(L;M), is called the cohomology of the Leibniz algebra 
L with coefficients in the representation M [6,19]. In particular, L is a 
representation of itself with the obvious actions given by the Leibniz 
algebra bracket of L.

Courant algebras over a Lie algebra

Now, we recall the definition of Courant algebras from ref. [1]. Let 
g be a Lie algebra over .

Definition 2.10: A Courant algebra over a Lie algebra g is a Leibniz 
algebra L equipped with a homomorphism of Leibniz algebras π : L→
g. We will simply denote it as π : L→ g is a Courant algebra.

Example 2.11: A Courant algebroid over a smooth manifold M
gives an example of a Courant algebra over the Lie algebra of vector 
fields g= Γ(TM) by taking a as the Leibniz algebra structure on the space 
of sections of the underlying vector bundle of the Courant algebroid. 
From ref. [14] it follows that any Courant algebra is actually an example 
of a 2-term L∞ algebra [20,21].

Definition 2.12: An exact Courant algebra over a Lie algebra g is 
a Courant algebra π : L→ g for which π is a surjective linear map and 
h=ker(π) is abelian, i.e. [h1,h2]=0 for all h1,h2∈ h.

For an exact Courant algebra π : L→ g, there are two canonical 
actions of g on h: [g,h]=[a,h] and [h,g]=[h,a] for any a such that π(a) 

= g. Thus the -module h equipped with these two actions denoted by 
the same bracket notation [−,−], is a representation of g (viewed as a 
Leibniz algebra).

The next example will give a natural exact Courant algebra 
associated with any representation of the Lie algebra g.

Example 2.13: As in Example 2.6, g be a Lie algebra acting on the 
vector space V. Then L=g⊕V becomes a Courant algebra over g with 
the Leibniz algebra homomorphism given by projection on g and the 
Leibniz bracket on L given by:

[(g1, h1),(g2,h2)]=([g1, g2],g1.h2),

Where g.h denotes the action of the Lie algebra g on V.

In ref. [2] it is shown that exact Courant algebras over a Lie 
algebra g can be characterised via Leibniz 2-cocycles, and the 
automorphism group of a given exact Courant algebra is in a one-to-
one correspondence with first Leibniz cohomology space of g. Exact 
Courant algebras also appeared in the general study of Leibniz algebra 
extension and a discussion of some unified product for Leibniz algebras 
is in refs. [22,23].

Example 2.14: If we consider a Leibniz representation h of the Lie 
algebra g, then L=gh becomes a Courant algebra over g via the bracket:

[(g1, h1),(g2,h2)]=([g1, g2], [g1,h2]+[h1,g2]),

where the actions (left and right) of g on h are denoted by the same 
bracket [−,−].

Courant Pairs
In this section we introduce the notion of a Courant pair and discuss 

about various natural examples. We define representation or modules 
of a Courant pair as a suitable semi-direct product in the category 
of associative and Leibniz algebras respectively with corresponding 
modules.

Let A be an associative algebra over  and by g, we denote the Lie 
algebra (Der(A) [−,−]c), of linear derivations of A with commutator 
bracket [−,−]c. Now we define a Courant pair as a Courant algebra over 
the Lie algebra g which is canonically associated to a given associative 
algebra A.

Definition 3.1: A Courant pair (A, L) consists of an associative 
algebra A and a Leibniz algebra L over the same coefficient ring , and 
equipped with a Leibniz algebra homomorphism µ : L→ g.

Remark 3.2: It follows from the definition that a Courant pair (A, 
L) can be expressed as a triplet of the involved algebra operations and
homomorphism (α, µ, λ). Here, α: A × A → A, denotes the associative
multiplication map on A, λ: L × L → L denotes the Leibniz algebra
bracket in L and the homomorphism µ defines an action µ: L × A → A
given by µ(x, a) = µ(x)(a) for all x∈L and a∈A.

Every Leibniz pair defined in ref. [8] is an example of a Courant pair. 
In fact, if (A, L) is a Leibniz pair then by definition, A is an associative 
algebra and L is a Lie algebra over some common coefficient ring , 
connected by a Lie algebra morphism µ: L→ g. And since the category 
of Lie algebras is a subcategory of the Leibniz algebra category, it follows 
that a Leibniz pair is also a Courant pair. In particular,

1. A Poisson algebra A gives a Courant pair (A, A) with the Leibniz
algebra homomorphism µ=ad;

2. Any Lie algebroid (E,[−,−],ρ) gives a Courant pair (C∞(M),ΓE)



Citation: Mandal A, Mishra SK (2017) Cohomology and Deformations of Courant Pairs. J Generalized Lie Theory Appl 11: 281. doi: 10.4172/1736-
4337.1000281

Page 4 of 8

Volume 11 • Issue 3 • 1000281J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

with the Leibniz algebra homomorphism µ= ρ;

3. Any Lie-Rinehart algebra (A, L) is also a Courant pair satisfying 
the additional conditions that A as a commutative algebra, L as an 
A-module and µ : L→ g as an A-module morphism such that [x,fy] = 
f[x,y]+µ(x)(f)y; for x,y∈L and f∈A.

Example 3.3: Let A be an associative commutative algebra and a 
module over the Lie algebra g=(Der(A), [−,−]c), where g acts on A via 
derivations. As in Example (2.4), if we consider the Leibniz algebra L = 
Der(A)⊕ A, then (A,Der(A)⊕ A) is a Courant pair, where the Leibniz 
algebra morphism µ is given by the projection map from Der(A)⊕ A 
onto Der(A).

Remark 3.4: In particular, for A to be the space of smooth functions 
on a smooth manifold this type of examples of Courant pair appears as 
twisted Dirac structure of order zero in ref. [24].

In the sequel, one can find Courant pairs associated to an algebra by 
considering modules and flat connections on the module of the algebra.

Let A be an associative algebra and V be an unitary A-module. 
A derivation law, or Koszul connection on V is an A-linear mapping 
∇: Der(A)→HomR(V, V) (the image of X∈ Der(A) is denoted by ∇X) 
such that ∇X(f.v)=f.∇X(v)+X(f).v for X∈Der(A),f∈A, and v∈V. Further, 
the connection ∇ is called flat connection if ∇[X,Y]=[∇X,∇Y]c. Now, 
(Der(A),[−,−]c) is a Lie algebra. If ∇ is a flat connection on V, then V is 
a Der(A)-module. Therefore, hemisemidirect product of Der(A) and V 
defines a Leibniz bracket on the A-module Der(A)⊕ V as:

[(X, v),(Y,w)]=([X,Y],∇X(w)),

Where v,w∈V. Therefore, we have a Courant pair (A,Der(A)⊕V) 
with Leibniz algebra morphism µ is given by the projection map onto 
Der(A).

Now, for a Lie algebroid (E, [−,−],) over M and a flat E-connection 
[11] on a Vector bundle F→M, there is an associated Courant pair 
(A, L) where A is algebra of smooth functions on M and L is the 
hemisemidirect product Leibniz algebra obtained from the space of 
sections of the Lie algebroid and the vector bundle respectively.

Example 3.5: Let (E, [−,−],ρ) be a Lie algebroid over a manifold M. 
An E-connection on a vector bundle F→M is a -linear map:

∇:ΓE→Hom(ΓF,ΓF)

satisfying following properties:

∇(f.X)(α)=f,∇X(α),

∇X(f.α)=f.∇X(α)+ρ(X)(f).α,

for X∈ ΓE, f∈C(M), and α∈ΓF. Here, ∇(X) is denoted by ∇X. An 
E-connection is called flat if ∇[X, Y]=[∇X, ∇Y]c. A flat E-connection on a 
vector bundle F→M is also called a representation of E on F→M [11]. 
Now, ΓE is a Lie algebra and ΓF is a ΓE-module (it follows from flatness 
of ∇). Therefore, by taking hemisemidirect product of ΓE and ΓF, we 
have a Leibniz algebra bracket on ΓE⊕ΓF given by 

[(X, α), (Y, β)]=([X, Y], ∇X(β))

for X, Y∈ΓE and α,β∈ΓF. Consider A=C∞(M), and L=ΓE⊕ΓF, then (A, 
L) is a Courant pair with the Leibniz algebra morphism:

µ:ΓE⊕ΓF→χ(M)=Der(A)

where µ=ρ°π1, and π1 is the projection map onto ΓE.

Example 3.6: Let R be a commutative unital ring and A 

be a commutative unital R-algebra. Recall from [12], a Leibniz 
pseudoalgebra (ε,[−,−],ρ) over (R,A) consists of an A-module ε, an 
A-module homomorphism ρ:ε→DerR(A) and a Leibniz R-algebra 
structure [−,−], on ε such that:

[X, fY]=f[X,Y]+ρ(X)(f)Y,

for all f∈A and X,Y∈ε. Every Leibniz pseudoalgebra (ε,a,[−,−]) over 
(R,A) gives a Courant pair (A, ε).

In particular, any Leibniz algebroid E over a smooth manifold M 
is a Leibniz pseudoalgebra over (,C∞(M)). So, it gives a Courant pair 
(C∞(M),Γ(E)).

Example 3.7: Suppose  is a associative and commutative algebra. 
Let 1

Ω  be the -module of Kähler differentials [25], with the universal 
derivation:

.: 1
0  Ω→d

Consider the -module 1)( Ω⊕ADer  equipped with the Leibniz 
bracket given by:

[(X,α),(Y,β)]=([X,Y],LX−iYd0α).

Then ))(,( 1
Ω⊕ADerA  is a Courant pair. This shows that a Courant 

pair is also appeared in the context of Courant-Dorfman algebras 
introduced in ref. [26].

Remark 3.8: A Courant-Dorfman algebra [26] has an associated 
Leibniz pseudoalgebra (or Leibniz-Rinehart algebra) and an associated 
Courant pair structure.

Example 3.9: Any Courant algebroid (C, [−,−],ρ,<,−>) (algebraic 
counterpart defined in ref. [13]) is a Leibniz pseudoalgebra (C, [−,−],ρ). 
So, any Courant algebroid has a underlying Courant pair.

Modules of courant pairs

Suppose (A,L) is a Courant pair. We define modules of (A,L) as 
a suitable Courant algebra by considering semi-direct products of 
associative and Leibniz algebras with respective modules of these 
algebras. Suppose that M is an (A,A)-bimodule and P an L-module. We 
denote by A+M and L+P, respectively, the associative and Leibniz semi-
direct products. Now we define modules over a Courant pair, using the 
following general principle: if (A,L) is a Courant algebra, then an (A,L)-
module is a pair (M, P) such that (A+M,L+P) is also a Courant pair 
and contains (A,L) as a subobject and (M, P) as an abelian ideal in an 
appropriate sense.

Definition 3.10: A module over a Courant pair (A,L) means 
a pair (M,P), where P is a Leibniz algebra module over L, M is an 
(A, A)-bimodule, and there is a Leibniz algebra homomorphism 

)()( :~ MADerPL +→+ µ  extending the Leibniz algebra morphism 
µ:L→DerA in the Courant pair (A,L) in the following sense:

1. ( ,0)( ,0) = ( )( )x a x aµ µ  for any x∈L,a∈A.

2. ( ,0)(0, ), (0, )( ,0)x m a Mµ µ α ∈   for any x∈L,a∈A,α∈P,m∈M.

3. 0=))(0,(0,~ mαµ  for any α∈P,m∈M.

Remark 3.11: Every Courant pair (A,L) is a module over itself. This 
fact will be useful in the later section while considering deformations. 
We may also canonically define morphisms of Courant pairs and hence 
morphisms of modules of a given Courant pair (A,L).

Note 3.12: It is important to notice here that for each α∈P the map 
A→M defined by sending a to (0, )( ,0)aµ α  is a derivation of A into M. 
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This yields a map φ:P→Der(A,M), which we will use in the double 
complex defined later.

Deformation Complex of a Courant pair
In the present section, we introduce the deformation complex of a 

Courant pair. We shall observe subsequently that the second and the 
third cohomologies associated to this cohomology complex encode 
all the information about deformations. Suppose (M,P) is a module 
of the Courant pair (A,L). So M is an A-bimodule and P is a Leibniz-
L-module. We need to consider the Hochschild complex C*(A,M) and 
Leibniz algebra complex C*(L, P) in the sequel. Here we will denote the 
tensor modules ⊗p A simply by A p.

Let Cp(A,M)=Hom(Ap,M), the p-th Hochschild cochain group of A 
with coefficients in M. Note that C0(A,M)=M. Now Cp=Cp(A,M) is an 
L-module (symmetric Leibniz algebra module) by the actions given as:

1 2 1 2 1
=1

[ , ]( , ,..., ) = [ , ( , ,..., )] ( ,...,[ , ],..., )
p

p p i p
i

x f a a a x f a a a f a x a a− ∑
and [f, x]=−[x,f] for f∈C p, a1,…,ap∈A and x∈L.

Here, [ , ] = [ , ] = ( )( )x m m x x mµ−   for a∈A, m∈M, and x∈L. One 
can check that,

[[x,y],f]=[x,[y,f]]−[y,[x,f]],

for x,y∈L and f∈C p. It follows that the Lie algebra Der(A,M) of linear 
derivation from A to M is a Leibniz algebra submodule of C1(A,M) 
and the mapping φ:P→Der(A,M) defined in the previous section in 
(3.12) is a Leibniz algebra module homomorphism. In other words, 
[x,f]∈Der(A,M) for x∈L and f∈Der(A,M). Also,

φ[x,p]=[x,φ(p)] (using the Leibniz algebra structure on the semi−
direct product space L+P).

Recall the Hochschild coboundary δH:CP→CP+1 is given by:
1 1

1
1 2 1 1 1 1 1 1

=1

( )( ,..., )

= ( ,..., ) ( 1) ( ,..., . ,..., ) ( 1) ( ,..., ) .

H p
p

i p
p i i p p p

i

f a a

a f a a f a a a a f a a a

δ +

+
+ + + ++ − + −∑

Now it follows that δH is a Leibniz algebra module homomorphism 
by using the definitions of the map δH, and L-module action on CP.

Proposition 4.1: Let (M,P) be a module over a Courant pair (A,L). 
Then δH:CP→CP+1 is a homomorphism of Leibniz algebra modules over 
L, i.e. δH([x,f])=[x, δHf] for x∈L and f∈CP.

Let(M, P) be a module of the Courant pair (A,L). We now define 
a double complex for (A,L) with coefficients in the module (M, P) as 
follows:

Set Cp,q(A,L)=Hom(Lq,Cp(A,M))≅Hom(Ap⊗Lq,M) for all 
(p,q)∈× with p>0, q≥0, where C0,q(A,L)=Hom(Lq,P). For p>0, we 
consider the vertical coboundary map Cp,q(A,L)→Cp+1,q(A,L) is the 
Hochschild coboundary map δH. For p=0 and for all q, action of P 
on A be derivations induces the map δv:C

0,q(A,L)→C1,q(A,L). For p>0, 
vertical maps are Hochschild coboundaries, and Der(A,M) the kernel of 
δH:C1(A,M)→C2(A,M). Therefore, the composition of two vertical maps 
is zero for all p and q. 

....>>>)@,(>>>)@,(>>>)@,(@@....@>>>))@,(,(>>>))@,(,(>>>)@,(@@....@>>>))@,(,(>>>))@,(,(>>>)@,(@@..@@.....@... ....@.....21212222
LLLvvvLLLHHHLLLHHH PLHomPLHomPAAHomAAAAAAAMACLHomMACLHomMAAAHomAAAAAAAMACLHomMACLHomMAAAHomAAAAAAA δδδδδδδδδδδδδδδδδδ ⊗⊗⊗ 

In the horizontal direction, we have for all p and q the Leibniz 
algebra coboundary δL:C

p,q(A,L)→Cp,q+1(A,L). Since all the vertical 
coboundaries are Leibniz module homomorphisms, it follows that they 
commute with all the horizontal ones. Therefore, we can define a total 
cochain complex as follows: For n≥0.

, 1

=
( , ) = ( , )  : ( , ) ( , ),n p q n n

tot tot tot tot
p q n

C A L C A L and C A L C A Lδ +

+

→⊕

whose restriction to Cp,q(A,L) by definition is δH+(−1)pδL. The resulting 
cohomology of the total complex we define to be the cohomology of the 
given Courant pair (A,L) with coefficients in the module (M, P), and we 
denoted this cohomology as HL*(A,L;M,P).

In particular for (M, P)= (A,L), with the obvious actions the 
cohomology is denoted by HL*(A,L; A,L). We will recall this cohomology 
in the next section for the deformation of Courant pairs.

Remark 4.2: The cohomology spaces are different if one consider 
a Leibniz pair as an object in the larger category of Courant pairs. 
Recall from ref. [8], * ( , ; , )LPH A L M P  is the cohomology space 
for Leibniz pair (A,L) with coefficients in the module (M, P). 
Consider the Leibniz pair (,χ(n)) with structure map µ µ as zero 
map and (,) as a module over this Leibniz pair. It follows that 

* *( , ( ); , ) ( ( ), )n n
LPH Hχ χ≅     

.

On the other hand if we take (,χ(n)) as a Courant pair and (,) 
as a module over it, the HL*(,χ(n);,)≅HL*(χ(n).).

We know that the Leibniz algebra cohomology space HL*(χ(n).) 
and the Lie algebra cohomology space H*(χ(n),) are different as 
there are new generators for the dual Leibniz algebra structure over the 
Leibniz cohomology space [27,28].

This shows that, while considering a Leibniz pair (,χ(n)) as an 
object in the category of Courant pairs, we have a somewhat different 
cohomology space.

Deformation of Courant Pairs
In this section, we study formal deformation of Courant pairs. All 

the basic notions of deformation theory of algebraic structures are 
originally due to M. Gerstenhaber [15,29-31]. Here we briefly describe 
the analogous concepts related to deformation of a Courant pair. This 
can be viewed as a generalization of the deformation of Leibniz pairs [8] 
to a larger category by allowing more deformations.

Let (A,L) be a Courant pair, then using remark (3.2), it can 
be viewed as a triplet (α,µ,λ). Recall that a formal 1-parameter 
family of deformations of an associative algebra A is an associative 
algebra product αt on the [[t]]-module A[[t]]=A⊗[[t]], where 

2
0

= , ( ; )i
t i ii

t C A Aα α α
≥

∈∑  with α0 being the algebra product on A. 
Analogously, a formal 1-parameter family of deformations of a Leibniz 
algebra L is a Leibniz bracket λt on the [[t]]-module L[[t]]= L⊗[[t]], 
where 2

0
= , ( ; )i

t i ii
t CL L Lλ λ λ

≥
∈∑  with λ0 denotes the original Leibniz 

bracket on L.

Definition 5.1: A deformation of a Courant pair (A,L) whose 
structure maps are given by the triplet (α,µ,λ) is defined as a tuple of the 
form (αt,µt,λt), where αt is a deformation of α, i.e., an associative [[t]]-
bilinear multiplication A[[t]]×A[[t]]→A[[t]] such that 

0
= ,i

t ii
tα α

≥∑  

where α0=α, λt is a deformation of Leibniz algebra bracket λ, and 

t iµ µ
≥∑ , where µ0=µ. Also following compatibility conditions 

among αt,µt and λt are satisfied:

µt(x,αt(a,b))=αt(a,µt(x,a),b)+ αt(µt(x,a),b) 	                                      (1)

µt(λt(x,y)a)=µt(x,µt(y,a))− µt(y,µt(x,a)).		                   (2)

By above definition we have also the following equations, using the 
fact that αt and λt are deformations of the associative multiplication α 
on A and the Leibniz bracket λ on L, respectively:

αt(a,αt(b,c))=αt(αt(a,b),c),			                                    (3)
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λt(x,λt(y,z))=λt(λt(x,y),z)+λt(y,λt(x,z)).		                   (4)

Now expanding both sides of the above equations and collecting 
coefficients of tn, we get the following equations: For a,b,cA and x,y,z∈L:

= =
( , ( , )) = ( , ( , )) ( ( , ), );i j i j i j

i j n i j n
x a b a x b x a bµ α α µ α µ

+ +

+∑ ∑               (5)

= =
( ( , ), ) = ( , ( , )) ( , ( , ));i j i j i j

i j n i j n
x y a x y a y x aµ λ µ µ µ µ

+ +

−∑ ∑            (6)

= =
( , ( , )) = ( ( , ), ) ( , ( , ));i j i j i j

i j n i j n
x y z x y z y x zλ λ λ λ λ λ

+ +

+∑ ∑                 (7)

= =
( , ( , )) = ( ( , ), ).i j i j

i j n i j n
a b c a b cα α α α

+ +
∑ ∑  		               (8)

Remark 5.2: For n=0, eqns. (1) and (2) imply that µ is a Leibniz 
algebra morphism from L into Der(A), and (4), (3) implies the usual 
Leibniz identity for λ0 and the associativity of the multiplication α0. 
Now, the map δL:Hom(Lq,Cp(A,A))→Hom(Lq+1,Cp(A,A)) is defined as:

1 1
1 1 1 1 1 1

=1

ˆ( ,..., ) = ( 1) ( 1) [ , ( ,.., ,.., )] [ ( ,..., ), ]
q

q i
L q i i q q q

i
f x x x f x x x f x x xδ + +

+ + +− − +∑
1

1 1 1 1
1 < 1

ˆ( 1) ( 1) ( ,.., ,.., ,[ , ], ,.., ).q i
i j i j j q

i j q
f x x x x x x x+

− + +
≤ ≤ +

+ − −∑
So, for n=1, eqns. (8) and (7) imply that δH(α1)=0,δL(λ1)=0 and eqns. 

(5) and (6) imply that δHµ1+δLα1=0 and δvλ1−δLµ1=0. Thus, for n=1, 
eqns. (5)-(8) give that δtot(α1,µ1,λ1)=0. So (α1,µ1,λ1) is a 2-cocycle in the 
double complex described in the previous section.

Definition 5.3: The 2-cochain (α1,µ1,λ1) is called the infinitesimal of 
the deformation (αt,µt,λt). More generally, if (αi,µi,λi)=0 for 1≤i≤(n−1), 
and (αn,µn,λn) is a non zero cochain in 2

totC , then (αn,µn,λn) is called the 
n-infinitesimal of the deformation (αt,µt,λt).

Proposition 5.4: The infinitesimal (α1,µ1,λ1) of the deformation 
(α1,µ1,λ1) is a 2-cocycle in 2

totC . More generally, the n-infinitesimal is 
a 2-cocycle.

Let (αt,µt,λt) and ( , , )t t tα µ λ 
 be two deformations of Courant pair.

Definition 5.5: We say that (αt,µt,λt) is equivalent to ( , , )t t tα µ λ  , 
where 0

= i
t ii

tα α
≥∑   and 0 =α α , etc., if there exists [[t]]-linear maps 

1
= : [[ ]] [[ ]]i

t A ii
id t A t A tϕ

≥
Φ + →∑  (with each φi a linear map A→A 

extended to be [[t]]-linear map) and 
1

= : [[ ]] [[ ]]i
t L ii

id t L t L tψ
≥

Ψ + →∑  
such that:

1( , ) = ( , ),t t t t ta b a bα α−Φ Φ Φ
			                  (9)

1( , ) = ( , ),t t t t tx a x aµ µ−Φ Ψ Φ
			                 (10)

1( , ) = ( , ).t t t t tx y x yλ λ−Ψ Ψ Ψ 			                  (11)

Definition 5.6: Any deformation of Courant pair equivalent to the 
deformation (α,µ,λ) is said to be a trivial deformation.

Theorem 5.7: The cohomology class of the infinitesimal of the 
deformation (αt,µt,λt) of Courant pair is determined by the equivalence 
class of (αt,µt,λt).

Proof. Let (φt,Ψt): ( , , ) ( , , )t t t t t tα µ λ α µ λ→ 

   be an equivalence 
of these two deformations. Then expanding and comparing 
coefficients of t in the eqns. (9)-(11), we get 1 1 1= ,Lλ λ δ ψ−  

1 1 1= ,Lλ λ δ ψ−  and .=~
1111 φδψδµµ Lv −−  So, it follows that 

1 1 1 1 1 1 1 1( , ) = ( , , ) ( , , )totδ ϕ ψ α µ λ α µ λ− 

 

.

Definition 5.8: A Courant pair is said to be rigid if every 
deformation of the Courant pair is trivial.

Theorem 5.9: A non trivial deformation of a Courant pair is 
equivalent to a deformation whose n-infinitesimal is not a coboundary 
for some n≥1.

Proof. Let (αt,µt,λt) be a deformation of a Courant pair (α,µ,λ) with 
n-infinitesimal (αn,µn,λn), for some n≥1. Assume that there exists a 
1-cochain 1( , ) totCϕ ψ ∈  whose coboundary is the n-infinitesimal, i.e.,

δtot(ψ)=(αn,µn,λn).

This gives:

αn=δHφ,   λn=δLψ and µn=−δLφ +δv ψ. 		                (12)

Take,

φt=idA+φtn and Ψt=idL+ψtn.

We define a deformation ( , , )t t tα µ λ   of the Courant pair ((α,µ,λ)), 
where:

1 1= ,  ( ( ), ( )) = ( , ),  = .t t t t t t t t t t t t tx a x aα α µ µ λ λ− −Φ Φ Ψ Φ Φ Ψ Ψ

 
    

So, we have following equations:

( , ) = ( , ),t t t t ta b a bα αΦ Φ Φ
			                 (13)

( , ) = ( , ),t t t t tx a x aµ µΨ Φ Φ 			                 (14)

( , ) = ( , ).t t t t tx y x yλ λΨ Ψ Ψ 			                  (15)

By using above eqns. (12)-(15), we have:

= = 0,  = = 0,  = = 0.n n H n n L n n L vα α δ ϕ λ λ δ ψ µ µ δ ϕ δ ψ− − + −

 

and,

= = = 0    1 1.i i i for i nα λ µ ≤ ≤ −

 

So, the given deformation (αt,µt,λt) is equivalent to a deformation 

( , , )t t tα µ λ 
 for which ( , , ) = 0,  1 .i i i for i nα µ λ ≤ ≤

   Hence, we can 
repeat the argument to kill off any infinitesimal that is a coboundary. So 
the process must stop if the deformation is non trivial.

Corollary 5.10: If HL2(A,L;A,L)=0, then the Courant pair (α,µ,λ) 
is rigid.

Obstruction Cocycles
In this section, we discuss about the problem of realising a 2-cocycle 

in 2
totC  as the infinitesimal of a deformation of the Courant pair. To 

this end first we define an obstruction cochain and then proceed by 
detecting any obstructions to extend a given deformation modulo tn to 
a deformation modulo tn+1, n≥1. Let N be a positive integer.

Definition 6.1: A deformation of Courant pair of order N is a 

(αt,µt,λt) such that =0
= N i

t ii
tα α∑  and i

i
N

it tλλ ∑ 0=
=  are deformations 

modulo tn+1 of A and L respectively, that is αt and λt satisfy (8), (7) 

respectively for 0≤i≤N, and =0
= N i

t ii
tµ µ∑  satisfies eqns. (5) and (6).

If there exists a 2-cochain 2
1 1 1( , , )N N N totCα µ λ+ + + ∈ , such that the 

triple ( , , )t t tα µ λ   with 1
1= N

t t N tµ µ µ +
++ , 1

1= N
t t N tα α α +

++ , and 
1

1= N
t t N tλ λ λ +

++  is a deformation of Courant pair of order (N+1), 
then we say that (αt,µt,λt) extends to a deformation of Courant pair of 
order (N+1).

Definition 6.2: Let (αt,µt,λt) be a deformation of Courant pair of 
order N. Consider the cochains (Θ(A),Θ1,Θ2,Θ(L)), where
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= 1; , >0
( )( , , ) = ( , ( , )) ( ( , ), );i j i j

i j N i j
A a b c a b c a b cα α α α

+ +

Θ − +∑
1

= 1; , >0
( , , ) = ( , ( , )) ( , ( , )) ( ( , ), );i j j i j i

i j N i j
x a b x a b a x b x a bµ α α µ α µ

+ +

Θ − −∑
2

= 1; , >0
( , , ) = ( ( , ), ) ( , ( , )) ( , ( , ));i j i j i j

i j N i j
x y a x y a x y a y x aµ λ µ µ µ µ

+ +

Θ − + −∑

= 1; , >0
( )( , , ) = ( , ( , )) ( , ( , )) ( ( , ), ).i j i j i j

i j N i j
L x y z x y z y x z x y zλ λ λ λ λ λ

+ +

Θ + − −∑

 The 3-cochain 1 2 3( , ; ) = ( ( ),  , , ( ))t t t totA L Cα µ λΘ Θ Θ Θ Θ ∈  is called 
the obstruction cochain for extending the deformation of Courant pair 
(αt,µt,λt) of order N to a deformation of order N+1.

Theorem 6.3: The obstruction cochain Θ(αt,µt,λt)= (Θ(A),Θ1,Θ2,Θ(L)) 
of a deformation of order N is a 3-cocycle in 3

totC .

Proof. Θ(A) is the obstruction cochain for extending the N-th order 
deformation of the associative algebra A to a deformation of order N+1, 
So, it is a 3-cocycle in the Hochschild complex for associative algebra, i.e.

δHΘ (A)=0. 					                  (16)

Now, Θ(L) is the obstruction cochain for extending the N-th order 
deformation of the Leibniz algebra L to a deformation of order N+1. So, 
it is a 3-cocycle in the deformation complex for a Leibniz algebra, i.e.

δL Θ(L)=0.					                  (17)

We have the following equations 

Further,

δHΘ1−δLΘ(A)=0;	                                                                                  (18)

δHΘ2+δLΘ
1=0;	                                                                                   (19)

δvΘ(L)−δLΘ
2=0.	                                                                                  (20)

 Using eqns. (16)-(20), we have δtot(Θ(αt,µt,λt))=0.

Theorem 6.4: Let (αt,µt,λt) be a deformation of order N. Then 
(αt,µt,λt) extends to a deformation of order N+1 if and only if the 
cohomology class of the 3-cocycle Θ(αt,µt,λt) vanishes.

Proof. Suppose that a deformation (αt,µt,λt) of order N extends to 
a deformation of order N+1. Then eqns. (5)-(8) hold for n=N+1. As 
a result, we get Θ(L)=δLµN+1, Θ(A)=δHαN+1, Θ1=δLαN+1+δHµN+1 and 
Θ2=δvλN+1−δLµN+1. In other words, the obstruction cochain Θ(αt,µt,λt)=d
tot(αN+1,µN+1,λN+1). So its cohomology class vanishes.

Conversely, let Θ(αt,µt,λt) be a coboundary. Suppose Θ(αt,µt,λt)=
dtot(αN+1,µN+1,λN+1) for some 2-cochain 2

1 1 1( , , )N N N totCα µ λ+ + + ∈ . Set:
1 1 1

1 1 1( , , ) = ( , , ).N N N
t t t t N t N t Nt t tα µ λ α α µ µ λ λ+ + +

+ + ++ + +

 

Then ( , , )t t tα µ λ   satisfies eqns. (5)-(8) for 0≤n≤N+1. So ( , , )t t tα µ λ 
 

is an extension of (αt,µt,λt) of order N+1.

Corollary 6.5: If HL3(A,L;A,L)=0, then every 2-cocycle in 2
totC  is 

the infinitesimal of some deformation.

Example 6.6: Let L be the real three-dimensional Hisenberg Lie 
algebra with basis {e1, e2, e3}. Then the Lie bracket [−,−]:L⊗L→L is given 
by [e1,e3]=−[e3,e1]=e2, and all other products of basis elements to be zero.

Define a linear map µ:L→χ(3), where 1 2 3
1

( ) = , ( ) = 0, ( ) = 0e e e
x

µ µ µ∂
∂

. 

Then by considering the algebra of smooth functions C∞(3)=A, the Lie 
algebra L equipped with the Lie algebra homomorphism µ we have a 
Leibniz pair (A,L)=(C∞(3),L).

Now by considering the Lie algebra L as a Leibniz algebra and the 
map µ as morphism of Leibniz algebras we may treat (C∞(3),L) as a 
Courant pair. It follows that we have extra cohomology classes in the 
second cohomology space HL2(A,L;A,L) of the Courant pair (A,L) in 
comparison to the second cohomology space 2 ( , ; , )LPH A L A L  of the 
Leibniz pair (A,L).

Recall that HL2(L;L) denotes the second cohomology space of L 
with coefficients in L (considering L as Leibniz algebra) and HL2(L;L) 
denotes the second cohomology space of L with coefficients in L 
(considering L as Lie algebra). Then the set {[φ1],[φ2],[φ3]}, where,

φ1(e1,e1)=e2;φ2(e3,e3)=e2;φ3(e3,e1)=e2; for all other 1≤i,j≤3,φ1(ei,ej)=
φ2(ei,ej)=φ3(ei,ej)=0,

is a subset of a basis of HL2(L;L), but none of these representing 
cocycle contained in the Lie algebra cohomology space H2(L;L). This 
computation is considered in the context of versal deformations of 
Leibniz algebras in.

Applying the coboundary map δv in the deformation complex 
of Courant pair we have δv(φ1)= δv(φ2)= δv(φ3)=0. Consequently 
{(0,0,[φ1]),(0,0,[φ2]),(0,0,[φ3])} generates elements in the cohomology 
space HL2(A,L;A,L). But none of these elements is in the Leibniz pair 
cohomology space 2 ( , ; , )LPH A L A L .

Define (αt,µt,λt)i=(α,µ,λ)+t(0,0,φi) for i=1,2,3. Then we can check 
that these are infinitesimal deformations of (C∞(3),L)which are also 
non-equivalent.

Moreover, these deformations are obtained only when we consider 
the Leibniz pair (C∞(3),L) as a Courant pair.

Conclusions
The deformation of a given structure characterize the local 

behaviour in the variety of a given type of objects. In order to study the 
deformation one needs a suitable notion of module or representation 
and then construct a deformation complex. In this work we develop a 
formal deformation of Courant pairs which includes the classical cases 
of Lie algebras and Leibniz pairs. Moreover, There are plenty of examples 
of the Courant pairs including the Leibniz algebras and Leibniz 
algebroids appear in algebra, geometry and in Mathematical physics. A 
Courant pair (A,L) is a Leibniz pseudoalgebra over (,A) if L is also an 
A-module and the structure map is an A-module homomorphism such 
that following condition is satisfied: [x,fy]=f[x,y]+µ(x)(f)y where x,y∈L 
and fA. So it is also natural to expect a deformation theory for Leibniz-
Rinehart algebras by deducing the required deformation cohomology. 
As in the classical cases of algebras over quadratic operads (e.g., Ass, 
Lie, Leib,...etc.), one may look for a differential graded Lie algebra 
structure on the cohomology space of a Courant pair. Also, a Courant 
pair can be described as a non skew-symmetric version of OCHA and 
subsequently as an algebra over an operad. These questions are planned 
to be addressed in a separate discussion.
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