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1 Introduction

Deformation theory arose mainly from geometry and physics. In the latter field, the non-commutative associative
multiplication of operators in quantum mechanics is thought of as a formal associative deformation of the pointwise
multiplication of the algebra of symbols of these operators. In the sixties, Murray Gerstenhaber introduced algebraic
formal deformations for associative algebras in a series of papers (see [11,12,13,14,15]). He used formal series and
showed that the theory is intimately connected to the cohomology of the algebra. The same approach was extended
to several algebraic structures (see [2,3,5,6,25]). Other approaches to study deformations exist; see [8,9,10,17,18,
19,20,24,28]; also see [26] for a review.

In this paper, we introduce a cohomology and a formal deformation theory of alternative algebras. If A is left
alternative algebra, then the algebra defined on the same vector space A with “opposite” multiplication x ◦ y :=

yx is a right alternative algebra and vice-versa. Hence, all the statements for left alternative algebras have their
corresponding statements for right alternative algebras. Thus, we will only consider the left alternative algebra case
in this paper. We also review the connections of alternative algebras to other algebraic structures. In Section 2, we
review the basic definitions and properties related to alternative algebras. In Section 3, we discuss in particular all the
links between alternative algebras and some other algebraic structures such as Moufang loops, Malcev algebras and
Jordan algebras. In Section 4, we introduce a cohomology theory of left alternative algebras. We compute the second
cohomology group of the 2 by 2 matrix algebra. It is known that, as an associative algebra, its second cohomology
group is trivial, but we show that this is not the case as left alternative algebra. Finally, in Section 5, we develop a
formal deformation theory for left alternative algebras and show that the cohomology theory introduced in Section 4
fits.

2 Preliminaries

Throughout this paper, K is an algebraically closed field of characteristic 0.

2.1 Definitions

Definition 1 (see [29]). A left alternative K-algebra (resp. right alternative K-algebra) (A, μ) is a vector space A
over K and a bilinear multiplication μ satisfying the left alternative identity, that is, for all x, y ∈ A,

μ
(
x, μ(x, y)

)
= μ

(
μ(x, x), y

)
(2.1)

and respectively the right alternative identity, that is

μ
(
μ(x, y), y

)
= μ

(
x, μ(y, y)

)
. (2.2)

An alternative algebra is one which is both left and right alternative algebra.

� This article is part of a Special Issue on Deformation Theory and Applications (A. Makhlouf, E. Paal, and A. Stolin, Eds.).
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Lemma 2. Let as denote the associator, which is a trilinear map defined by

as(x, y, z) = μ
(
μ(x, y), z

)− μ
(
x, μ(y, z)

)
.

An algebra is alternative if and only if the associator as(x, y, z) is an alternating function of its arguments, that is

as(x, y, z) = −as(y, x, z) = −as(x, z, y) = −as(z, y, x).

This lemma implies then that the following identities are satisfied:

as(x, x, y) = 0 (left alternativity), as(y, x, x) = 0 (right alternativity), as(x, y, x) = 0 (flexibility).

By linearization, we have the following characterization of left (resp. right) alternative algebras, which will be used
in the sequel.

Lemma 3. A pair (A, μ) is a left alternative K-algebra (resp. right alternative K-algebra) if and only if the identity

μ
(
x, μ(y, z)

)− μ
(
μ(x, y), z

)
+ μ

(
y, μ(x, z)

)− μ
(
μ(y, x), z

)
= 0, (2.3)

respectively,

μ
(
x, μ(y, z)

)− μ
(
μ(x, y), z

)
+ μ

(
x, μ(z, y)

)− μ
(
μ(x, z), y

)
= 0, (2.4)

holds.

Remark 4. When considering multiplication as a linear map μ : A⊗A → A, the condition (2.3) (resp. (2.4)) may
be written

μ ◦ (μ⊗ id− id⊗μ) ◦ ( id⊗3 +σ1
)
= 0, (2.5)

respectively

μ ◦ (μ⊗ id− id⊗μ) ◦ ( id⊗3 +σ2
)
= 0, (2.6)

where id stands for the identity map and σ1 and σ2 stand for transpositions generating the permutation group S3

which are extended to trilinear maps defined by

σ1
(
x1 ⊗ x2 ⊗ x3

)
= x2 ⊗ x1 ⊗ x3, σ2

(
x1 ⊗ x2 ⊗ x3

)
= x1 ⊗ x3 ⊗ x2

for all x1, x2, x3 ∈ A.
In terms of associators, the identities (2.3) (resp. (2.4)) are equivalent to

as+ as ◦ σ1 = 0
(
resp. as+ as ◦ σ2 = 0

)
. (2.7)

Remark 5. The notions of subalgebra, ideal and quotient algebra are defined in the usual way. For general theory
about alternative algebras see [29]. The alternative algebras generalize associative algebras. Recently, in [7], it was
shown that their operad is not Koszul. The dual operad of right alternative (resp. left alternative) algebras is defined
by associativity and the identity

μ
(
μ(x, y), z

)
+ μ

(
μ(x, z), y

)
= 0,

(
resp. μ

(
μ(x, y), z

)
+ μ

(
μ(y, x), z

)
= 0

)
.

The dual operad of alternative algebras is defined by the associativity and the identity

μ
(
μ(x, y), z

)
+ μ

(
μ(y, x), z

)
+ μ

(
μ(z, x), y

)
+ μ

(
μ(x, z), y

)
+ μ

(
μ(y, z), x

)
+ μ

(
μ(z, y), x

)
= 0.

2.2 Structure theorems and examples

We have these following fundamental properties:

• Artin’s theorem. In an alternative algebra, the subalgebra generated by any two elements is associative. Con-
versely, any algebra for which this is true is clearly alternative. It follows that expressions involving only two
variables can be written without parenthesis unambiguously in an alternative algebra.
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• Generalization of Artin’s theorem. Whenever three elements x, y, z in an alternative algebra associate (i.e.
as(x, y, z) = 0), the subalgebra generated by those elements is associative.

• Corollary of Artin’s theorem. Alternative algebras are power-associative, that is, the subalgebra generated by a
single element is associative. The converse need not hold: the sedenions are power-associative but not alternative.

Example 6 (4-dimensional alternative algebras). According to A. T. Gainov (see e.g. [16, p. 144]), there are exactly
two alternative but not associative algebras of dimension 4 over any field. With respect to a basis {e0, e1, e2, e3},
one algebra is given by the following multiplication (the unspecified products are zeros):

e20 = e0, e0e1 = e1, e2e0 = e2, e2e3 = e1, e3e0 = e3, e3e2 = −e1.
The other algebra is given by

e20 = e0, e0e2 = e2, e0e3 = e3, e1e0 = e1, e2e3 = e1, e3e2 = −e1.
Example 7 (octonions). The octonions were discovered in 1843 by John T. Graves who called them Octaves and
independently by Arthur Cayley in 1845. The octonions algebra which is also called Cayley Octaves or Cayley
algebra is an 8-dimensional algebra defined with respect to a basis {u, e1, e2, e3, e4, e5, e6, e7}, where u is the
identity for the multiplication, by the following multiplication table. The table describes multiplying the ith row
elements by the jth column elements.

u e1 e2 e3 e4 e5 e6 e7

u u e1 e2 e3 e4 e5 e6 e7

e1 e1 −u e4 e7 −e2 e6 −e5 −e3

e2 e2 −e4 −u e5 e1 −e3 e7 −e6

e3 e3 −e7 −e5 −u e6 e2 −e4 e1

e4 e4 e2 −e1 −e6 −u e7 e3 −e5

e5 e5 −e6 e3 −e2 −e7 −u e1 e4

e6 e6 e5 −e7 e4 −e3 −e1 −u e2

e7 e7 e3 e6 −e1 e5 −e4 −e2 −u

The octonions algebra is a typical example of alternative algebras. As stated early, the subalgebra generated by
any two elements is associative. In fact, the subalgebra generated by any two elements of the octonions is isomorphic
to the algebra of reals R, the algebra of complex numbers C or the algebra of quaternions H, all of which are
associative. See [4] for the role of the octonions in algebra, geometry and topology, and see also [1] where octions
are viewed as quasialgebra.

3 Connections to other algebraic structures

We begin by recalling some basics of Moufang loops, Moufang algebras and Malcev algebras.

Definition 8. Let (M, ∗) be a set with a binary operation. It is called a Moufang loop if it is a quasigroup with an
identity e such that the binary operation satisfies one of the following equivalent identities:

x ∗ (y ∗ (x ∗ z)) =
(
(x ∗ y) ∗ x) ∗ z, (3.1)

z ∗ (x ∗ (y ∗ x)) =
(
(z ∗ x) ∗ y) ∗ x, (3.2)

(x ∗ y) ∗ (z ∗ x) = (
x ∗ (y ∗ z)) ∗ x. (3.3)

The typical examples include groups and the set of nonzero octonions which gives a nonassociative Moufang
loop.

As in the case of Lie group, there exists a notion of analytic Moufang loop (see e.g. [27,30,31]). An analytic
Moufang loop M is a real analytic manifold with the multiplication and the inverse, g �→ g−1, being analytic
mappings. The tangent space TeM is equipped with a skew-symmetric bracket [ , ] : TeM × TeM → TeM

satisfying Malcev’s identity, that is,
[
J(x, y, z), x

]
= J

(
x, y, [x, z]

)
(3.4)

for all x, y, z ∈ TeM , and where J corresponds to Jacobi’s identity, that is,

J(x, y, z) =
[
x, [y, z]

]
+
[
y, [z, x]

]
+
[
z, [x, y]

]
.
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Definition 9. A Malcev K-algebra is a vector space over K and a skew-symmetric bracket satisfying the iden-
tity (3.4).

The Malcev algebras are also called Moufang-Lie algebras. We have the following fundamental Kerdman
theorem [23].

Theorem 10. For every real Malcev algebra there exists an analytic Moufang loop whose tangent algebra is the
given Malcev algebra.

The connection to alternative algebras is given by the following proposition.

Proposition 11. The alternative algebras are Malcev-admissible algebras, that is, their commutators define a
Malcev algebra.

Remark 12. Let A be an alternative algebra with a unit. The set U(A) of all invertible elements of A forms a
Moufang loop with respect to the multiplication. Conversely, not any Moufang loop can be imbedded into a loop
of type U(A) for a suitable unital alternative algebra A. A counter-example was given in [34]. In [32], the author
characterizes the Moufang loops which are imbeddable into a loop of type U(A).

The Moufang algebras which are the corresponding algebras of a Moufang loop are defined as follows.

Definition 13. A left Moufang algebra (A, μ) is one which is left alternative and satisfying the Moufang identity,
that is,

μ
(
μ(x, y), μ(z, x)

)
= μ

(
μ
(
x, μ(y, z)

)
, x
)
.

The Moufang identities (3.1), (3.2), (3.3) are expressed in terms of associator by

as(x, y, z · x) = x · as(y, z, x), as(x · y, z, x) = as(x, y, z) · x, as
(
y, x2, z

)
= x · as(y, x, z) + as(y, x, z) · x.

It turns out that in a characteristic different from 2, all left alternative algebras are left Moufang algebras. Also, a
left Moufang algebra is alternative if and only if it is flexible, that is, as(x, y, x) = 0 for all x, y ∈ A.

The alternative algebras are connected to Jordan algebras as follows. Given an alternative algebra (A, μ), then
(A, μ+), where μ+(x, y) = μ(x, y)+μ(y, x), is a Jordan algebra, that is, the commutative multiplication μ+ satisfies
the identity asμ+(x2, y, x) = 0. For more nonassociative algebras theory, we refer to [21,22,33,36,37].

4 Cohomology of left alternative algebras

In this section, we introduce a cohomology theory for left alternative algebras fitting with deformation theory and
compute the second cohomology group of 2× 2-matrix algebra viewed as an alternative algebra.

Let A be a left alternative K-algebra defined by a multiplication μ. A left alternative p-cochain is a linear map
from A⊗p to A. We denote by Cp(A,A) the group of all p-cochains.

4.1 First differential map

Let id denotes the identity map on A. For f ∈ C1(A,A), we define the first differential δ1f ∈ C2(A,A) by

δ1f = μ ◦ (f ⊗ id) + μ ◦ (id⊗f)− f ◦ μ.

We remark that the first differential of a left alternative algebra is similar to the first differential map of Hochschild
cohomology of an associative algebra (1-cocycles are derivations).

4.2 Second differential map

Let ϕ ∈ C2(A,A), we define the second differential δ2φ ∈ C3(A,A) by

δ2φ =
[
μ ◦ (φ⊗ id− id⊗φ) + φ ◦ (μ⊗ id− id⊗μ)] ◦ ( id⊗3 +σ1

)
, (4.1)

where σ1 is defined on A⊗3 by σ1(x⊗ y ⊗ z) = y ⊗ x⊗ z.

Remark 14. The left alternative algebra 2-differential defined in (4.1) may be written using the Hochschild differ-
ential δ2H as

δ2φ = δ2Hφ ◦ ( id⊗3 +σ1
)
.
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Proposition 15. The composite δ2 ◦ δ1 is zero.

Proof. Let x, y, z ∈ A and f ∈ C1(A,A). Then

δ1f(x⊗ y) = μ
(
f(x)⊗ y

)
+ μ

(
x⊗ f(y)

)− f
(
μ(x⊗ y)

)
.

In order to simplify the notation, the multiplication is denoted by concatenation of terms and the tensor product is
removed. Then, we have

δ2
(
δ1f

)
(x⊗ y ⊗ z)

= (xy)f(z)− f
(
(xy)z

)
+
[
f(xy)

]
z +

[
xf(y)

]
z − [

f(xy)
]
z +

[(
f(x)

)
y
]
z

+ (yx)f(z)− f
(
(yx)z

)
+
[
f(yx)

]
z +

[
yf(x)

]
z − [

f(yx)
]
z +

[(
f(y)

)
x
]
z

− {
xf(yz)− f

(
x[yz]

)
+
[
f(x)

]
(yz) + x

(
yf(z)

)− xf(yz) + x
[(
f(y)

)
z
]

+ yf(xz)− f
(
y[xz]

)
+
[
f(y)

]
(xz) + y

(
xf(z)

)− yf(xz) + y
([
f(x)

]
z
)}

=
[
(xy)f(z) + (yx)f(z)− x

(
yf(z)

)− y
(
xf(z)

)]− [
f
(
(xy)z

)
+ f

(
(yx)z

)− f
(
x(yz)

)− f
(
y(xz)

)]

+
[(
xf(y)

)
z +

(
f(y)x

)
z − (

f(y)
)
(xz)− x

(
f(y)z

)]
+
[(
f(x)y

)
z +

(
yf(x)

)
z − (

f(x)
)
(yz)− y

(
f(x)z

)]

= 0.

After simplifying the terms which cancel in pairs, we group the remaining ones into brackets, so each bracket cancels
using the left alternative algebra axiom (see (2.3)).

Example 16. Let A = M2(K) denote the associative algebra of 2 by 2 matrices over the field K, considered as left
alternative algebra of dimension 4. Let e1, e2, e3 and e4 be a basis of A. The second cohomology group H2(A,A)

is three-dimensional and generated with respect to the canonical basis by [f1], [f2] and [f3], where

f1
(
e2 ⊗ e4

)
= e1, f1

(
e3 ⊗ e2

)
= −e3, f1

(
e4 ⊗ e1

)
= e3, f1

(
e4 ⊗ e2

)
= e4,

f2
(
e2 ⊗ e3

)
= e2, f2

(
e3 ⊗ e1

)
= −e4, f2

(
e3 ⊗ e3

)
= e3, f2

(
e3 ⊗ e4

)
= e4,

f3
(
e2 ⊗ e3

)
= e1, f3

(
e3 ⊗ e2

)
= e4.

The non-specified terms of these generators are zeros. These generators were obtained independently using the
softwares Maple and Mathematica.

Remark 17. It was implied from [35] that the second cohomology group of A = M2(K) is non-trivial. But the
exact structure of this group was not known. We completely determine the structure by giving the dimension and
generators.

4.3 Third differential map and beyond

Let ψ ∈ C3(A,A), we define the third differential δ3ψ ∈ C4(A,A) as

δ3ψ = μ ◦ (ψ ⊗ id) ◦ ( id⊗3 −σ1
)
+ μ ◦ (id⊗ψ) ◦ (id⊗3 − σ2

)− ψ ◦ (μ⊗ id⊗2 ) ◦ ( id⊗3 +σ2 ◦ σ1
)

+ ψ ◦ (id⊗μ⊗ id) ◦ ( id⊗3 +σ1 ◦ σ2
)− ψ ◦ ( id⊗2 ⊗μ) ◦ ( id⊗3 −σ1

)
;

that is, for all ψ ∈ C3(A,A) and x1, . . . , x4 ∈ A we have

δ3ψ
(
x1, x2, x3, x4

)
= μ

(
x1 ⊗ ψ

(
x2 ⊗ x3 ⊗ x4

))− μ
(
x1 ⊗ ψ

(
x3 ⊗ x2 ⊗ x4

))
+ μ

(
ψ
(
x1 ⊗ x2 ⊗ x3

)⊗ x4
)

− μ
(
ψ
(
x2 ⊗ x1 ⊗ x3

)⊗ x4
)− ψ

(
μ
(
x1 ⊗ x2

)⊗ x3 ⊗ x4
)− ψ

(
μ
(
x2 ⊗ x3

)⊗ x1 ⊗ x4
)

+ ψ
(
x1 ⊗ μ

(
x2 ⊗ x3

)⊗ x4
)
+ ψ

(
x3 ⊗ μ

(
x1 ⊗ x2

)⊗ x4
)− ψ

(
x1 ⊗ x2 ⊗ μ

(
x3 ⊗ x4

))

+ ψ
(
x2 ⊗ x1 ⊗ μ

(
x3 ⊗ x4

))
.

Remark 18. The third differential δ3ψ ∈ C4(A,A) of a left alternative algebra A may be written using the third
Hochschild cohomology differential δ3H as

δ3ψ = δ3Hψ − μ ◦ (ψ ⊗ id) ◦ σ1 − μ ◦ (id⊗ψ) ◦ σ2 − ψ ◦ (μ⊗ id⊗2 ) ◦ σ2 ◦ σ1
+ ψ(id⊗μ⊗ id) ◦ σ1 ◦ σ2 + ψ ◦ ( id⊗2 ⊗μ) ◦ σ1.
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Proposition 19. The composite δ3 ◦ δ2 is zero.

Proof. Let x1, . . . , x4 ∈ A and f ∈ C2(A,A). Then, by substituting ψ with δ2f in the previous formula and
rearranging the terms we get

δ3
(
δ2f

)(
x1 ⊗ x2 ⊗ x3 ⊗ x4

)

= x1
[
δ2f

(
x2 ⊗ x3 ⊗ x4

)− δ2f
(
x3 ⊗ x2 ⊗ x4

)]− [
δ2f

(
x1x2 ⊗ x3 ⊗ x4

)− δ2f
(
x3 ⊗ x1x2 ⊗ x4

)]

+
[
δ2f

(
x1 ⊗ x2x3 ⊗ x4

)− δ2f
(
x2x3 ⊗ x1 ⊗ x4

)]− [
δ2f

(
x1 ⊗ x2 ⊗ x3x4

)− δ2f
(
x2 ⊗ x1 ⊗ x3x4

)]

+
[
δ2f

(
x1 ⊗ x2 ⊗ x3

)− δ2f
(
x2 ⊗ x1 ⊗ x3

)]
x4

= 0,

since δ2f(x⊗ y ⊗ z) = δ2f(y ⊗ x⊗ z), for all x, y, z ∈ A.

Let ψ ∈ C4(A,A) and δ4H be the fourth Hochschild cohomology differential. We define the fourth differential
δ4ψ ∈ C5(A,A) for a left alternative algebra A as

δ4ψ =
∑

σ∈S5

δ4Hψ ◦ σ,

where σ is the extended map, which we still denote by σ, for a permutation σ ∈ S5 on A⊗5 defined by

σ
(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5

)
= xσ(1) ⊗ xσ(2) ⊗ xσ(3) ⊗ xσ(4) ⊗ xσ(5).

By direct calculation, we can prove the following proposition.

Proposition 20. The composite δ4 ◦ δ3 is zero.

One may complete the complex by considering δp = 0 for p > 4. It is shown in [7] that the operad of alternative
algebras is not Koszul, thus we think that there exist nontrivial pth differential maps for p > 4 by constructing a
minimal model.

5 Formal deformations of left alternative algebras

In this section, we develop a deformation theory for alternative algebras and show that the cohomology introduced
in the previous section fits with formal deformations of left alternative algebras.

Let (A, μ0) be a left alternative algebra. Let K[[t]] be the power series ring in one variable t and coefficients in
K and let A[[t]] be the set of formal power series whose coefficients are elements of A (note that A[[t]] is obtained
by extending the coefficients domain of A from K to K[[t]]). Then, A[[t]] is a K[[t]]-module. When A is finite-
dimensional, we have A[[t]] = A ⊗K K[[t]]. One notes that A is a submodule of A[[t]]. Given a K-bilinear map
f : A × A → A, it admits naturally an extension to a K[[t]]-bilinear map f : A[[t]] ⊗ A[[t]] → A[[t]], that is, if
x =

∑
i≥0 ait

i and y =
∑

j≥0 bjt
j then

f(x⊗ y) =
∑

i,j≥0

ti+jf
(
ai ⊗ bj

)
.

Definition 21. Let (A, μ0) be a left alternative algebra. A formal left alternative deformation of A is given by the
K[[t]]-bilinear map μt : A[[t]] ⊗ A[[t]] → A[[t]] of the form μt =

∑
i≥0 μit

i, where each μi is a K-bilinear map
μi : A ⊗ A → A (extended to be K[[t]]-bilinear), such that for x, y, z ∈ A, the following formal left alternativity
condition holds:

μt
(
x⊗ μt(y ⊗ z)

)− μt
(
μt(x⊗ y)⊗ z

)
+ μt

(
y ⊗ μt(x⊗ z)

)− μt
(
μt(y ⊗ x).⊗ z

)
= 0. (5.1)

5.1 Deformation equation and obstructions

The first problem is to give conditions about μi such that the deformation μt is alternative. Expanding the left-hand
side of (5.1) and collecting the coefficients of tk yield

∑

i+j=k; i,j≥0

μi
(
x⊗μj(y⊗z)

)−μi
(
μj(x⊗y)⊗z

)
+μi

(
y⊗μj(x⊗z)

)−μi
(
μj(y⊗x)⊗z

)
=0, k=0, 1, 2, . . . .
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This infinite system, called the deformation equation, gives the necessary and sufficient conditions for the left
alternativity of μt. It may be written as

k∑

i=0

μi
(
x⊗ μk−i(y ⊗ z)

)− μi
(
μk−i(x, y)⊗ z

)
+ μi

(
y ⊗ μk−i(x⊗ z)

)

− μi
(
μk−i(y ⊗ x)⊗ z

)
= 0, k = 0, 1, 2, . . . .

(5.2)

The first equation (k = 0) is the left alternativity condition for μ0. The second shows that μ1 must be a 2-cocycle
for the alternative algebra cohomology defined above (μ1 ∈ Z2(A,A)). More generally, suppose that μp is the first
non-zero coefficient after μ0 in the deformation μt. This μp is called the infinitesimal of μt.

Theorem 22. The map μp is a 2-cocycle of the left alternative algebras cohomology of A with coefficient in itself.

Proof. In (5.2) make the following substitutions: k = p and μ1 = · · · = μp−1 = 0.

Definition 23. The 2-cocycle μp is said integrable if it is the first non-zero term, after μ0, of a left alternative
deformation.

The integrability of μp implies an infinite sequence of relations which may be interpreted as the vanishing of the
obstruction to the integration of μp.

For an arbitrary k, with k > 1, the kth equation of the system (5.2) may be written as

δ2μk(x⊗ y ⊗ z) =

k−1∑

i=1

μi
(
μk−i(x⊗ y)⊗ z

)− μi
(
x⊗ μk−i(y ⊗ z)

)

+ μi
(
μk−i(y ⊗ x)⊗ z

)− μi
(
y ⊗ μk−i(x⊗ z)

)
.

Suppose that the truncated deformation

μt = μ0 + tμ1 + t2μ2 + · · ·+ tm−1μm−1

satisfies the deformation equation. The truncated deformation is extended to a deformation of order m, that is,

μt = μ0 + tμ1 + t2μ2 + · · ·+ tm−1μm−1 + tmμm,

satisfying the deformation equation if

δ2μm(x⊗ y ⊗ z) =

m−1∑

i=1

μi
(
μm−i(x⊗ y)⊗ z

)− μi
(
x⊗ μm−i(y ⊗ z)

)

+ μi
(
μm−i(y ⊗ x)⊗ z

)− μi
(
y ⊗ μm−i(x⊗ z)

)
.

The right-hand side of this equation is called the obstruction to finding μm extending the deformation.
We define a square operation on 2-cochains by

μi�μj(x⊗ y ⊗ z) = μi
(
μj(x⊗ y)⊗ z

)− μi
(
x⊗ μj(y ⊗ z)

)
+ μi

(
μj(y ⊗ x)⊗ z

)− μi
(
y ⊗ μj(x⊗ z)

)
.

Then the obstruction may be written as

m−1∑

i=1

μi�μm−i or
∑

i+j=m, i,j �=m

μi�μj .

A straightforward computation gives the following.

Theorem 24. The obstructions are left alternative 3-cocycles.
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Remark 25. (1) The cohomology class of the element
∑

i+j=m, i,j �=m μi�μj is the first obstruction to the inte-
grability of μm. We consider now how to extend an infinitesimal deformation to a deformation of order 2. Suppose
m = 2 and μt = μ0 + tμ1 + t2μ2. The deformation equation of the truncated deformation of order 2 is equivalent
to the finite system:

⎧
⎪⎨

⎪⎩

μ0�μ0 = 0
(
μ0 is left alternative

)
,

δμ1 = 0
(
μ1 ∈ Z2(A,A)

)
,

μ1�μ1 = δμ2.

Then μ1�μ1 is the first obstruction to integrate μ1 and μ1�μ1 ∈ Z3(A,A). The elements μ1�μ1 which are
coboundaries permit to extend the deformation of order one to a deformation of order 2. But the elements of
H3(A,A) give the obstruction to the integrations of μ1.

(2) If μm is integrable, then the cohomological class of
∑

i+j=m, i,j �=m μi�μj must be 0. In the previous

example, μ1 is integrable, implies that μ1�μ1 = δ2μ2, which means that the cohomology class of μ1�μ1 vanishes.

Corollary 26. If H3(A,A) = 0, then all obstructions vanish and every μm ∈ Z2(A,A) is integrable.

5.2 Equivalent and trivial deformations

In this section, we characterize equivalent as well as trivial deformations of left alternative algebras.

Definition 27. Let (A, μ0) be a left alternative algebra and let (At, μt) and (A′
t, μ

′
t) be two left alternative defor-

mations of A, where μt =
∑

i≥0 t
iμi and μ′t =

∑
i≥0 t

iμ′i, with μ0 = μ′0. We say that the two deformations are
equivalent if there exists a formal isomorphism Φt : A[[t]] → A[[t]], that is a K[[t]]-linear map that may be written
in the form

Φt =
∑

i≥0

tiΦi = id+tΦ1 + t2Φ2 + · · · ,

where Φi ∈ EndK(A) and Φ0 = id are such that the following relations hold:

Φt ◦ μt = μ′t ◦
(
Φt ⊗ Φt

)
. (5.3)

A deformation At of A0 is said to be trivial if and only if At is equivalent to A0 (viewed as a left alternative algebra
on A[[t]]).

In the following, we discuss the equivalence of two deformations. Condition (5.3) may be written as

Φt

(
μt(x⊗ y)

)
= μ′t

(
Φt(x)⊗ Φt(y)

)
, ∀x, y ∈ A. (5.4)

Equation (5.4) is equivalent to

∑

i≥0

Φi

⎛

⎝
∑

j≥0

μj(x⊗ y)tj

⎞

⎠ ti =
∑

i≥0

μ′i

⎛

⎝
∑

j≥0

Φj(x)t
j ⊗

∑

k≥0

Φk(y)t
k

⎞

⎠ ti

or
∑

i,j≥0

Φi

(
μj(x⊗ y)

)
ti+j =

∑

i,j,k≥0

μ′i
(
Φj(x)⊗ Φk(y)

)
ti+j+k.

Identifying the coefficients, we obtain that the constant coefficients are identical, that is,

μ0 = μ′0 because Φ0 = id .

For the coefficients of t one finds

Φ0

(
μ1(x⊗ y)

)
+ Φ1

(
μ0(x⊗ y)

)
= μ′1

(
Φ0(x)⊗ Φ0(y)

)
+ μ′0

(
Φ1(x)⊗ Φ0(y)

)
+ μ′0

(
Φ0(x)⊗ Φ1(y)

)
.

Since Φ0 = id, it follows that

μ1(x, y) + Φ1

(
μ0(x⊗ y)

)
= μ′1(x⊗ y) + μ0

(
Φ1(x)⊗ y

)
+ μ0

(
x⊗ Φ1(y)

)
.
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Consequently,

μ′1(x⊗ y) = μ1(x⊗ y) + Φ1

(
μ0(x⊗ y)

)− μ0
(
Φ1(x)⊗ y

)− μ0
(
x⊗ Φ1(y)

)
. (5.5)

The second-order conditions of the equivalence between two deformations of a left alternative algebra are given
by (5.5), which may be written as

μ′1(x⊗ y) = μ1(x⊗ y)− δ1Φ1(x⊗ y). (5.6)

In general, if the deformations μt and μ′t of μ0 are equivalent, then μ′1 = μ1+δ
1f1. Therefore, we have the following

proposition.

Proposition 28. The integrability of μ1 depends only on its cohomology class.

Recall that two elements are cohomologous if their difference is a coboundary. The equation δ2μ1 = 0 implies
that

δ2μ′1 = δ2
(
μ1 + δ1f1

)
= δ1μ1 + δ2

(
δ1f1

)
= 0.

If μ1 = δ1g, then

μ′1 = δ1g − δ1f1 = δ1
(
g − f1

)
.

Thus, if two integrable 2-cocycles are cohomologous, then the corresponding deformations are equivalent.

Remark 29. Elements of H2(A,A) give the infinitesimal deformations (μt = μ0 + tμ1).

Proposition 30. Let (A, μ0) be a left alternative algebra. There is, over K[[t]]/t2, a one-to-one correspondence
between the elements of H2(A,A) and the infinitesimal deformation of A defined by

μt(x⊗ y) = μ0(x⊗ y) + tμ1(x⊗ y), ∀x, y ∈ A.

Proof. The deformation equation is equivalent to δ2μ1 = 0, that is μ1 ∈ Z2(A,A).

Theorem 31. Let (A, μ0) be a left alternative algebra and let μt be a one parameter family of deformation of μ0.
Then μt is equivalent to

μt = μ0 + tpμ′p + tp+1μ′p+1 + · · · ,

where μ′p ∈ Z2(A,A) and μ′p /∈ B2(A,A).

Proof. Suppose now that μt = μ0 + tμ1 + t2μ2 + · · · is a one-parameter family of deformation of μ0 for which
μ1 = · · · = μm−1 = 0. The deformation equation implies δμm = 0 (μm ∈ Z2(A,A)). If further μm ∈ B2(A,A)

(i.e. μm = δg), then setting the morphism ft = id+tfm, we have, for all x, y ∈ A,

μ′t(x⊗ y) = f−1
t ◦ μt ◦

(
ft(x)⊗ ft(y)

)
= μ0(x⊗ y) + tm+1μm+1(x⊗ y) + · · · .

And again μm+1 ∈ Z2(A,A).

Corollary 32. If H2(A,A) = 0, then all deformations of A are equivalent to a trivial deformation.

In fact, assume that there exists a non trivial deformation of μ0. Following the previous theorem, this deformation
is equivalent to

μt = μ0 + tpμ′p + tp+1μ′p+1 + · · · ,

where μ′p ∈ Z2(A,A) and μ′p /∈ B2(A,A). But this is impossible because H2(A,A) = 0.

Remark 33. A left alternative algebra for which every formal deformation is equivalent to a trivial deformation
is called rigid. The previous corollary provides a sufficient condition for a left alternative algebra to be rigid. In
general, this condition is not necessary.
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