Common Fixed Point Theorem in \(T_0\) Quasi Metric Space

Balaji R Wadkar¹, Ramakant Bhardwaj², Lakshmi Narayan Mishra*² and Basant Singh¹

¹Department of Mathematics, AISECT University, Bhopal-Chikkodi Road, Bhopal, Madhya Pradesh, India
²Department of Mathematics, Mody University of Science and Technology, Lakshmangarh, Sikar Road, Sikar, Rajasthan, India

Abstract

In this paper, we prove fixed point theorems for generalized C-contractive and generalized S-contractive mappings in a bi-complete di-metric space. The relationship between \(q\)-spherically complete \(T_u\) Ultra-quasi-metric space and bi-complete di-metric space is pointed out in proposition 3.2. This work is motivated by Petals and Fvidalis in a \(T_0\)-ultra-quasi-metric space.

2000 AMS Subject Classification: 47H17, 74H05, 47H09.

Keywords: Fixed Point; Generalized C-Contraction; Generalized S-Contraction; Spherically Complete; Bi-Complete Di-metric

Introduction

In Agyingi [1] proved that every generalized contractive mapping defined in a \(q\)-spherically complete \(T_u\)-ultra-quasi metric space has a unique fixed point. In Petals and Fvidalis [2] proved that every contractive mapping on a spherically complete non Archimedean normed space has a unique fixed point. Agyingi and Gega proved fixed point theorems in a \(T_0\)-ultra-quasi-metric space [3-5]. Later many authors published number of papers in this space [6-10].

In this paper we shall prove a fixed point theorem for generalized c-contractive and generalized s-contractive mappings in a bi-complete di-metric space.

If we delete, in the used definition of the pseudo metric \(d\) on the set \(X\), the symmetry condition, \(d(x, y)=d(y, x)\), whenever \(x, y \in X\) we are led to the concept of quasi-pseudo metric.

Definition 1.1: Let \((X, m)\) be a metric space. Let \(T: X \rightarrow X\) is called a C-contraction if there exist, \(0 \leq k \leq \frac{1}{2}\) such that for all \(x, y \in X\) the following inequality holds [10],

\[m(Tx, Ty) \leq km(x, Tx) + m(y, Ty)\]

Definition 2.1: Let \((X, m)\) be a metric space. A map \(T: X \rightarrow X\) is called a S-contraction if there exist \(0 \leq k < \frac{1}{3}\) such that for all \(x, y \in X\) the following inequality holds [10],

\[m(Tx, Ty) \leq km(x, Tx) + m(y, Ty) + m(x, y)\]

Preliminaries

Now we recall some elementary definitions and terminology from the asymmetric topology which are necessary for a good understanding of the work below.

Definition 2.1: Let \(X\) be a non empty set. A function \(d: X \times X \rightarrow [0, \infty)\) is called quasi pseudo metric on \(X\) if

\[d(x, x) = 0, \forall x \in X\]

\[d(x, z) \leq d(x, y) + d(y, z), \forall x, y, z \in X\]

Moreover if \(d(x, y) = 0 = d(y, x) \Rightarrow x = y\) then \(d\) is said to be a \(T_u\) quasi metric or di-metric. The latter condition is referred as the \(T_u\) condition.

Example 2.1: On \(R \times R\), we define the real valued map \(d\) given by

\[d(x, y) = |x - y| = \max \{|x - y|, 0\}\]

then \((R, d)\) is a di metric space.

Remark 2.1

Let \(d\) be quasi-pseudo metric on \(X\), then the map \(d^2\) defined by \(d^2(x, y) = d(y, x)\) whenever \(x, y \in X\) is also a quasi pseudo metric on \(X\), called the conjugate of \(d\).

It is also denoted by \(d^1\) or \(d^2\). It is easy to verify that the function \(d^2\) defined by \(d^2 = d \circ d^{-1}\)

i.e. \(d^2(x, y) = \max \{d(x, y), d(y, x)\}\)

defines a metric on \(X\) whenever \(d\) is a \(T_0\) quasi pseudo metric.

In some cases, we need to replace \([0, \infty)\) by \([0, \infty]\) (where for a \(d\) attaining the value \(\infty\), the triangle inequality is interpreted in the obvious way). In such case we speak of extended quasi-pseudo metric.

Definition 2.2: The di metric space \((X, d)\) is said to be bi complete if the metric space \((R, d)\) is complete.

Example 2.2: Let \(X = [0, \infty)\) define for each \(x, y \in X\), \(n(x, y) = x\) if \(x > y\) and \(n(y, x) = 0\) if \(x < y\). It is not difficult to check that \((X, n)\) is a \(T_u\) quasi pseudo metric space. Notice that, for \(x, y \in [0, \infty)\), we have \(n^2(x, y) = \max \{x, y\}\) if \(x > y\) and \(n^2(x, y) = 0\) if \(x = y\), the matrix \(n^2\) is complete on \((X, d)\).

Definition 2.3: Let \((X, d)\) be quasi pseudo metric space, for \(x, e, x, e \in X \& e > 0\)

\[B_d(x, e) = \{y \in X : d(x, y) < e\}\]

denotes the open \(e\) ball at \(x\). The collection of such balls is a base for a topology \(\tau(d)\) induced by \(d\) on \(X\). Similarly for \(x, e, x, e \in X \& e > 0\)

Copyright: © 2017 Wadkar BR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
\(C_d(x, e) = \{ y \in X : d(x, y) \leq e \} \)
denotes the closed \(e \)-ball at \(x \).

Definition 2.4: Let \((X, d) \) be quasi pseudo metric space Let \((x_i), i \in I \) be a family of points in \(X \) and let \((r_i), i \in I \) be a family of non negative real numbers.

We say that \(\left(C_d(x_i, r_i), C_{d^{-1}}(x_i, s_i) \right), i \in I \) has the mixed binary intersection property provided that \(\left(C_d(x_i, r_i), C_{d^{-1}}(x_i, s_i) \right), i \in I \) is non empty for all \(i, j \in I \).

Definition 2.5: Let \((X, d) \) be quasi pseudo metric space we say that \((X, d) \) is Isbell complete provided that each family \(\left(C_d(x_i, r_i), C_{d^{-1}}(x_i, s_i) \right), i \in I \) has the mixed binary intersection property such that

\[
\bigcap_{i \in I} \left(C_d(x_i, r_i) \cap C_{d^{-1}}(x_i, s_i) \right) \neq \emptyset
\]

Proposition 2.1: If \((X, d) \) is an extended Isbell-complete quasi pseudo metric space then \((X, d') \) is hyper complete. An interesting class of quasi pseudo metric space, for which, we investing a type of completeness are the ultra quasi pseudo metric.

Definition 2.6: Let \(X \) be a set & \(d : X \times X \rightarrow [0, \infty) \) be function a function mapping into the set \([0, \infty) \) of non negative real’s then \(d \) is ultra quasi pseudo metric on \(X \) if

\[
d(x, x) = 0 \quad \text{for all} \quad x \in X
\]

\[
d(x, z) \leq \max \{ d(x, y), d(y, z) \} \quad \text{whenever} \quad x, y, z \in X
\]

The conjugate \(d^{-1} \) of \(d \) where \(d^{-1}(x, y) = d(y, x) \) whenever \(x, y \in X \) is also an ultra quasi pseudo metric on \(X \).

If \(d \) also satisfies the \(T_0 \) – condition, then \(d \) is called a \(T_0 \)- ultra quasi metric on \(X \). Notice that \(d' = \sup \{ d, d' \} = d \lor d' \) is an ultra-metric on \(X \) whenever \(d \) is a \(T_0 \)- ultra quasi metric.

In a literature, \(T_0 \) - ultra quasi metric spaces are also known as non Archimedean \(T_0 \) – quasi metric.

q-spherically Completeness

In this section we shall recall some results about q- spherical completeness belonging mainly to [8].

Definition 3.1: Let \((X, d) \) be an ultra – quasi pseudo metric space Let \((x_i), i \in I \) be a family of points in \(X \) and let \((r_i), i \in I \) be a family of non negative real numbers we say that \((X, d) \) is q- spherical completeness provided that each family [2]

\[
\left(C_d(x_i, r_i), C_{d^{-1}}(x_i, s_i) \right), i \in I
\]

Satisfying \(d(x_i, s_i) \leq \max \{ r_i, s_i \} \), whenever \(i, j \in I \) is such that

\[
\bigcap_{i \in I} \left(C_d(x_i, r_i) \cap C_{d^{-1}}(x_i, s_i) \right) \neq \emptyset
\]

Proposition 3.2: Each q- spherically complete \(T_0 \), ultra quasi metric space \((X, d) \) is bi-complete.[8].

Main Results

We recall the following interesting results respectively due to Chatterji [10] and to Shukla [11]

Theorem 4.1a A C- contraction on a complete metric space has a unique fixed point.

Theorem 4.1b A S- contraction on a complete metric space has a unique fixed point.

Following results generalizes the above theorem to setting of a bi-complete di-metric space.

Definition 4.1: Let \((X, d) \) be a quasi pseudo metric space. A map \(T : X \rightarrow X \) is called a c-pseudo contraction if there exist \(k, 0 \leq k < \frac{1}{2} \) such that for all \(x, y \in X \) the following inequality holds.

\[
d(Tx, Ty) \leq k[d(Tx, x) + d(Ty, y) + d(x, y)]
\]

Definition 4.2: Let \((X, d) \) be a quasi pseudo metric space. A map \(T : X \rightarrow X \) is called a S-pseudo contraction if there exist \(k, 0 \leq k < \frac{1}{3} \) such that for all \(x, y \in X \) the following inequality holds.

\[
d(Tx, Ty) \leq k[d(Tx, x) + d(Ty, y) + d(x, y)]
\]

Now we define following definitions

Definition 4.3: Let \((X, d) \) be a quasi pseudo metric space. A map \(T : X \rightarrow X \) is called a generalized c-pseudo contraction if there exist \(k, 0 \leq k < \frac{1}{4} \) such that for all \(x, y \in X \) the following inequality holds.

\[
d(Tx, Ty) \leq k[d(Tx, x) + d(Ty, y) + d(x, y)]
\]

Definition 4.4: Let \((X, d) \) be a quasi pseudo metric space. A map \(T : X \rightarrow X \) is called a generalized S-pseudo contraction if there exist \(k, 0 \leq k < \frac{1}{8} \) such that for all \(x, y \in X \) the following inequality holds.

\[
d(Tx, Ty) \leq k[d(x, y)]
\]

Theorem 4.1: Let \((X, d) \) be a bi complete di metric space and let \(T : X \rightarrow X \) be a generalized c- pseudo contraction then \(T \) has a unique fixed point.

Proof: Since \(T : X \rightarrow X \) is a generalized c-pseudo contraction then there exist \(k, 0 \leq k < 1 \) such that for all \(x, y \in X \) the following inequality holds:

\[
d(Tx, Ty) \leq k[d(x, y)]
\]

We shall first show that \(T : (X, d') \rightarrow (X, d') \) is a generalized c-contraction.

Since for any \(x, y \in X \) we have

\[
d^{-1}(Tx, Ty) = d(Ty, Tx)
\]

\[
\leq k[d(Tx, y) + d(Tx, Tx) + d(y, Tx)]
\]

\[
\leq k[d^{-1}(y, Ty) + d^{-1}(Tx, x) + d^{-1}(x, Ty) + d^{-1}(Tx, y)]
\]

\[
d^{-1}(Tx, Ty) \leq k[d^{-1}(y, Ty) + d^{-1}(Tx, x) + d^{-1}(x, Ty) + d^{-1}(Tx, y)]
\]

We see that \(T : (X, d^{-1}) \rightarrow (X, d^{-1}) \) is a generalized C-pseudo contraction therefore

\[
d(Tx, Ty) \leq k[d(Tx, x) + d(Ty, y) + d(x, y)]
\]

\[
\leq k[d(x, y) + d'(x, y)]
\]

and

\[
d^{-1}(Tx, Ty) \leq k[d^{-1}(y, Ty) + d^{-1}(Tx, x) + d^{-1}(x, Ty) + d^{-1}(Tx, y)]
\]
\[\text{Corollary 4.2:} \text{ Let } (X,d) \text{ be a T}_0 \text{-Isbell-Complete quasi pseudo metric spaces and } T : X \to X \text{ be a generalized c – pseudo contraction then } T \text{ has a unique fixed point.} \]

The proof follows from the proposition 3.1.

Theorem 4.2:

Let \((X,d)\) be a bi complete di metric space and let \(T : X \to X\) be an generalized S pseudo contraction then \(T\) has a unique fixed point.

Proof: As in the previous proof it is enough to prove that \(T : (X,d') \to (X,d')\) is a generalised S -contraction.

Since \(T : X \to X\) be a \(S\) -pseudo contraction then there exist \(k, 0 \leq k < 1\) such that for all \(x, y \in X\) the following inequality holds:

\[d(Tx, Ty) \leq k \left[d(x, Tx) + d(x, Ty) + d(Ty, x) + d(Tx, y) + d(Tx, y) + d(Ty, x) + d(Tx, y) + d(Ty, x) \right] \]

We shall first show that \(T : (X,d') \to (X,d')\) is a generalized C-contraction.

Since for any \(x, y \in X\) we have

\[d^{-1}(Tx, Ty) = d(Ty, Tx) \]

\[d(Tx, Ty) \leq k \left[d(x, Tx) + d(x, Ty) + d(Ty, x) + d(Tx, y) + d(Tx, y) + d(Ty, x) + d(Tx, y) + d(Ty, x) \right] \]

\[\leq k \left[d^{-1}(Ty, y) + d^{-1}(Tx, x) + d^{-1}(Ty, x) + d^{-1}(Tx, x) \right] \]

\[+ d^{-1}(y, Ty) + d^{-1}(y, Ty) + d^{-1}(x, Ty) + d^{-1}(x, Tx) \]

\[= d^{-1}(Tx, Ty) \leq k \left[d^{-1}(x, Tx) + d^{-1}(x, Ty) + d^{-1}(y, Ty) + d^{-1}(y, Ty) \right] \]

\[+ d^{-1}(x, Tx) + d^{-1}(x, Ty) + d^{-1}(y, Ty) + d^{-1}(y, Ty) \]

We see that \(T : (X,d') \to (X,d')\) is a pseudo contraction.

Therefore

\[d(Tx, Ty) \leq k \left[d(x, Tx) + d(x, Ty) + d(Ty, x) + d(Tx, y) + d(Tx, y) + d(Ty, x) + d(Tx, y) + d(Ty, x) \right] \]

\[d(Tx, Ty) \leq k \left[d(x, Tx) + d(x, Ty) + d(y, Ty) + d(Ty, x) + d(Tx, y) + d(Tx, y) \right] \]

and

\[d^{-1}(Tx, Ty) \leq k \left[d^{-1}(x, Tx) + d^{-1}(x, Ty) + d^{-1}(y, Ty) + d^{-1}(y, Ty) \right] \]

\[+ d^{-1}(x, Tx) + d^{-1}(x, Ty) + d^{-1}(y, Ty) + d^{-1}(y, Ty) \]

\[\leq k \left[d^m(x, Tx) + d^m(Ty, x) + d^m(x, Ty) + d^m(Ty, y) \right] \]

For all \(x, y \in X\) Hence

\[d^m(Tx, Ty) \leq k \left[d^m(x, Tx) + d^m(Ty, Tx) + d^m(x, Ty) + d^m(Ty, y) \right] \]

\[\text{for all } x, y \in X \]

By assumption \((X,d')\) is a bi complete. Hence \((X,d')\) is complete. There fore by theorem (4a) \(T\) has a unique fixed point. This completes the proof.

Corollary 4.3: Let \((X,d)\) be a \(T_\sigma\text{-Isbell-Complete quasi pseudo metric spaces and } T : X \to X\) be a pseudo contraction then \(T\) has a unique fixed point.

The proof follows from the proposition 2.1

Corollary 4.4: Any \(s\)-pseudo contraction on a \(q\)-spherically complete \(T_\sigma\) ultra quasi metric space has a unique fixed point.

References

3. Agyingi CA, Gaba Yu (2014) A fixed point theorem in a \(T_\sigma\)-ultra- quasi-metric space. Advances in Inequalities and Applications Article-ID.
5. Gaba YE (2014) Unique fixed point theorems for contractive maps type in \(T_\sigma\) quasi metric spaces. AdvFixed point theory 4: 117-125.
11. Shukla DP, Tiwari SK (23012) Unique fixed point for \(s\)-weak contractive mappings, Gen Math 4: 28-34.