
Volume 10(5) 126-129 (2017) - 126

Research Article Open Access

Muntha et al., J Comput Sci Syst Biol 2017, 10:5
DOI: 10.4172/jcsb.1000262

Research Article Open Access

Journal of

Computer Science & Systems BiologyJo
ur

na
l o

f C
om

pu
ter Science & System

s Biology

ISSN: 0974-7230

J Comput Sci Syst Biol, an open access journal
ISSN: 0974-7231

*Corresponding author: Gogineni K, VIT University, Vellore, Tamil Nadu, India,
Tel: 9249433595; E-mail: gkailashnath1998@gmail.com

Received November 10, 2017; Accepted November 15, 2017; Published
November 18, 2017

Citation: Muntha SR, Prasad A, Gogineni K, Nikhil L, Harshavardhan VL (2017)
Comparative Analysis of Automatic Parallelization Techniques. J Comput Sci Syst
Biol 10: 126-129. doi:10.4172/jcsb.1000262

Copyright: © 2017 Muntha SR, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Abstract
With multicore design emerging as the chief design pattern for the microprocessor industry in a major way

constant efforts are being made to improve its performance. The only way to extract maximum performance from
a multicore based system as of now is through the automatic extraction of threads from sequential applications
with the assistance of tools including, compilers and runtime optimizers. The increasing popularity of clusters and
other similar forms of distributed computing calls for the requirement of automatic parallelization in compilers. This
requirement for techniques through which automatic parallelization can be achieved has set of the development of
various different methods with varying efficiencies. The objective of this paper is to test the efficiencies of two such
techniques by performing a comparative analysis of the techniques based on various criteria like time complexity for
instance. The techniques we are going to work on are namely the Scalar and Array Analysis technique and the Smith
waterman technique. As mentioned previously these techniques will be analyzed using various criteria to arrive at a
conclusion as to which one of them is superior performance wise.

Comparative Analysis of Automatic Parallelization Techniques
Muntha SR, Prasad A, Gogineni K*, Nikhil L and Harshavardhan VL
VIT University, Vellore, Tamil Nadu, India

Keywords: Parallel computing; Scalar analysis; Array analysis;
Smith Waterman technique; Dynamic algorithm; Sequence alignment;
Processing speed; Improved efficiency

Introduction
The intention of this project is to conduct a comparative analysis of

the performance of two algorithms namely the “scalar and array analysis
algorithm” and the “smith waterman algorithm”. The origin of these
algorithms can be traced back to two completely different fields, the
former was derived from the fundamental principles of data structures
and the later was derived from the fundamental principles used for gene
sequencing but, both these techniques can be used as effective solutions
for enhancing the field of automatic parallelization. Before discussion
about the working and the performance of these algorithms here is a
brief introduction on how these techniques might work.

Literature Review
Here are a few accounts of work done on this subject previously.

These researchers have performed analyses on these algorithms using
different parameter in order to gain more knowledge and different
perspectives that could be associated with the algorithms. They also
deal with the applications and use of these algorithms in the field of
parallelization. This paper presents you with an algorithm which is
capable of performing a detailed analysis.

Along which a given number of values flow. The give program is
explained very simply in an imperative language. The iteration vector
of the a given referencing statement is a function of the result which
is the name of the statement which acts as a pre-cursor, this applies
to any array or scalar function. The objective of the paper is to discuss
the various methods of application which includes using array and
scalar analysis for program verification. It aims on reconstructing and
optimizing a compiler so that it can do the work effectively [1].

This paper deals with the survey conducted on the recorded
developments done so far. It aims on providing very detailed and holistic
information about the already existing approaches of alignment and
sequencing of genes by applying the smith waterman algorithm. It also
provides an account on the strengths and weaknesses of the implementation
of this algorithm. It also provides details about how the older approaches
are different than the existing approaches. It also provides some possible
solutions to optimize the smith waterman algorithm, accelerate its
functioning and make it much more effective [2].

This paper aims on provides an understanding on how process of
parallelization is similar to the local sequence alignment and how smith
waterman algorithm can be used in the filed o parallel computing. It also
deals with methods to execute the smith waterman algorithm in a very
effective and quicker and subjects a few simple yet effective ways to do so.
One such method would include using the a GUP instead of a CPU to cope
with the problem of the constrained speed of accessing the memory (“it is
supposed that using GPUs in parallel for execution of the algorithm may
speed up the process by 45 times approximately”) [3].

This paper sheds light on how to use the approach of parallel
programing to calculate the cell values in matrixes which are used in
smith waterman algorithm while performing sequence alignment. It
deals with the application of this bioinformatics based algorithm and
also highlights the speed and efficiency concerns that might be caused
by implementing the algorithm on a serial commuter. It focuses on the
segments of algorithms which can possibly be elevated using techniques
related to parallel computing. The mainly examine this approach using
“Open MP” and “Cuda C” [4].

This paper highlights the increasing role of parallelization in the
world of computing. It discusses about various different techniques that
were used in parallelization in the past and compares them to the ones
that are being used presently. It chiefly discusses in detail about one
such algorithm used for parallelization i.e., the scalar analysis and array
analysis. It discusses in detail how these techniques go hand in hand
to analyze a given program. It also sheds some light on the working,
advantages and disadvantages of the algorithm [5].

Citation: Muntha SR, Prasad A, Gogineni K, Nikhil L, Harshavardhan VL (2017) Comparative Analysis of Automatic Parallelization Techniques. J
Comput Sci Syst Biol 10: 126-129. doi:10.4172/jcsb.1000262

Volume 10(5) 126-129 (2017) - 127
J Comput Sci Syst Biol, an open access journal
ISSN: 0974-7231

Scalar and Array Analysis
Scalar analysis

This analysis is actually a combination of two different types of
analysis that work to gather in order to analyses and infiltrate data. The
function of scalar analysis is to dissect the program and subsequently
analyse variables of scalar nature and how they are inter dependent on
each other. These dependencies can be defined using a quotation by the
Hall et al. [5] which describes it as being the situation where a memory
location written on one iteration of a loop is accessed (read or write) on
a different iteration.

This analysis can also be used to check the interrelations between
the array elements and their respective indices. This analysis also
known as the scalar symbolic analysis is conducted by changing the
available indices into simple and easily deducible equations that express
the index pertaining to an array. This simplification makes the problem
a very simple integer based programing problem, this problem as many
possible solutions but the one which is more time efficient is chosen.
One major con of this problem is that it can be applied to programs
with a specific type of construct an example of this situation is that if a
linear approach is used to access an array through an equation which
acts as a multi-dimensional array then the analysis may fail to execute.

Array analysis

Array analysis can be considered as the counter part to the scalar
analysis. Array based analysis to detect “privatize -able arrays” is one of
the many methods of array analysis. The method used to allot a replica
of the finished or working part of a given array every parallel instance
which then further refers to it as the data without any intermediate
dependencies for the portion in question is known as “privatization”.
The possibility of an array being privatized can only be determined after
an equation to access the array after analysis.

The loop has to undergo a major transformation so as to be capable
of parallelize a given segment of code. In case there is any discrepancy
in the process of transformation, the whole analysis would fail which
would result in the failure of the parallelization of the fore mentioned
segment of the code. These analyses are the two most effective and
power full tools that can be used to parallelize a given code based on
analysis of (“scalar and array variables”).

The Smith Waterman Algorithms
Smith water man algorithm was initially generated for finding

the similarities between two DNA sequences in order to derive the
evolutionary relationship between them. This algorithm searches
throughout and along the DNA in order to find similarities between
two sequences. This alignment of the sequences occurs at a small level
in part by part fashion sequentially, this kind of alignment known as the
“local alignment” is considered the best way to find all the variations and
similarities between a couple of sequences. So, basically the function of
the smith-water man algorithm is to optimally align the sequences.

Optimal local alignment

The process of comparing the given query sequence to the
sequences available in the database at a character to character level is
known as Optimal local alignment. The smith waterman algorithm is
entirely dynamic in function and unlike Needleman-Wunsch algorithm
which is used for global alignment (and is considered a precursor to
“Smith-Waterman”) this algorithm does alignment in a local fashion
so that every small part of the DNA is optimized similarly. Since it is

based on dynamic programing this algorithm works by dividing and
sub dividing the problem and then finally putting together the solution
of all these sub problems to attain a final answer covering the whole
entire problem. Implementing this form of dynamic programing, the
Smith-Waterman algorithm finds the optimized alignment of the given
sequences, which might be staring and ending at any specific location
in the sequences. The highlights of the Smith-Waterman Algorithm
approach is:

•	 Same level of sequencing occurs at a given sub level.

•	 Used majorly by large bioinformatics based industries.

•	 Since the approach is dynamic the algorithm can be used to
optimally sequence the sequences at every minor level.

Detailed Account of the Approach followed by the
Algorithms
Scalar and array analysis

Scalar analysis: This analysis is very specific and only applicable
to a certain niche program constructs. This analysis is generally used
in synchrony with “array analysis”, they are generally applied together
so as to ensure complete productivity and efficiency. What basically
happens in this analysis is that a program is broken down on order to
analyses the inter dependencies that exists between scalar vectors. A
dependency can be defined using a direct quotation by Hall et al. [5]
(“when a memory location written on one iteration of a loop is accessed
(read or write) on a different iteration”).

In this analysis array elements can be checked using their respective
unique indices, it is also commonly known as “scalar symbolic
analysis, pertaining to the fact that is performed by manipulating and
transforming the give indices of the array so that they become more
simplified and solvable. This would basically mean that the problem
becomes much less cumbersome to deal with and also becomes multi-
dimensional making it more time saving.

Array analysis: The counter analysis is performed by the array
based analysis. There are various ways to perform this analysis, the
most popular one being analyzing the data in an array to detect the
privatisable ones. Privatization can be defined as a method where each
parallel instance is provided with a complete and exact replica of the
functioning segment of an array so that it would reference it as the data
with no dependencies to carry forward, which might be linked to that
particular segment. The possibility of privatization of the array might
be questionable, whether or not it can be done can only be determined
if there is a particular equation that might get you to access the array.

Algorithm
Step 1: Scalar analysis divides the program into pieces to analyze

scalar variables used in it.

Step 2: It sees for the dependencies, it does so by transforming
indices to computable affine equations which gives the indices of array.

Step 3: Finds out the code segments which can be parallelized with
the above dependence complications.

Step 4: The parts that aren’t found to be parallelizable are left out for
array analysis to make them parallelizable. This works over array data
to find parallelizable arrays.

Step 5: Otherwise they won’t parallelize (Figure 1).

Citation: Muntha SR, Prasad A, Gogineni K, Nikhil L, Harshavardhan VL (2017) Comparative Analysis of Automatic Parallelization Techniques. J
Comput Sci Syst Biol 10: 126-129. doi:10.4172/jcsb.1000262

Volume 10(5) 126-129 (2017) - 128
J Comput Sci Syst Biol, an open access journal
ISSN: 0974-7231

Smith waterman algorithm

Initially this algorithm was designed to be applied in the field of
bioinformatics but due to its dynamic nature and ability to improve
performance it has found application in the field of computer science
more specifically in the parallelization sector. Even though it is used to
determine the alignment and similarity within sequences it can be used
in high end GPU units, graphic processing in desktops and can also be
used to deliver exceptional computational capabilities. They have been
recently been exploited for the general purpose of computation by the
“CUDA” programming environment on “Nvidia” GPUs and ATI based
stream computation method on (“ATI based CPU’S”).

It is based on an execution methodology which is based on parallel

analysis of two strings. It provides a major boost in the execution
time almost twice that of a regular algorithm. It is capable of reducing
the time complexity from O(mn) to O(m+n) in case of two actively
participating strings and form O(mnk) to O(m+nk) in case of multiple
sequence alignment. This algorithm provides a framework that is
capable of reducing time without compromising the sensitivity of the
crucial tasks.

Since it is a dynamic approach it goes on by working on small
parts and further amalgamating them in order to get a result which is
accurate in a very short period of time.

Algorithm
•	 Give scores to each of the cell in the matrix according to the

formula.
Figure 1: Yed representation of the algorithm.

Figure 2: Yed representation of the algorithm.

Citation: Muntha SR, Prasad A, Gogineni K, Nikhil L, Harshavardhan VL (2017) Comparative Analysis of Automatic Parallelization Techniques. J
Comput Sci Syst Biol 10: 126-129. doi:10.4172/jcsb.1000262

Volume 10(5) 126-129 (2017) - 129
J Comput Sci Syst Biol, an open access journal
ISSN: 0974-7231

•	 Once the scores are given go to the element in last row and last
column for global alignment and for the cell having highest value
for local alignment.

•	 From this selected element traverse to the previous cell that led to
the current value of this cell.

•	 You will reach an end point while traversing. Whenever there is
an arrow from right to left insert a gap in the lower strand and
vice versa. Whenever it is going diagonally match the upper and
lower strand.

•	 Then calculate the score obtained from the score table.

•	 If two alignments are obtained the one with the least score is
optimal. Formula:

F=Max{H(x-1, y-1)+S, H(x-1, y)+G, H(x, y-1)+G}

Where, G is gap penalty; H is the value at the specified position; S
is the score at the cell.

General scoring set values:

S is:

G=-2(For mis-match).

S=+2(For match).

G=-1(For insertion/deletion) (Figure 2).

Conclusion
So, we can finally conclude that the smith-waterman algorithm

is a more effective and economical solution to increase the efficiency
and reduce the time consumption in the field of parallelization. This
algorithm follows an approach resembling the butterfly effect which
basically means that it acts on the sub units and then eventually

progresses to the higher levels whilst adding up the resultant values so
that the final outcome could be reached very quickly and also free of
any sort of errors or discrepancies. Dividing a given task into smaller
sub parts would reduce the time consumption by a landslide, a task
which generally would take a long time can now be completed in almost
a fractional amount of the time without the quality of the outcome
being compromised.

Apart from that this technique has a very easy operation principle;
it follows the dynamic approach of comparative analysis at a local level
which would mean the program would have little to know errors. It
works on the basis of simple mathematical concepts. One other thing
to be note here is the flexibility of the algorithm. It can be applied
in various different fields to simplify and speed up work. There are
almost no assumptions required while implementing this algorithm
which would give a proper leverage to the user, important parameters
can be calculated certainly and exactness. All in all we could also
say that implementation of this algorithm would make processes of
parallelization quicker, accurate and easier.

References

1.	 Feautrier P (1191) Dataflow Analysis of Array and Scalar References. Inter J
Para Program 20: 23-53.

2.	 Prabhu AG, Aithal G (2014) Automatic Parallelization for Parallel Architectures
Using Smith Waterman Algorithm - Literature Review. Int J Eng Inven 3: 1-11.

3.	 Khajeh-Saeed A, Poole S, Perot JB (2010) Acceleration of the Smith-Waterman
algorithm using single and multiple graphics processors. J Comp Phy 229:
4247-4258.

4.	 Chaibou A, Sie O (2015) Comparative Study of the Parallelization of the Smith-
Waterman Algorithm on OpenMP and Cuda C. J Comp Commu 6: 107-117.

5.	 DiPasquale N, Gehlot V, Way T (2005) Proceedings of MASPLAS’05 Mid-
Atlantic Student Workshop on Programming Languages and Systems.
University of Delaware, USA.

https://link.springer.com/article/10.1007/BF01407931
https://link.springer.com/article/10.1007/BF01407931
http://www.academia.edu/7430215/Automatic_Parallelization_for_Parallel_Architectures_Using_Smith_Waterman_Algorithm-Literature_Review
http://www.academia.edu/7430215/Automatic_Parallelization_for_Parallel_Architectures_Using_Smith_Waterman_Algorithm-Literature_Review
http://www.sciencedirect.com/science/article/pii/S0021999110000823
http://www.sciencedirect.com/science/article/pii/S0021999110000823
http://www.sciencedirect.com/science/article/pii/S0021999110000823
https://www.scirp.org/journal/PaperInformation.aspx?PaperID=57254
https://www.scirp.org/journal/PaperInformation.aspx?PaperID=57254
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.5097&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.5097&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.5097&rep=rep1&type=pdf

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Literature Review
	Scalar and Array Analysis
	Scalar analysis
	Array analysis
	The Smith Waterman Algorithms
	Optimal local alignment

	Detailed Account of the Approach followed by the Algorithms
	Scalar and array analysis
	Algorithm

	Conclusion
	Figure 1
	Figure 2
	References

