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Introduction
Until now, the integration of nano-devices in circuits or systems 

dealing with advanced functions, has been underdeveloped to perform 
processing and information transport technology [1,2]. Recently, the 
wide gap between the fields of semiconductors, neuroscience and 
system design features was remarkably large despite the idea of linking 
the type of information processing, that takes are formed into practical 
integrated electronic devices. In order to accomplish this, the structures 
must be accurately place in the brain, with theories of computation and 
computer science dating back to the origins of computer science itself 
[3,4].

The full value, combining the previous three areas, will only be 
realized when the nano-devices modeled and optimized to be integrated 
from the giga-tetra-scale. Recent developments in nano-technologies 
are making available extremely compact and low-power devices, but 
also variable and unreliable solid-state ones that can potentially extend 
the offerings of availing CMOS technologies [5]. The major advantage 
of using artificial neural networks is training large amount of data sets 
and the output performance will depend upon the trained parameters 
and the data set relevant to the training.

One can justify the choice of methodology by the success of several 
applications based on neural networks for solving problems in pattern 
recognition (speech, image, forms), data analysis (Biological Inspiration, 
cluster  analysis, data from a manufacturing or commercial process), 
control parameters of water delivery and farm size and forecasting the 
inflow of  Dez dam reservoir by using Auto Regressive Moving Average 
(ARMA) and Auto Regressive Integrated Moving Average (ARIMA) 
models while increasing the number of parameters in order to increase 
the forecast accuracy to four parameters and comparing them with the 
static and dynamic artificial neural networks [6-8].

Studies of the operational principles of the nervous systems reveal 
a different conceptual and architectural approach to information 
processing. One of the most promising Single electronics and relatively 
well investigated concepts is the Single Electron Transistor “SET” 
technology, which was chosen because the operation of SET transistor is 
based on the quantized nature of charges moreover [9].  SET transistor 
is capable of performing more advanced functions than simple current 
switching based on its various properties: such as sensitivity to the 
environmental conditions, low power consumption, small sizes and 
possibility of hybridizing with perceptron [10]. Several single electron 
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memory cells have been proposed in the literature such us the single 
electrons flip-flop and the single-electron ring memory [11]. However, 
the fusion between different theories based on the integration of Single 
electron devices concepts of neuronal classification is not yet controlled. 

In section 1, we will start with an introduction of the “SET” theory. 
This part, will allow us to discuss in section 2 the combination between 
SET technology and artificial neural networks. Various blocks, for 
building large scale single-electron random access memories based on 
perceptron, will be proposed after presenting the complete perceptron, 
consisting of multiple synapses and a binary neuron. Each block can 
be simulated using SIMON simulator taken into account the offset 
charges in the electrical modeling [12]. In Section 3, we will study and 
simulate a concept of neural network architecture; this one is based on 
Van De Haar’s synapse-model [13]. We will discuss the analog synapse 
inputs values and their outputs which are the neuron inputs in order to 
build a perceptron used in recognition and classification applications.

The original idea of this work is reflected in modeling and presenting 
memory simulation results of the whole neural networks using single 
electron devices leading to low power dissipation, scalability to the sub-
nanometer regime and high charge sensitivity. To accomplish this, we 
present in section 4 a write/Erase/Read states chronogram instead to 
provide the charge stored in neuron outputs quantum dots.

Single Electron Transistor Theory
Among the new device concepts proposed for nanoscale 

architectures the single electron tunneling junction is a very promising 
one. It is made of two conductors separated from each other by a very 
thin insulator, called tunnel barrier. The insulating layer is so thin that 
at certain conditions current flow is possible [8]. In order to obtain 
an analytical model Averin and Likharev developed the orthodox 
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theory [14]. Such a model describes the basic physics of single-electron 
devices based on the free (electrostatic) energy of the system under 
consideration. In the orthodox theory, an adequate measure of the 

strength of this effect is the charging energy
2

=c
tot

eE
C

, where totC  is 

the total capacitance. When the island size becomes comparable with 
the de Broglie wavelength of the electrons inside the island, their 
energy quantization becomes substantial. In fact, the orthodox theory 
makes the following three major assumptions: Random background 
charges and initial charges on the islands are neglected, Co-tunneling 
is ignored and tunneling time is negligibly small in comparison with 
other time scales like time interval between two successive events [15].  

Single electrons are manipulated one by one through two tunnelling 
junctions under the control of bias and gates voltages applied to the 
quantum island. The tunnel junction rate, Γi , is formulated  based on 
the orthodox theory according to [16,17]:
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Where iR  is the tunnel resistance, Bk  is Boltzmann’s constant, 
∆ iE is the drop of electrostatic energy and T is temperature in Kelvin. 

The probabilities that the charge states are occupied can be 
determined from the recursion relation,
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Where iLΓ  is the tunnelling rate for electrons which 
tunnel from left through tunnel junction i and iRΓ  is the  rate  of 
electron tunnelling through junction i from the right side. The drain-
source current is:

( )Γ Γ−∑ 1R 1L
n

üüüüüü 			                 (3)

Artificial Neural Networks versus Single Electron 
Transistor

SET transistor is capable of performing more advanced functions 
than simple current switching. The device can calculate a weighted 
sum of multiple input signals at the gate level. The result of the sum 
operation determines the output state of the transistor. One of SET 
application is the memorization such as Single Electron Memory 
(SEM). SEM’s differs from the other conventional memories by the 
type, the complexity of the architecture, the write speed, the retention 
time, the endurance, the dependence of background charges and the 
operating temperature.

The combination of the SET and artificial neural network leads 
us to two fundamental elements: the synapse and the neuron and it 
have two main advantages. First, neural network requires a large 
number of neural nodes [18,19]. This implies each neuron has to be 
small in dimensions due to the miniaturization needs. Also, the power 
dissipation of each neural node has to be extremely low in order to have 
an acceptable overall power-dissipation [20]. Figure 1 represents the 
analogy between biologically inspired computational models (shaded 
figure) and the perceptron model (in bold).

First, a perceptron must be capable of driving other perceptron’s, 
this means that a buffer-function is required. Then, the overall signal 
amplification must be greater than, or equal to 1 in  order to avoid 
signal weakening Most important is that the perceptron needs: a 

storage device, a multiplying stage and  an overall signal amplification 
of at least 1.

The perceptron has an input layer containing all the basic inputs 
and one output layer consisting of one or more neurons whose 
activation function is generally all-or-nothing (or sign type). The 
monolayer networks allow for the resolution of difficult separation 
problems. The idea then is to add new intermediate layers which allow 
for other neurons whose activation functions are modified by learning. 
Information flows from the input to the output through the hidden 
layers. Figure 2 shows the complete neural network architecture. The 
operational principal of this network was pointed out from [21].

The input layer in Figure 2 is presented for the first time in this 
work. In this circuit, the input values Xi are represented using input 
voltages. The synaptic weights are represented using capacitors C11, 
C21, C31, C1m, C2m, Cnm. In this way, input voltages injected in weight 
capacitances will result in pondered charges q1, q2, qm [22].

The output of the hidden layer (1)
iY , has 1f  as activation function, 

the output (2)
iY of the second layer is performed by the activation 

function 2f . The circuit receives a voltage input from a sum-of-product 
unit to generate its internal state and produces the corresponding 
voltage output by the mean of a learning algorithm which adjusts the 
synaptic weights.

SEM Based on a SET Inverter Synapse Concept
The most fundamental application of SETs is as memory devices, 
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Figure 1: The biological inspired computational models (shaded figure) 
and the perceptron model (in bold) [20].

Figure 2: The architecture of multilayer perceptron.
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nonlinear parallel data in the other side. Our model of SET synapses 
devices is based on SET inverter shown in Figure 4 [24].

The SET inverter was first introduced by Tucker in 1992 [25]. It 
consists of four SET junctions with five capacitors connected to islands 
(a), (b) and (c), as shown in Figure 4. The biased-current SET synapse 
has an analog-input voltage Vin and a digital-output voltage Vout. The 
relationship between an input signal at the gate and the output signal at 
the drain of the device defines the transfer function of the synapse and 
it can influences the noise on a neural system depending on frequency 
spectrum of the noise sources in conjunction with the time constants 
of signal.

Single electron memory neural network based on SET 
inverter configuration

Figure 5 explains that the SET inverter, which is a direct translation 
of the CMOS inverter, is an alternative to the current-biased SET 
transistor too. The compact architecture presented and explicated 
for the first time presents many advantages. The first benefit of this 
configuration is that it is totally based on voltages [24]. The second 
advantage is to use a SET inverter as an interface circuit between the 
measuring device and the device under test. The SET inverter operates 
completely in the voltage domain and since the output voltage is 
buffered, this output voltage signal is directly measurable even if Ccable is 
relatively large with respect to the circuit parameters. An advantage of 
using the SET inverter instead of the SET transistor is that the transfer 
function from island to the (voltage) measuring device is better known.

The two offset-charge adjustment points, however, are considered 
as the main drawbacks of the SET inverter structure especially in large 
systems and the configuration reveals its complementary operation just 
with correctly adjusted island charges.

The proposed architecture shown in Figure 5 is composed of four 
input synapses. The output of each synapse Vout is moderated by a 
capacitance C = 400 aF much larger than those in the junctions of the 
transistors set value. In fact, with the use of inverter to shape the output 
nonlinearity and short interconnections, the voltage gain is provided 
and the signal restoration is assured. Another problem is the random 
background charge, to which no ultimate solution has been found. 
However, it should be noticed that the floating node is periodically 
reset after each operation and such action can lower the influence of 
random background charge fluctuations. A multiplication stage is 
provided by the coupling capacitances. Signals ‘Vxi’ and the weights 
‘Wi,j’ are multiplied by the synapse. All multiplied signals summed and 
fed through an activation function, which is performed by the neuron. 
The threshold level S0 is assumed to be 0.35 (which is an arbitrary 
choice). The output signal of the activation function is represented 
by signal Yj. The last block in the proposed architecture is an output 
neuron by which the decision will be taken. The input voltages injected 
in weight capacitances will result in pondered charges in the nodes a,b 
and c. The neuron circuit has been simulated with SIMON simulator 
with the operating temperature set to 0 Kelvin firstly which aims to 
gradually reach room temperature.

In Table 1 a translation from analog to digital of weight ‘Wi’ values 
are shown. Before the proposed architecture can be simulated, the 
desired output has been defined. In order to check if the output signal is 
the desired signal, a good test-set of input signals has to be created. The 
output signal is expressed in terms of the input variables Xi and Wi for a 
general case, where n equals the number of inputs. The output signal Y 
is expressed in terms of the input variables Xi and Wi for a general case:

Figure 3a shows a Scanning Electron Microscopy image of a SEM build 
on a thin SOI wafer [23]. The equivalent circuit in Figure 3b shows that 
the MOSFET controls the flow of electrons into and out of the memory 
node. This kind of memory devices allows us to store a few number of 
electrons. Since the SET is sensitive to a very small amount of charge, 
this memory device can be used as the fundamental building block of 
neural network.

In this section, we describe how the elementary properties of a 
synapse can be combined with a SET transistor. We expect to benefit 
from the advantages of high sensitivity SET, ultra-low consumption 
and memorization on one side and also from the robustness of 
perceptron in recognition applications, decision and separation of 

 

Figure 3: a) Scanning Electron Microscopy image of a fabricated memory 
device b) Its simplified equivalent circuit [23].

 

Figure 4: The SET inverter synapse.
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quantum dot, also increases. When reaches the threshold voltage an 
electron is transferred from the reservoir to the dot. After an electron 
transfer, the quantum dot voltage decreases by the fraction q per the 
total capacitance of the storage node ‘Ctotal’ after that the transfer of 
another electron in every SET in the memory especially in the neuron 
output SET. The case of decreasing input voltage is similar. The 
number of stored electrons is controlled by the Coulomb blockade 

If 
1

0
0

−

= ≥
∑
n

i i
i

X W
S

n

=>Y=1 ; else Y=0			                  (4)

The operation of the new proposed architecture is tested using 
SIMON simulator and results are presented in Table 2. We need two 
inputs (VX0 and Vx1). In this architecture, the output is toggled to "1" 
when one switch is "1" and one switch is "0". If both are "1" or "0", then 
the output is toggled to "0". VY1 and VY2 are the hidden layer output 
voltages of a perceptron.

Storing Charge in the Single Electron Random Access 
Memory

Memory operation is achieved as follows. As four input voltages 
Vx0, Vx1, Vx0 and Vx1 increases, the voltage which is applied to the SET 

 

Figure 5: The proposed Single electron memory neural network based on SET inverter configuration.

Weight W1.1 W2.1 W1.2 W2.2 W*1.1 W*1.2
Analog 
value (mV)

5.474 5.473 5.239 5.239 -4.9 5

Digital value 0.47621 0.47618 0.63917 0.63917 -1 0.9

Table 1: Variation of the weights through the proposed perceptron.

VX0 Vx1 VY1 VY2 Vout

0 mV 0 mV 4.42 mV 46.7 mV 4.54 mV
0 0 0 0 0

 digital
0 mV 6 mV 4.69 mV 4.5 µV 40 µV

0 1 0 1 1
digital

6 mV 0 mV 4.69 mV 4.51 mV -690µV
1 0 0 1 1

digital
6 mV 6 mV 270 µV 4.52 µV 4.69mV

1 1 1 1 0
digital

Table 2: Test-SET of Input and output signal.
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effect. In fact, the Coulomb blockade effect, by which the transfer of 

the second electron is precluded, is effective if ²
2 total

q KTC >> ; Where 

‘T’ is the temperature and ‘K’ is the Boltzmann constant. In the SET of 
the output neuron shown in the Figures 6 and 7, presence and absence 
of one or more electrons on the memory node represents the ‘0‘and 
‘1’ states. The stored charge is sensed a single-electron transistor. The 
temperature dependence of memory cell characteristics is studied at 
high temperature and we can obtain the similar chronogram shape up 
to 60 K. At room temperature, we note that the background charges 
have more impact for loss of the coulomb staircase charge and the 
thermal energy increases due to the additional thermoionic current 
that occurs when the electron transport.

The shape of control signals (Vx0=u1(t) and Vwi,j) , shown in 
Figure 6, is very important to observe the charge evolution ‘Q’ versus 
time. In order to break this lock, different potential signals were applied 
but it has retained for writing a starting ramp of 0s and for reading a 
ramp which starts just after writing.At first, the voltage Vwi,j is zero and 
there is no electron at the quantum dot. As Vwi,j increases to 4 mV, 
electrons are transported to the output. If  Vx is kept at 0 after writing, 
electrons are stored inside the quantum dot.

By increasing Vwi,j to 8mV, the number of stored electrons also 
increases to two. Figure 6 shows the storage of one electron in the 
RAM based on perceptron using only voltages bias in the synapses 
and neurons. Figure 7 shows a storage of electrons in the single 
electron memory used as neural network based on current-biased SET 
configuration. We set a positive pulse equal to 6 mV and we observe 
the influence of the synaptic weights modeled by Vwi,j values. In fact, 
the corresponding single electron memory stores one electron when 
the weight bias is equal to 6 mV and 2 electrons at 9 mV. Moreover, 

this memory configuration can generate the bias current and it has a 
reliable high resistance tunnel junction. 

All simulation results are obtained choosing in all tunnel junctions 
1aF the value of capacitors and 105 Ohm the value of resistors. We note 
that the same behaviour is obtained for temperatures below 60 K. To 
have an operation at room temperature, we must decrease the value of 
tunnel capacity and therefore play on the dimensional parameters of 
the SET.

Conclusion
Building blocks simulations were done using SIMON and 

MATLAB was used to obtain the output results of Single Electron 
Random Access Memory based on perceptron designs. From the 
biologically inspired computational models, we have obtained two 
perceptron with four inputs, based on single electron memory by 
transforming each exemplar of gaz densities in the environment into 
a data matrix. The most promising applications for our new neural 
memory based on SET are in pattern recognition such as gaz detector 
based on perceptron. Where the inputs are the basic proprieties of the 
chemical composition and the output gives the decision information 
about the rate existence of Carbon monoxide density. This suggestion 
is suitable for our proposed perceptron and he outputs provided by 
SIMON will be processed with MATLAB to detect if we have or not the 
dangerous Carbon monoxide density.
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