

Open Access

Common Fixed Point Theorem in T₀ Quasi Metric Space

Balaji R Wadkar¹, Ramakant Bhardwaj², Lakshmi Narayan Mishra^{3*} and Basant Singh¹

¹Department of Mathematics, AISECT University, Bhopal-Chiklod Road, Bhopal, Madhya Pradesh, India ²Department of Mathematics, TIT Group of Institutes, Anand Nagar, Bhopal, Madhya Pradesh, India ³Department of Mathematics, Mody University of Science and Technology, Lakshmangarh, Sikar Road, Sikar, Rajasthan, India

Abstract

In this paper, we prove fixed point theorems for generalized C-contractive and generalized S-contractive mappings in a bi-complete di-metric space. The relationship between q- spherically complete T_0 Ultra-quasi-metric space and bi-complete diametric space is pointed out in proposition 3.2. This work is motivated by Petals and Fvidalis in a T_0 -ultra-quasi-metric space

2000 AMS Subject Classification: 47H17, 74H05, 47H09.

Keywords: Fixed Point; Generalized C-Contraction; Generalized S-Contraction; Spherically Complete; Bi-Complete Di-metric

Introduction

In Agyingi [1] proved that every generalized contractive mapping defined in a q- spherically complete T_0 -ultra-quasi metric space has a unique fixed point. In Petals and Fvidalis [2] proved that every contractive mapping on a spherically complete non Archimedean normed space has a unique fixed point. Agyingi and Gega proved fixed point theorems in a T_0 -ultra-quasi-metric space [3-5]. Later many authors published number of papers in this space [6-10].

In this paper we shall prove a fixed point theorem for generalized c- contractive and generalized s-contractive mappings in a bi-complete di-metric space.

If we delete, in the used definition of the pseudo metric d on the set X. the symmetry condition, d(x, y)=d(y, x), whenever $x, y \in X$ we are led to the concept of quasi-pseudo metric.

Definition 1.1: Let (X,m) be a metric space. Let $T: X \rightarrow X$ map is called a C-contraction if there exist, $0 \le k < \frac{1}{2}$ such that for all $x, y \in X$ the following inequality holds [10],

$m(Tx,Ty) \le k \left[m(x,Tx) + m(y,Ty) \right]$

Definition 1.2: Let (X,m) be a metric space. A map $T: X \rightarrow X$ is called a S-contraction if there exist $0 \le k < \frac{1}{3}$ such that for all $x, y \in X$ the following inequality holds [10]

$$m(Tx,Ty) \le k \left[m(x,Tx) + m(y,Ty) + m(x,y) \right]$$

Preliminaries

Now we recall some elementary definitions and terminology from the asymmetric topology which are necessary for a good understanding of the work below.

Definition 2.1: Let X be a non empty set. A function $d: X \times X \rightarrow [0,\infty)$ is called quasi pseudo metric on X if

$$d(x,x) = 0, \forall x \in X$$

$$d(x,z) \le d(x,y) + d(y,z), \forall x, y, z \in X$$

Moreover if $d(x, y) = 0 = d(y, x) \Rightarrow x = y$ then d is said to be a T_0 quasi metric or di-metric. The latter condition is referred as the T_0 condition.

Example 2.1: On R×R, we define the real valued map d given by $d(x, y) = |x - y| = \max \{ |x - y|, 0 \}$ then (R,d) is a dimetric space.

Remark 2.1

Let d be quasi-pseudo metric on X, then the map d^{-1} defined by $d^{-1}(x, y)=d(y, x)$ whenever $x, y \in X$ is also a quasi-pseudo metric on X, called the conjugate of d.

It is also denoted by d^t or d^s . It is easy to verify that the function d^s defined by $d^s = d \lor d^{-1}$

i.e.
$$d^{s}(x, y) = \max \{ d(x, y), d(y, x) \}$$

defines a metric on X whenever d is a T₀ quasi pseudo metric.

In some cases, we need to replace $[0, \infty)$ by $[0,\infty]$ (where for a d attaining the value ∞ , the triangle inequality is interpreted in the obvious way). In such case we speak of extended quasi- pseudo metric.

Definition 2.2: The di metric space (X, d) is said to be bi complete if the metric space (R, d^{*}) is complete.

Example 2.2: Let $X=[0, \infty)$ define for each $x, y \in X$, n(x, y) = x if x > y and n(x, y) = 0 if x < y. It is not difficult to check that (X, n) is a T_0 quasi pseudo metric space. Notice that, for $x, y \in [0, \infty)$, we have $n^s(x, y) = \max\{x, y\}$ if $x \neq y$ and $n^s(x, y) = 0$ if x = y, the matrix n^s is complete on (X, d).

Definition 2.3: Let (X,d) be quasi pseudo metric space, for $x \in X \& \in > 0$

$$B_d(x,\epsilon) = \{ y \in X : d(x,y) < \epsilon \}$$

denotes the open \in - ball at x. The collection of such balls is a base for a topology $\tau(d)$ induced by d on X. Similarly for $x, \in X \& \in \ge 0$

*Corresponding author: Mishra LN, Department of Mathematics, Mody University of Science and Technology, Lakshmangarh, Sikar Road, Sikar, Rajasthan 332 311, India. Tel: +919838375431; E-mail: lakshminarayanmishra04@gmail.com

Received January 02, 2017; Accepted January 30, 2017; Published February 08, 2017

Citation: Wadkar BR, Bhardwaj R, Mishra LN, Singh B (2017) Common Fixed Point Theorem in T_0 Quasi Metric Space. Fluid Mech Open Acc 4: 143. doi: 10.4172/2476-2296.1000143

Copyright: © 2017 Wadkar BR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 $C_d(x, \in) = \left\{ y \in X : d(x, y) \le \epsilon \right\}$

denotes the closed \in - ball at x.

Definition 2.4: Let (X,d) be quasi pseudo metric space Let $(x_i), i \in I$ be a family of points in X and let $(r_i), i \in I \& (s_i), i \in I$ be a family of non negative real numbers.

We say that $(C_d(x_i, r_i), C_{d^{-1}}(x_i, s_i)), i \in I$ has the mixed binary intersection property provided that

 $(C_d(x_i, r_i), C_{d^{-1}}(x_i, s_i)) \neq \varphi \text{ for all } i, j \in I$

Definition 2.5: Let (X,d) be quasi pseudo metric space we say that (X,d) is Isbell complete provided that each family $(C_d(x_i,r_i),C_{d^{-1}}(x_i,s_i)), i \in I$ that has the mixed binary intersection property is such that

$$\bigcap_{i \in I} (c_d(x_i, r_i)) \cap (c_{d^{-1}}(x_i, s_i)) \neq \varphi$$

Proposition 2.1: If (X,d) is an extended Isbell-complete quasipseudo metric space then (X,d^s) is hyper complete. An interesting class of quasi pseudo metric space, for which, we investing a type of completeness are the ultra quasi pseudo metric.

Definition 2.6: Let X be a set & $d: X \times X \rightarrow [0,\infty)$ be function a function mapping into the set $[0,\infty)$ of non negative real's then d is ultra quasi pseudo metric on X if

d(x,x) = 0 for all x in X &

 $d(x,z) \le \max \{ d(x,y), d(y,z) \}$ whenever $x, y, z \in X$

The conjugate d^{-1} of d where $d^{-1}(x, y) = d(y, x)$ whenever $x, y \in X$ is also an ultra quasi pseudo metric on X.

If d also satisfies the T_0 – condition, then d is called a T_0 - ultra quasi metric on X. Notice that $d^s = \sup \left\{ d, \overline{d} \right\} = d \lor d^{-1}$ is an ultra-metric on X whenever d is a T_0 - ultra quasi metric.

In a literature, T_0 - ultra quasi metric spaces are also known as non Archimedean T_0 - quasi metric.

q-spherically Completeness

In this section we shall recall some results about q- spherical completeness belonging mainly to [8].

Definition 3.1: Let (X,d) be an ultra –quasi pseudo metric space Let $(x_i), i \in I$ be a family of points in X and let $(r_i), i \in I \otimes (s_i), i \in I$ be a family of non negative real numbers we say that (X,d) is q- spherical complete provided that each family [2]

$$\begin{pmatrix} C_d(x_i, r_i) & C_{d^{-1}}(x_i, s_i) \end{pmatrix}, i \in I \\ \text{Satisfying } d(x_i, s_i) \le \max\left\{r_i, s_j\right\}, \text{ whenever } i, j \in I \text{ is such that} \\ \bigcap_{i=1}^{n} \begin{pmatrix} c_d(x_i, r_i) \end{pmatrix} \cap \begin{pmatrix} c_{d^{-1}}(x_i, s_i) \end{pmatrix} \neq \varphi$$

Proposition 3.2: Each q- spherically complete T_0 ultra quasi metric space (*X*, *d*) is bi-complete[8].

Main Results

We recall the following interesting results respectively due to Chatterji [10] and to Shukla [11]

Theorem 4.1a A C- contraction on a complete metric space has a unique fixed point.

Page 2 of 3

Theorem 4.1b A S- contraction on a complete metric space has a unique fixed point.

Following results generalizes the above theorem to setting of a bicomplete di-metric space.

Definition 4.1: Let (X,d) be a quasi pseudo metric space. A map $T: X \to X$ is called a c-pseudo contraction if there exist k, $0 \le k < \frac{1}{2}$ such that for all $x, y \in X$ the following inequality holds.

$$d(Tx,Ty) \le k \left[d(Tx,x) + d(y,Ty) \right]$$

Definition 4.2: Let (X,d) be a quasi-pseudo metric space. A map $T: X \to X$ is called a S-pseudo contraction if there exist k, $0 \le k < \frac{1}{3}$ such that for all $x, y \in X$ the following inequality holds.

 $d(Tx,Ty) \le k \left[d(Tx,x) + d(y,Ty) + d(x,y) \right]$

Now we define following definitions

Definition 4.3: Let (X, d) be a quasi-pseudo metric space. A map $T : X \to X$ is called a generalized c-pseudo contraction if there exist k, $0 \le k < \frac{1}{4}$ such that for all $x, y \in X$ the following inequality holds.

$$d(Tx,T) \le k \{ d(,Tx,x) + d(y,Ty) + d(Tx,y) + d(x,Ty) \}$$

Definition 4.4: Let (X, d) be a quasi-pseudo metric space. A map $T : X \to X$ is called a generalized S-pseudo contraction if there exist k, $0 \le k < \frac{1}{8}$ such that for all $x, y \in X$ the following inequality holds.

 $d(Tx,Ty) \le k \{ d(x,Tx) + d(x,Ty) + d(y,Tx) + d(y,Ty) + d(Tx,x) + d(Ty,x) + d(Tx,y) + d(Ty,y) \}$

Theorem 4.1:

Let (X,d) be a bi complete di metric space and let $T: X \to X$ be a generalized c- pseudo contraction then T has a unique fixed point.

Proof: Since $T: X \to X$ is a generalized c-pseudo contraction then there exist k, $0 \le k < \frac{1}{4}$ such that for all $x, y \in X$ the following inequality holds:

 $d(Tx,Ty) \le k \{ d(,Tx,x) + d(y,Ty) + d(Tx,y) + d(x,Ty) \}$

We shall first show that $T:(X,d^s) \rightarrow (X,d^s)$ is a generalized c-contraction.

Since for any $x, y \in X$ we have

$$d^{-1}(Tx, Ty) = d(Ty, Tx)$$

$$\leq k \left\{ d(Ty, y) + d(x, Tx) + d(Ty, x) + d(y, Tx) \right\}$$

$$\leq k \left\{ d^{-1}(y, Ty) + d^{-1}(Tx, x) + d^{-1}d(x, Ty) + d^{-1}(Tx, y) \right\}$$

$$d^{-1}(Tx, Ty) \leq k \left\{ d^{-1}(y, Ty) + d^{-1}(Tx, x) + d^{-1}d(x, Ty) + d^{-1}(Tx, y) \right\}$$

We see that $T:(X,d^{-1}) \rightarrow (X,d^{-1})$ is a generalized C-pseudo contraction therefore

$$d(Tx,Ty) \le k \{ d(Tx,x) + d(y,Ty) + d(Tx,y) + d(x,Ty) \}$$

$$\leq k \left\{ d^{s}(x,Tx) + d^{s}(y,Ty) + d^{s}(Tx,y) + d^{s}(x,Ty) \right\}$$

and $d^{-1}(Tx,Ty) \le k \left\{ d^{-1}(y,Ty) + d^{-1}(Tx,x) + d^{-1}(x,Ty) + d^{-1}(Tx,y) \right\}$

 $\leq k \left\{ d^{s}(y,Ty) + d^{s}(x,Tx) + d^{s}(x,Ty) + d^{s}(Tx,y) \right\} \text{ for all } x, y \in X$ Hence $d^{s}(Tx,Ty) \leq k \left\{ d^{s}(x,Tx) + d^{s}(y,Ty) + d^{s}(Tx,y) + d^{s}(x,Ty) \right\}$, for all $x, y \in X$

and so $T: (X, d^s) \to (X, d^s)$ is a generalized C- contraction.

By assumption (X,d) is a bi complete. Hence (X,d^s) is complete. There fore by theorem (4a) T has a unique fixed point. This completes the proof.

Corollary 4.1: Let (X,d) be a T₀-Isbell-Complete quasi pseudo metric spaces and $T: X \to X$ be a generalized c – pseudo contraction then T has a unique fixed point.

The proof follows from the proposition 2.1

Corollary 4.2: Any generalized c- pseudo contraction on a q-spherically complete T_0 ultra quasi metric space has a unique fixed point.

The proof follows from the proposition 3.1

Theorem 4.2:

Let (X,d) be a bi complete di metric space and let $T: X \to X$ be an generalized S pseudo contraction then T has a unique fixed point

Proof: As in the previous proof it is enough to prove that $T:(X,d^s) \rightarrow (X,d^s)$ is an generalized S –contraction.

Since $T: X \to X$ be a S –pseudo contraction then there exist k, $0 \le k < \frac{1}{8}$ such that for all $x, y \in X$ the following inequality holds:

 $d(Tx,Ty) \le k \{ d(x,Tx) + d(x,Ty) + d(y,Tx) + d(y,Ty) + d(Tx,x) + d(Ty,x) + d(Tx,y) + d(Ty,y) \}$

We shall first show that $T:(X,d^s) \rightarrow (X,d^s)$ is a generalized C-contraction.

Since for any $x, y \in X$ we have

 $d^{-1}(Tx,Ty) = d(Ty,Tx)$

 $d(Ty,Tx) \le k \left\{ d(y,Ty) + d(y,Tx) + d(x,Ty) + d(x,Tx) + d(Ty,y) + d(Tx,y) + d(Ty,x) + d(Tx,x) \right\}$

$$\leq k \begin{cases} d^{-1}(Ty, y) + d^{-1}(Tx, y) + d^{-1}(Ty, x) + d^{-1}(Tx, x) \\ + d^{-1}(y, Ty) + d^{-1}(y, Tx) + d^{-1}(x, Ty) + d^{-1}(x, Tx) \end{cases}$$

 $d^{-1}(Tx,Ty) \le k \begin{cases} d^{-1}(x,Tx) + d^{-1}(x,Ty) + d^{-1}(y,Tx) + d^{-1}(y,Ty) \\ + d^{-1}(Tx,x) + d^{-1}(Ty,x) + d^{-1}(Tx,y) + d^{-1}(Ty,y) \end{cases}$

We see that $T:(X,d^{-1}) \rightarrow (X,d^{-1})$ is a pseudo contraction.

Therefore

and

 $d(Tx,Ty) \le k \left\{ d(x,Tx) + d(x,Ty) + d(y,Tx) + d(y,Ty) + d(Tx,x) + d(Ty,x) + d(Tx,y) + d(Ty,y) \right\}$ $d(Tx,Ty) \le k \left\{ d^{s}(Tx,x) + d^{s}(x,Ty) + d^{s}(y,Tx) + d^{s}(y,Ty) + d^{s}(Tx,x) + d^{s}(Ty,x) + d^{s}(Tx,y) + d^{s}(Ty,y) \right\}$

$$d^{-1}(Tx,Ty) \le k \begin{cases} d^{-1}(x,Tx) + d^{-1}(x,Ty) + d^{-1}(y,Tx) + d^{-1}(y,Ty) \\ + d^{-1}(Tx,x) + d^{-1}(Ty,x) + d^{-1}(Tx,y) + d^{-1}(Ty,y) \end{cases}$$

$$\le k \begin{cases} d^{n}(Tx,x) + d^{n}(Ty,x) + d^{n}(Tx,y) + d^{n}(Ty,y) \\ + d^{n}(x,Tx) + d^{n}(x,Ty) + d^{n}(y,Tx) + d^{n}(y,Ty) \end{cases}$$
 For all $x, y \in X$

Hence

 $d^{n}(Tx,Tx) \leq k \begin{cases} d^{n}(Tx,x) + d^{n}(Ty,x) + d^{n}(Tx,y) + d^{n}(Ty,y) \\ + d^{n}(x,Tx) + d^{n}(x,Ty) + d^{n}(y,Tx) + d^{n}(y,Ty) \end{cases}, \text{ for all } x, y \in X$ and so $T: (X, d^{s}) \xrightarrow{} (X, d^{s})$ is a generalized s-contraction.

By assumption (X,d) is a bi complete. Hence (X,d^s) is complete. There fore by theorem (4a) T has a unique fixed point. This completes the proof.

Corollary 4.3: Let (X,d) be a T_0 -Isbell-Complete quasi pseudo metric spaces and $T: X \to X$ be a pseudo contraction then T has a unique fixed point.

The proof follows from the proposition 2.1

Corollary 4.4: Any s-pseudo contraction on a q-spherically complete T_0 ultra quasi metric space has a unique fixed point.

References

- Agyingi CA (2013) A fixed point theorem in non-Archimedean T₀-quasi-metric spaces. Adv Fixed Point theory 3: 667-674.
- Petals C, Fvidalis T (1993) A fixed point theorem in non-Archimedean vector spaces. Pro Amer Math Soc118: 819-821.
- Agyingi CA, Gaba YU (2014) A fixed point like theorem in a T0-ultra-quasimetric space. Advances in Inequalities and Applications Article-ID.
- Agyingi CA, Gaba YU (2014) Common fixed point theorem for maps in a T₀ultra-quasi-metric space. Sci J Math Resin press 4: 117-124.
- Gaba YE (2014) Unique fixed point theorems for contractive maps type in T₀ quasi metric spaces. AdvFixed point theory 4: 117-125.
- Kemajou E, PAK["]unzi H,Otafudu OO (2012) The Isbell-hull of a di-space. Topology Appl 159: 2463-2475.
- Kemajou E, PAK⁻⁻unzi H,Otafudu OO (2012) The Isbell-hull of a di-space. Topology Appl 159: 2463-2475.
- 8. Deza MM, Deza E (2009) Encyclopedia of Distances, Springer, Berlin.
- Bonsangue MM, Breugel FV, Rutten JMM (1995) Generalized Ultrametric Spaces: completion, topology, and power domains via the Yoneda embedding.
- 10. Chatterji KS, Acad CR (1972) Fixed point theorems, Bulgare Sci 25: 727-730.
- Shukla DP, Tiwari SK (23012) Unique fixed point for s-weak contractive mappings, Gen Math 4: 28-34.