Comparison between Immunological and Molecular Based Methods for Diagnosis of Mycobacterium Infections in Cattle, Buffaloes and Human in Egypt

Elsayed MSA*, Elkerdasy AF2, Akeila MA4 and Elsayed AA5

1Department of Bacteriology, Mycology and Immunology, University of Sadat City, Minufia, Egypt
2Department of Biochemistry, University of Sadat City, Minufia, Egypt
3Department of Biomedical Science, College of Pharmacy, Shapra University, Al-Dawadi, Saudi Arabia
4Department of Microbiology, Alexandria University, Egypt
5Department of Internal medicine and Animal Infectious Diseases, Cairo University, Egypt

Abstract
Pathogenic mycobacteria are notorious for infections in animals and human their diagnosis hampered by atypical types. Animal products consumption is responsible for majority of diseased cases worldwide. Comparison between diagnostic tests appears to be lacking in Egypt. Therefore, this study aimed to evaluate diagnostic values of Flow-cytometry, Immuno-chromatography, Low-cost Density Microarray (LCD) array, High-Performance Liquid Chromatography (HPLC) and multiplex Polymerase Chain Reaction (PCR). Comparative Intradermal Tuberculin Test result was 1.31%. M. bovis and M. kansasii were high from animal samples while, M. chelonae and M. malmoense from human samples using LCD array, HPLC and multiplex PCR confirmation. Serological tests estimated with differences regarded to different antigens. Chembio DPP VetTB Assay gave the highest sensitivity result 94.8% while, TB-ST (Tuberkulose Schnell test) test kit showed the lowest 82%. Flow-cytometry, CD2, CD4, CD8 and δγ WC1+ cells were high in tuberculin-positive cases and low in negative proving pathogenic mycobacterial infections of tuberculin-positive cases. (LCD) array, (HPLC) and multiplex (PCR) proved sensitive discriminatory methods while; serologic assays and flow-cytometry represent rapid diagnostic tools. Further investigations required to improve the sensitivity and specificity of these tests. These results elucidate the importance of different diagnostic tests and considered backbone for future researches.

Keywords: Mycobacterium; Flow-cytometry; Immuno-chromatography; LCD array; PCR; HPLC

Introduction
Bovine tuberculosis is a paramount notifiable disease in dairy herds caused by M. bovis, crucial bacteria of wide host spectrum; affects many mammal species, humans, and wild animals those act as a reservoir and hamper its eradication [1-7]. It belongs to Mycobacterium tuberculosis Complex MTC which includes M. tuberculosis, M. bovis, M. caprae, M. microti, M. canetti, M. pinnipedii, and M. africana. Perception of M. bovis pathogenesis elucidates its presence, propagation, and transmission [8-14]. Ante-mortem screening basically relies on tuberculin skin test, serologic tests, cytokine assays as indirect diagnostic methods. These tests may be limited by lack of species-specific reagents and validation, frequent captures to administer and record results, animal injuries (i.e., TST) and sample-handling requirements [15-18]. Although the sensitivity and specificity of serological assays may increase using specific antigens constituting alternative TB diagnostic tools [4]. Cell-Mediated immune response is the major host response to mycobacterium infections and is complicated by many significant differences. A common problematic theme is the prolonged latent asymptomatic period which can last for many years. Fundamentally, T cells are cells of major concern in this immune response. Centering upon T helper-1cells (Th-1) it plays vital role during latency that correlates to the control of pathogen proliferation and progression. Many studies focused on the protective role attributed to CD4, CD8, and γδ T cells [7] and CD2. Detection of changes in these cells considered as diagnostic markers for mycobacterium infection [15]. Moreover, Low-Cost and Density DNA microarrays (LCD) considered easy to use, sensitive and specific molecular tools for diagnosis of mycobacterial infections [6]. Furthermore, High-Performance Liquid Chromatography (HPLC) could be used for mycobacterium identification through analysis of mycolic acids with great specificity [10].

Hence, this study was planned to compare Flow-cytometry, Immuno-chromatography, Low-cost Density Microarray (LCD) and High-Performance Liquid Chromatography (HPLC) for rapid detection of mycobacterium in samples and isolates from cattle, buffaloes, and human cases.

Methodology
Tuberculin test
Comparative Intradermal Tuberculin Test of 6000 Holstein-Frisian cattle and native breed buffaloes. Briefly, after shaving two sites on one side of the neck (12 cm apart) and recording skin thickness initially, 0.1 ml of avian tuberculin PPD-A (Avian PPD 25,000 IU/ml) was injected intradermal into the upper site and an equivalent dose of (Mammalian or bovine PPD tuberculin: 2 mg/ml) injected into the lower site of the neck, 72 h post injection the skin thickness measured again and recorded. The corresponding thickness ≥1 mm to <4 mm, ≥1 mm to <3 mm, and ≥1 mm to <2 mm classified as doubtful result. The result considered negative if skin response <1 mm and positive if skin fold thickness of ≥4 mm [2].

Sampling and Cultivation
Animal samples: Blood samples collected from 120 cattle and...
Table 1: Utilized monoclonal antibodies.

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Ig isotype</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCA1653F</td>
<td>IgG2a</td>
<td>CD4</td>
</tr>
<tr>
<td>MCA837F</td>
<td>IgG2a</td>
<td>CD8 CD8 alpha</td>
</tr>
<tr>
<td>MCA838G</td>
<td>IgG2a</td>
<td>WC1+ 6y TCR1 chain</td>
</tr>
<tr>
<td>MCA833F</td>
<td>IgG1</td>
<td>CD2</td>
</tr>
</tbody>
</table>

Serological testing and Immunochromatography

Using Acon rapid test for diagnosis of *M. tuberculosis*. Chembio DPP Vet TB test for *M. tuberculosis* and *M. bovis*. TB-ST (Tuberkulose Schnelltest) test Lionex diagnostics and therapeutics GmbH and *Diatrita tuberculosis* rapid test according to the manufacturer instructions.

High-performance liquid chromatography (HPLC)

Data Analysis

Data analyzed by Statistical Analysis System software package SAS for Windows, version 8 (SAS Institute, Cary, NC). Independent t-test used and the significant differences between flow-cytometer means represented by Mean ± SE and comparison between data to detect significant difference between that of tuberculin positive and negative cases.

Results

Ante-mortem intradermal testing and slaughter house examination

There found low proportions of tuberculin-positive cases which was detected by comparative tuberculin testing 79/6000 (1.31%). Significant difference was found between VL and NVL (<0.0001) (Table 2).

Isolation and identification of mycobacterium species from various lesions

There located weak downhill (negative) linear relationship (r): -0.173 between animal lesions, culture, and microscopy. It was found that only 51/89 (57.3%) were positive for isolation due to the absence of isolation from calcified pulmonary and digestive lesions and diminished isolation from NVL. On the other hand, human samples gave highest isolation 10/10 (100%) from (Table 3).

Molecular identification of mycobacterium isolates by LCD array, HPLC and multiplex PCR

M. bovis represented 20 (80%) and 3 (42.9%) from VL and NVL isolates for *M. kansasiis* only 4 (16%) from VL. *M. chelonae* and *M. malmoense* expressed 2 (20%) and 1(10%). Perfect uphill (positive) linear relationship (r): +1 between LCD array on tissue and corresponding isolates added to that, between LCD array, HPLC

Table 2: Results of tuberculin test and post mortem examination. (Significant difference between VL and NVL is <0.0001).
Post-mortem findings	No. of samples	Culture and microscopy
Generalized (VL) | 7 | 7 | 100%
Localized head lymph nodes (VL) | 8 | 7 | 87.5%
Pulmonary calcified (VL) | 15 | -ve | 0.0%
Pulmonary uncalcified (VL) | 8 | 8 | 100%
Digestive (VL) | 10 | -ve | 0.0%
Mixed (VL) | 12 | 12 | 100%
Non Visible Lesion (NVL) | 19 | 7 | 15.78%
Total | 89 | 51 | 57.3%
Human | 10 | 10 | 100%

Table 3: Results of bacteriological examination of animal and human samples. [Weak downhill (negative) linear relationship (r) = 0.173 between collected samples isolation and microscopy].

<table>
<thead>
<tr>
<th>Type of samples</th>
<th>No. of isolates</th>
<th>The result of LCD array</th>
<th>The result of HPLC on culture</th>
<th>The multiplex PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle and buffaloes VL.</td>
<td>25</td>
<td>20 (80%) MTC</td>
<td>20 (80%) MTC.</td>
<td>20 (80%) M. bovis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4(16%) M. chelonae</td>
<td>4(16%) M. kansasii.</td>
<td>Not performed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 (4%)*</td>
<td>1 (4%)*</td>
<td>Not performed</td>
</tr>
<tr>
<td>Cattle and buffaloes VL.</td>
<td>7</td>
<td>3 (42.9%) MTC</td>
<td>3 (42.9%) MTC</td>
<td>3 (42.9%) M. bovis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 (57.1%)*</td>
<td>4 (57.1%)*</td>
<td>Not performed</td>
</tr>
<tr>
<td>Human samples.</td>
<td>10</td>
<td>2 (20%) M. chelonae</td>
<td>2 (20%) M. chelonae</td>
<td>Not performed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (20%)*</td>
<td>2 (20%)*</td>
<td>Not performed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(10%) M. malmoense</td>
<td>1 (10%) M. malmoense</td>
<td>Not performed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 (50%) Negative</td>
<td>5 (50%) Negative</td>
<td>Not performed</td>
</tr>
</tbody>
</table>

Untypable (means got mycobacterium DNA but not similar to LCD patterns, HPLC no similarity (means gave curve but not similar to listed species). Perfect uphill (positive) linear relationship (r): +1 between LCD array on tissue and corresponding isolates and between LCD array and HPLC.

Table 4: Molecular identification by LCD array, HPLC and multiplex PCR confirmation of Mycobacterium tuberculosis complex.

Clinical evaluation of sensitivity, specificity, positive and negative predictive values of antigen rapid TB test kits

Chembio DPP VetTB Assay gave the highest sensitivity results with 94.8% while, TB-ST (Tuberkulose Schnelltest) test kit was the lowest with 82%. Furthermore, Acon test gave the highest specificity 96% and Chembio DPP VetTB Assay was the lowest 88.9% (Table 5).

Flow-cytometric evaluation of tuberculin positive and negative animals proved a noticeable increase in tuberculin-positive cattle. CD2+ cells soared over than 3 times, CD4 was twice that of tuberculin-negative cattle. Moreover, from tuberculin positive buffaloes CD2+ and CD8 were twice more the counts of their counterparts from tuberculin negative buffaloes.

Significant difference (P<0.0001) present between the counts of CD2+, CD4, CD8 and WC1+δγ of tuberculin-positive from counts of tuberculin-negative animals (Table 6).

Discussion

M. bovis is a crucial infectious agent of wide host spectrum besides cattle it affects other mammal species including humans. It belongs to Mycobacterium tuberculosis Complex members [14-16]. Interestingly, the overall incidence level of Mycobacterium in Table 2 was 1.31% lower than 2015 records from Egypt [23]. On the contrary, nearly similar to obtained results at Mozambique [27]. This low percentage attributed to regular commitment with test and slaughter program of the authorities to control the spread of infections.
Chromatogram 1: M. bovis.

Chromatogram 2: M. kansasii.

Chromatogram 3: M. chelonae.

Chromatogram 4: M. malmoense.
Notably, the obtained VL and NVL results were analogous to that from Ireland 2013 [25]. In comparison with recent records from Egypt the VL was higher than 2015 records [23] while the NVL lower than these records. Significant difference was found between VL and NVL (<0.0001) that considered a feature of M. bovis infections that cause variation in the shape and distribution of lesions with respect to the isolation rate 57.3% from Table 3 nearly like that from cattle in Ethiopia after 2010 data [3]. The obtained isolation result from human sputum isolation rate 57.3% from Table 3 nearly like that from cattle in Ethiopia.

Isolation and identification of Mycobacterium species from various lesions in different organs

This mainly reflects various routes of infection and even possible secondary spread within the animal body.

Identifying Mycobacterium species using traditional methods is time consuming and expensive. For this reason, LCD array, HPLC and multiplex PCR confirmation performed here as attractive alternatives to the most traditional techniques. That’s mainly due to the high sensitivity and specificity of these diagnostic techniques:

From the results of molecular identification of VL tissue samples and culture (Table 4), Figures 1 and 2 and chromatogram 1, it was found that 20/25 (80%) confirmed to be from MTC members this result comes consistent with results from Brazil during 2014 [1].

And comparing the results from VL and NVL to data from the USA in 2012 [9], the isolation was lower, molecular identification results of MTC were higher while, that for the atypical was lower.

The incidence of non-tuberculous mycobacteria (NTM) infections has increased over the past couple of decades after reports from Canada [5]. Concerning molecular confirmation of results of M. kansasii Table 4, Figure 2 and chromatogram 2 from VL tissue and culture was 4/25 (16%) higher than results reported in USA from 2004 to 2011 [28] But comport with him in the possibility to isolate non-tuberculous mycobacteria from gross tuberculous lesions.

Over and above, the results of molecular identification from NVL tissue samples and culture positive samples Table 4 proved that 3/7 (42.9%) belong to MTC members. The untypable isolates were 4/7 (57.1%) lower than results obtained from Project SE3262, funded by Department of Environment, Food and Rural Affairs, UK (www.defra.gov.uk) [25].

From Table 4, Figure 1 and chromatogram 3, the molecular confirmation of mycobacterial DNA from human samples and isolates M. chelonae represented 2/10 (20%) comply with data reported from northeastern USA [24].

Moreover, only 1/10 (10%) (Table 4), Figure 1 and chromatogram 4 proved M. malmoense which confirmed by reports from Canada [5] Great correlation expressed between LCD array, HPLC and multiplex PCR as stated after results from Texas Department of Health USA [11]. M. bovis was most often isolated from cattle and buffaloes besides atypical species as M. kansasii. M. chelonae and M. malmoense reported from human cases with no evidence of pathogenic mycobacterium infection.

From Table 5, sensitivity and specificity of Acon test nearly comparable to results from Pakistan [12]. The results of DPP VetTB assay and TB-ST (Tuberkulose Schnell test) higher than published data from National Animal Disease Center USA, and Brazil [17-22], the variability in readings of different serological tests could be attributed to the stage of mycobacterium infection and the different antigens contained in each test.

With regard to data obtained in Table 6, it was trenchant that CD2, CD4, CD8 and δy WC1+ from M. bovis infected cattle and buffaloes higher than tuberculin negative cases. This basically confirms infection with pathogenic mycobacterium especially M. bovis and comes in agreement with results gained from the UK and USA [13-29]. This evidence indicates in vivo activation of these populations and great probability of being a diagnostic markers of pathogenic mycobacterium infection.

Conclusion

This is the first report in Egypt about comparing different diagnostic techniques to detect Mycobacterium infections. It is clear that lower rates of pathogenic Mycobacterium species present in Egypt. But, still the low sensitivity of tuberculin test constituting a nightmare which calls for finding rapid, sensitive and specific ante-mortem diagnostic tool. Although (LCD) array, (HPLC) and multiplex (PCR) proved great sensitivity they override culture in being low time consuming methods. Serological tests and flow-cytometry are promising but further investigations using different antigens in different stages of infection are required.

References

tuberculosis eradication in caprine flocks in Castilla y Leon (Spain).

3. Biffa D., Bogale A. & Skjerve E.

5. Cowan C.D., Hawboldt J.J. & Bader M.
Pulmonary infection due to *M. malmoense* in a patient with Crohn’s disease.

6. El Sayed M. S. A.
LCD array and IS900 efficiency in relation to traditional diagnostic techniques for diagnosis of *M. avium* subspecies paratuberculosis in cattle in Egypt.

7. Flynn J. L. & Chan J.
Immunology of tuberculosis.

HPLC protocol for identification of Mycobacterium spp. from clinical samples of human and veterinary.

9. Guarnier J.
Detection of microorganisms in granulomas that have been formalin-fixed: review of the literature regarding use of molecular methods.

The use of High Performance Liquid Chromatography to speciate and characterize the epidemiology of mycobacteria.

Identification of M. tuberculosis and *M. avium* complex directly from smear-positive sputum specimens and Bactec-12B cultures by high performance liquid chromatography with fluorescence detection and computer-driven pattern recognition models.

Modulation of immune responses to *M. bovis* in bovine cells depleted of *β*24+ T Cells.

Complete genome sequence of *M. bovis* clinical strain 1595, isolated from the laryngopharyngeal lymph node of south korean cattle.

Whole-Genome sequences of *M. bovis* strain MBTUR-001, isolated from fresh bovine infected samples.

Rapid detection of serum Antibody by dual-path platform VetTB assay in white-tailed deer infected with *M. bovis*.

18. Maas M., Michel A. L. & Rutten V. P.
Facts and dilemmas in diagnosis of tuberculosis in wildlife.

19. Mackie A. M. & McCartney P.
Practical medical microbiology.

Bovine tuberculosis.

Detection of *M. bovis* and *M. tuberculosis* from clinical samples by conventional and molecular techniques in Egypt.

Evaluation of Lipex TB kits and mycobacterial antigens for IgG and IgA detection in cerebrospinal fluid from tuberculosis meningitis patients.

23. Shereen A. M., Sobhy G. & El-Maghaby A. S.
Assessment of routine and detailed inspection of tuberculous lesions in tuberculin reactor cattle.

M. chelonae-acnesus complex associated with sinopulmonary disease, North-eastern USA.

25. Stewart L.D., McNair J., McCallan L., Gordon A. & Grant I. R.
Improved detection of *M. bovis* infection in bovine lymph node tissue using Immunomagnetic Separation (IMS)-based methods.
Plos One. 2013, 8: e56834.

Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of *Mycobacterium tuberculosis*.

Bovine tuberculosis and brucellosis in cattle and African buffalo in the Limpopo National Park, Mozambique.

28. Thacker T.C., Robbe-Austerman S., Harris B., Van Palmer M. & Waters W.R.
Isolation of mycobacteria from clinical samples collected in the United States from 2004 to 2011.

29. Waters W.R., Palmer M.V., Thacker T.C., Davis W.C., Sreevatsan S., Coussens P., Meade K.C., Hope J.C. & Estes D.M.
Tuberculosis immunity: Opportunities from studies with cattle.