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Introduction
In Agyingi [1] proved that every generalized contractive mapping 

defined in a q- spherically complete T0-ultra-quasi metric space has 
a unique fixed point. In Petals and Fvidalis [2] proved that every 
contractive mapping on a spherically complete non Archimedean 
normed space has a unique fixed point. Agyingi and Gega proved fixed 
point theorems in a T0-ultra-quasi-metric space [3-5]. Later many 
authors published number of papers in this space [6-10].

In this paper we shall prove a fixed point theorem for generalized 
c- contractive and generalized s-contractive mappings in a bi-complete 
di-metric space.

If we delete, in the used definition of the pseudo metric d on the set 
X. the symmetry condition, d(x, y)=d(y, x), whenever x, y ∈ X we are led 
to the concept of quasi-pseudo metric.

Definition 1.1: Let ( , )X m  be a metric space. Let T: X→ X map is 
called a C-contraction if there exist, 10

2
k≤ <  such that for all x, y ∈ X 

the following inequality holds [10],

[ ]( , ) ( , ) ( , )m Tx Ty k m x Tx m y Ty≤ +

Definition 1.2: Let (X,m) be a metric space. A map T: X→ X is called 
a S-contraction if there exist 10

3
k≤ <  such that for all x, y ∈ X the 

following inequality holds [10]

[ ]( , ) ( , ) ( , ) ( , )m Tx Ty k m x Tx m y Ty m x y≤ + +

Preliminaries
Now we recall some elementary definitions and terminology from 

the asymmetric topology which are necessary for a good understanding 
of the work below. 

Definition 2.1: Let X be a non empty set. A function
[ ): 0,d X X× → ∞   is called quasi pseudo metric on X if 

( , ) 0,d x x x X= ∀ ∈

( , ) ( , ) ( , ), , ,d x z d x y d y z x y z X≤ + ∀ ∈

Moreover if yxxydyxd =⇒== ),(0),(  then d is said to be a 
T0 quasi metric or di-metric. The latter condition is referred as the T0 
condition.

Example 2.1: On R×R, we define the real valued map d given by 
{ }( , ) max ,0d x y x y x y= − = − then (R,d) is a di metric space.

Remark 2.1

Let d be quasi-pseudo metric on X, then the map d-1 defined by d-1 

(x, y)=d(y, x) whenever x, y  ∈ X is also a quasi-pseudo metric on X, 
called the conjugate of d.

It is also denoted by dt or d¯. It is easy to verify that the function ds 

defined by 1sd d d −= ∨

i.e. { }( , ) max ( , ), ( , )sd x y d x y d y x=

defines a metric on X whenever d is a T0 quasi pseudo metric.

In some cases, we need to replace [0, ∞) by [0,∞] (where for a d 
attaining the value ∞, the triangle inequality is interpreted in the 
obvious way). In such case we speak of extended quasi- pseudo metric.

Definition 2.2: The di metric space (X, d) is said to be bi complete 
if the metric space (R, ds) is complete. 

Example 2.2: Let X=[0, ∞) define for each Xyx ∈, , ( , )n x y x=  if 
x y> and ( , ) 0n x y =  if x y< . It is not difficult to check that ),( nX  is 

a T0 quasi pseudo metric space. Notice that, for [ ), 0,x y∈ ∞ , we have

{ }( , ) max ,sn x y x y= if x y≠ and ( , ) 0sn x y = if x y= , the matrix sn
is complete on ( , )X d .

Definition 2.3: Let ( , )X d  be quasi pseudo metric space, for 
, & 0x X∈ ∈>

{ }( , ) : ( , )dB x y X d x y∈ = ∈ <∈

denotes the open ∈−  ball at x. The collection of such balls is a base for 
a topology ( )dτ  induced by d on X. Similarly for , & 0x X∈ ∈≥
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{ }( , ) : ( , )dC x y X d x y∈ = ∈ ≤∈

denotes the closed ∈− ball at x.

 Definition 2.4: Let ( , )X d  be quasi pseudo metric space Let
( ),ix i I∈  be a family of points in X and let ( ),ir i I∈  & ( ),is i I∈  be a 
family of non negative real numbers. 

We say that ( )1( , ), ( , ) ,d i i i idC x r C x s i I− ∈ has the mixed binary 
intersection property provided that 

( )1( , ), ( , )d i i i idC x r C x s ϕ− ≠  for all ,i j I∈

Definition 2.5: Let ( , )X d  be quasi pseudo metric space 
we say that ),( dX is Isbell complete provided that each family 
( )1( , ), ( , ) ,d i i i idC x r C x s i I− ∈ that has the mixed binary intersection 
property is such that

( ) ( )1( , ) ( , )d i i i id
i I

c x r c x s ϕ−

∈

∩ ≠


 

Proposition 2.1: If ( , )X d is an extended Isbell-complete quasi-
pseudo metric space then ( , )sX d  is hyper complete. An interesting 
class of quasi pseudo metric space, for which, we investing a type of 
completeness are the ultra quasi pseudo metric.

Definition 2.6: Let X be a set & [ ): 0,d X X× → ∞  be function 
a function mapping into the set [ )0,∞ of non negative real’s then d is 
ultra quasi pseudo metric on X if 

( , ) 0d x x = for all x in X &

{ }( , ) max ( , ), ( , )d x z d x y d y z≤  whenever , ,x y z X∈

The conjugate 1d −  of d where 1( , ) ( , )d x y d y x− =  whenever 
,x y X∈ is also an ultra quasi pseudo metric on X.

If d also satisfies the T0 – condition, then d is called a T0- ultra quasi 

metric on X. Notice that 
_

1sup ,sd d d d d −  = = ∨ 
  

is an ultra-metric 

on X whenever d is a T0- ultra quasi metric.

In a literature, T0- ultra quasi metric spaces are also known as non 
Archimedean T0- quasi metric.

q-spherically Completeness
In this section we shall recall some results about q- spherical 

completeness belonging mainly to [8].

Definition 3.1: Let ),( dX be an ultra –quasi pseudo metric space 
Let ( ),ix i I∈  be a family of points in X and let ( ),ir i I∈  & ( ),is i I∈  be 
a family of non negative real numbers we say that ),( dX is q- spherical 
complete provided that each family [2]

( ) IisxCrxC iidiid ∈− ,),(),,( 1

Satisfying { }( , ) max ,i i i jd x s r s≤ , whenever ,i j I∈  is such that 

 ( ) ( )1( , ) ( , )d i i i id
i I

c x r c x s ϕ−

∈

∩ ≠


Proposition 3.2: Each q- spherically complete T0 ultra quasi metric 
space (X, d) is bi-complete[8].

Main Results
We recall the following interesting results respectively due to 

Chatterji [10] and to Shukla [11]

Theorem 4.1a A C- contraction on a complete metric space has a 
unique fixed point.

Theorem 4.1b A S- contraction on a complete metric space has a 
unique fixed point.

Following results generalizes the above theorem to setting of a bi-
complete di-metric space.

Definition 4.1: Let ( , )X d  be a quasi pseudo metric space. A map 

XXT →: is called a c-pseudo contraction if there exist k, 10
2

k≤ <
such that for all x, y ∈ X the following inequality holds.

[ ]( , ) ( , ) ( , )d Tx Ty k d Tx x d y Ty≤ +

Definition 4.2: Let ( , )X d  be a quasi-pseudo metric space. A map 

:T X X→ is called a S-pseudo contraction if there exist k, 10
3

k≤ <
such that for all x, y ∈ X the following inequality holds.

[ ]( , ) ( , ) ( , ) ( , )d Tx Ty k d Tx x d y Ty d x y≤ + +

Now we define following definitions 

Definition 4.3: Let ( , )X d  be a quasi-pseudo metric space. A map 
:T X X→ is called a generalized c-pseudo contraction if there exist k,

10
4

k≤ < such that for all x, y ∈ X the following inequality holds.

{ }( , ) (, , ) ( , ) ( , ) ( , )d Tx T k d Tx x d y Ty d Tx y d x Ty≤ + + +

Definition 4.4: Let ( , )X d  be a quasi-pseudo metric space. A map 
:T X X→ is called a generalized S-pseudo contraction if there exist k,

10
8

k≤ < such that for all x, y ∈ X the following inequality holds.

( ) { }, ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )d Tx Ty k d x Tx d x Ty d y Tx d y Ty d Tx x d Ty x d Tx y d Ty y≤ + + + + + + +

Theorem 4.1:

Let ( , )X d be a bi complete di metric space and let :T X X→  be 
a generalized c- pseudo contraction then T has a unique fixed point.

Proof: Since :T X X→ is a generalized c-pseudo contraction 

then there exist k, 10
4

k≤ <  such that for all ,x y X∈ the following 
inequality holds:

{ }( , ) (, , ) ( , ) ( , ) ( , )d Tx Ty k d Tx x d y Ty d Tx y d x Ty≤ + + +

We shall first show that ( ) ( ): , ,s sT X d X d→  is a generalized c- 
contraction.

Since for any x, y ∈ X we have

( )1 , ( , )d Tx Ty d Ty Tx− =

{ }( , ) ( , ) ( , ) ( , )k d Ty y d x Tx d Ty x d y Tx≤ + + +

{ }1 1 1 1( , ) ( , ) ( , ) ( , )k d y Ty d Tx x d d x Ty d Tx y− − − −≤ + + +

{ }1 1 1 1 1( , ) ( , ) ( , ) ( , ) ( , )d Tx Ty k d y Ty d Tx x d d x Ty d Tx y− − − − −≤ + + +

We see that ( ) ( )1 1: , ,T X d X d− −→ is a generalized C-pseudo 
contraction therefore

{ }( , ) ( , ) ( , ) ( , ) ( , )d Tx Ty k d Tx x d y Ty d Tx y d x Ty≤ + + +

{ }( , ) ( , ) ( , ) ( , )s s s sk d x Tx d y Ty d Tx y d x Ty≤ + + +

and 	 { }1 1 1 1 1( , ) ( , ) ( , ) ( , ) ( , )d Tx Ty k d y Ty d Tx x d x Ty d Tx y− − − − −≤ + + +
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{ }( , ) ( , ) ( , ) ( , )s s s sk d y Ty d x Tx d x Ty d Tx y≤ + + +  for all x, y ∈ X

Hence { }( , ) ( , ) ( , ) ( , ) ( , )s s s s sd Tx Ty k d x Tx d y Ty d Tx y d x Ty≤ + + + , for all
x, y ∈ X

and so ( ) ( ): , ,s sT X d X d→  is a generalized C- contraction.

By assumption ( ),X d  is a bi complete. Hence ( ), sX d  is complete. 
There fore by theorem (4a) T has a unique fixed point. This completes 
the proof.

Corollary 4.1: Let ( ),X d  be a T0-Isbell-Complete quasi pseudo
metric spaces and :T X X→  be a generalized c – pseudo contraction 
then T has a unique fixed point.

The proof follows from the proposition 2.1

Corollary 4.2: Any generalized c- pseudo contraction on a 
q-spherically complete T0 ultra quasi metric space has a unique fixed
point.

The proof follows from the proposition 3.1

Theorem 4.2:

Let ( ),X d be a bi complete di metric space and let :T X X→  be 
an generalized S pseudo contraction then T has a unique fixed point

Proof: As in the previous proof it is enough to prove that 

( ) ( ): , ,s sT X d X d→ is an generalized S –contraction.

Since :T X X→  be a S –pseudo contraction then there exist k, 
10
8

k≤ <  such that for all x, y ∈ X the following inequality holds:

( ) { }, ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )d Tx Ty k d x Tx d x Ty d y Tx d y Ty d Tx x d Ty x d Tx y d Ty y≤ + + + + + + +

We shall first show that ( ) ( ): , ,s sT X d X d→  is a generalized C- 
contraction.

Since for any x, y ∈ X we have

( )1 , ( , )d Tx Ty d Ty Tx− =

( ) { }, ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )d Ty Tx k d y Ty d y Tx d x Ty d x Tx d Ty y d Tx y d Ty x d Tx x≤ + + + + + + + 	

1 1 1 1

1 1 1 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

d Ty y d Tx y d Ty x d Tx x
k

d y Ty d y Tx d x Ty d x Tx

− − − −

− − − −

 + + + ≤  
+ + + +  

1 1 1 1
1

1 1 1 1

( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , ) ( , )

d x Tx d x Ty d y Tx d y Ty
d Tx Ty k

d Tx x d Ty x d Tx y d Ty y

− − − −
−

− − − −

 + + + ≤  
+ + + +  

We see that ( ) ( )1 1: , ,T X d X d− −→ is a pseudo contraction.

Therefore

( ) { }, ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )d Tx Ty k d x Tx d x Ty d y Tx d y Ty d Tx x d Ty x d Tx y d Ty y≤ + + + + + + +

{ }( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )s s s s s s s sd Tx Ty k d Tx x d x Ty d y Tx d y Ty d Tx x d Ty x d Tx y d Ty y≤ + + + + + + +  

and 
1 1 1 1

1
1 1 1 1

( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , ) ( , )

d x Tx d x Ty d y Tx d y Ty
d Tx Ty k

d Tx x d Ty x d Tx y d Ty y

− − − −
−

− − − −

 + + + ≤  
+ + + +  

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

n n n n

n n n n

d Tx x d Ty x d Tx y d Ty y
k

d x Tx d x Ty d y Tx d y Ty

 + + + ≤  
+ + + +  

 For all x, y ∈ X 

Hence

( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , ) ( , )

n n n n
n

n n n n

d Tx x d Ty x d Tx y d Ty y
d Tx Tx k

d x Tx d x Ty d y Tx d y Ty

 + + + ≤  
+ + + +  

, for all x, y ∈ X 

and so ( ) ( ): , ,s sT X d X d→  is a generalized s-contraction.

By assumption ( ),X d  is a bi complete. Hence ( ), sX d  is complete. 
There fore by theorem (4a) T has a unique fixed point. This completes 
the proof.

Corollary 4.3: Let ( ),X d  be a T0-Isbell-Complete quasi pseudo
metric spaces and :T X X→  be a pseudo contraction then T has a 
unique fixed point.

The proof follows from the proposition 2.1

Corollary 4.4: Any s-pseudo contraction on a q-spherically 
complete T0 ultra quasi metric space has a unique fixed point. 
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