Comparison of Illumigene, Verigene, and AmpliVue for Rapid Molecular Detection of Clostridium difficile in Pediatric Stool Specimens

Charlie J. Sailey1,2,3*, Jackie Neary2, Angie Rounsavall1 and Gail L. Woods2,3

1Molecular Testing Labs, Vancouver, WA 98684, USA
2Arkansas Children’s Hospital, Department of Laboratory Medicine, Little Rock AR, USA
3Department of Pathology and Laboratory Medicine, University of Arkansas for Medical Sciences, Little Rock AR, USA

Abstract

Background: Pediatric Clostridium difficile infection (CDI) has been steadily rising over the past decade and is associated with increased morbidity and mortality. Rapid and accurate diagnostic testing is important in medical management. Due to the low sensitivity of enzyme immunoassays, and the complexity of culture based methods, many labs are utilizing newer molecular techniques for direct detection of nucleic acid in stool.

Methods: 59 prospective stool specimens from 57 pediatric patients (aged 4 months to 19 years) with suspected CDI were tested over a 4 month period. Three FDA-cleared molecular platforms, Meridian Illumigene, Nanosphere Verigene, and Quidel AmpliVue, were compared. All samples had a consistency rating (CR) from 1 - 5 (watery - solid) assigned and were refrigerated prior to testing. Those with a CR=5 were excluded. Six positive specimens were frozen for 3 months then retested, and two of those were serially frozen, thawed, and retested 5 more times over 6 months.

Results: All 3 platforms agreed for 55 (93%) specimens. There were 17 positive and 38 negative results. Five positive specimens were called BI/NAP1/027 by Verigene. Of the 4 discrepant results, 3 (2 CR=3, 1 CR=2) were invalid by Illumigene and negative by the other platforms. One sample (CR=4) was Verigene indeterminate, Illumigene positive, and AmpliVue negative. All frozen specimens gave correct results on all platforms. Conclusions: These data suggest that each platform offers a viable solution for rapid diagnosis of CDI in children. Additionally, long term frozen samples can be tested reliably.

Keywords: Clostridium; Difficile; Illumigene; Verigene; AmpliVue; Molecular; Pediatric; Pediatrics; Stool

Introduction

Clostridium difficile causes the majority of antibiotic-associated diarrhea and pseudomembranous colitis, especially in hospitalized patients [1,2]. The prevalence of C. difficile infection (CDI) appears to be increasing, and some studies implicate the emergence of a new hypervirulent strain, overuse of antibiotics, and better detection capabilities [3,4]. Some regions of the United States report CDI as the most common nosocomial infection, surpassing methicillin-resistant Staphylococcus aureus [5]. There has also been a steady rise in infections of groups previously believed to be "low risk," such as the pediatric population [6]. This increase in pediatric infections has been observed in both inpatient and ambulatory care settings [6-10]. Several studies report an increased risk of death, longer hospital stays, and/or higher healthcare related costs for pediatric patients with CDI [11-15], whereas another study reported a lower correlation with severe outcome when compared to adults [16]. While the exact correlation between age, epidemiology, and clinical outcome is still debated, one fact remains salient: rapid and accurate diagnosis of CDI is crucial for medical treatment. Several methods for the diagnosis of CDI exist, including enzyme immunoassays (EIA), cell culture cytotoxicity neutralization assays, toxigenic culture, and glutamate dehydrogenase detection. Although EIA is fairly rapid, several studies have shown that there is reduced sensitivity [1,17-21]. Culture based assays require special training and results are not available for several days. Molecular techniques, such as direct detection of nucleic acid in stool targeting various C. difficile toxin genes, are rapidly becoming the method of choice in many laboratory and clinical settings [22,23]. There have been several studies examining the performance of nucleic acid amplification tests for diagnosis of CDI in adults, but such studies in pediatric patients are very limited. Given the paucity of pediatric data for rapid diagnosis of CDI, we compared our current FDA 510(k) cleared molecular platform (Illumigene) to two other FDA-cleared assays by parallel testing of prospective pediatric stool samples, both fresh and frozen, and with varying consistencies (watery to semi-solid). To our knowledge, this is the only study comparing these methods in this age group.

The Illumigene C. difficile assay (Meridian Biosciences, Inc., Cincinnati, OH) utilizes Loop-Mediated Isothermal Amplification (LAMP) technology in combination with an automated detection platform. The assay targets a 204bp sequence of the tcdA region of the Pathogenicity Locus (PaLoc) using loop-mediated isothermal DNA amplification [24,25].

The Verigene C. difficile Test (Nanosphere Inc., Northbrook, IL) uses a gold nanoparticle probe hybridization array that targets the tcdA and tcdB genes, binary toxin genes cdtA/cdtB, and delta117 in tcdC (for detection of the hypervirulent strain BI/NAP1/027) [17].

AmpliVue C. difficile Assay (Quidel Inc., San Diego, CA) targets a conserved region of the tcdA gene using a Biohelix® isothermal
amplification technology called helicase dependent amplification (HDA) [25].

Materials and Methods

Specimens: 59 prospective stool specimens from 57 patients (aged 4 months to 19 years) with suspected C. difficile disease from January through April, 2013 were included in the study. All samples were assigned an in-house developed consistency rating (CR) from 1 - 5 (1 = liquid; 3 = semi-solid/non-formed; 5 = solid/fully-formed) and then refrigerated for up to 48 hours prior to testing. Samples with a CR=5 were rejected, per ASM guidelines (A Practical Guidance Document for the Laboratory Detection of Toxigeneic Clostridium difficile; September 21, 2010), and excluded from the study. Specimens with an initial result of invalid or indeterminate were retested within a 24-hour period. If the second test yielded a different result, a third test was performed and the best of 3 was considered the final result. Six randomly selected positive specimens (CR ranged from 1 to 4) were frozen at -20°C for 3 months and retested on all platforms. Two of those specimens (CR of 1 and 3) were then serially frozen, thawed, and retested 5 additional times over a 5 month period (for a total of 7 runs).

Platforms

Testing was performed following manufacturer specifications. Briefly, for the Illumigene illumipro-10 assay, stool was sampled with the manufacturer brush and transferred to diluent, then vortexed. Ten drops were then transferred to a heat treatment tube and placed in a 95°C heat block for 10 minutes. A 50 uL aliquot of heated sample was then transferred to a reaction buffer tube and vortexed. 50 uL of the vortexed buffer was transferred to each chamber of the Illumigene test device and inserted into the Reader for analysis. After initial testing of the 59 stool specimens, results of all three platforms agreed for 55 (93%): 17 were positive and 38 were negative. A summary of the specimens tested and their corresponding CR are shown in Table 1. Specimens with a CR of 5 were not tested. Three of the 4 discrepant results (two were CR=3 and one was CR=2) were invalid by the Illumigene and negative by the Verigene and AmpliVue systems. The remaining discrepant result had a CR of 4 and was indeterminate by Verigene, positive by Illumigene (which was positive for 2 out of 3 repeated runs), and negative by AmpliVue testing (Table 2). Another sample that had a CR of 4 was initially invalid by Illumigene, and positive by the other 2 platforms. Repeat testing of the sample on Illumigene yielded positive results on 2 additional runs, and it was reported as a positive result and not considered discrepant.

Results

After initial testing of the 59 stool specimens, results of all three platforms agreed for 55 (93%): 17 were positive and 38 were negative. A summary of the specimens tested and their corresponding CR are shown in Table 1. Specimens with a CR of 5 were not tested. Three of the 4 discrepant results (two were CR=3 and one was CR=2) were invalid by the Illumigene and negative by the Verigene and AmpliVue systems. The remaining discrepant result had a CR of 4 and was indeterminate by Verigene, positive by Illumigene (which was positive for 2 out of 3 repeated runs), and negative by AmpliVue testing (Table 2). Another sample that had a CR of 4 was initially invalid by Illumigene, and positive by the other 2 platforms. Repeat testing of the sample on Illumigene yielded positive results on 2 additional runs, and it was reported as a positive result and not considered discrepant.

All frozen specimens showed 100% correlation on all platforms. The 6 positive specimens that were retested after being frozen for 3 months yielded positive results on all platforms. Both of the serially frozen, thawed, and repeat tested specimens yielded positive results on 7 runs over the 5 month period of testing (which included the initial run, then one run every 25 - 35 days after being thawed, then re-frozen within 1 hour of testing) (Table 3).

Five specimens from 4 patients were called Ribotype 027/NAP1 by Nanosphere. Review of the medical records did not support more severe disease. Three patients, ages 8 years, 11 years, and 4 years, were successfully treated with vancomycin and had no recurrence over the subsequent 12 – 15 months. The fourth patient was a 2-year old girl who was positive on two occasions, 4 weeks apart. She was treated with several courses of vancomycin and has not experienced recurrent disease over the subsequent 12 months.

Discussion

The Illumigene showed reduced sensitivity giving invalid results on 3 samples that were negative by the Verigene and AmpliVue platforms.
This discrepancy did not seem to correlate with sample consistency. However, consistency may have been a factor with the forth discrepant result (CR=4), which was positive, indeterminate, and negative, on Illumigene, Verigen, & AmpliVue, respectively. Clinical review of this patient’s chart reveals that he was 3 years-old when treated for C. difficile, but no prior history or additional follow-up information is provided to help resolve the discrepancy.

Although Illumigene and Verigen do not recommend freezing samples, and AmpliVue recommends freezing only up to 7 days, all results on frozen samples were concordant over 5 months and 6 freeze/thaw cycles.

Workflow and result reporting was comparable with Illumigene and Verigen, with 10 mins of hands-on time and print-out of results. The AmpliVue required 15 mins and introduced slight subjectivity due to the requirement for line visualization to make the call. Run times are approximately 40 mins, 1.75 hrs, and 1.25 hrs for the Illumigene, Verigen, & AmpliVue, respectively.

The Illumigene illumipro-10 has a footprint of 8.5” x 11”, can run up to 10 samples at a time in 2 separate 5-sample chambers, does not require an additional computer or peripheral, and provides a printed result on a receipt-sized piece of paper. The Nanosphere Verigen consists of the processor (7.6” x 22.9”) and the reader (11.7” x 20.5”), and runs 1 sample at a time. The system does not require a peripheral computer to be attached, and a printed result is supplied. The Quidel AmpliVue system consists of the amplification block (7.3” x 11.6”), the heat block (5.5” x 7.1”), and a disposable detection device. The AmpliVue does not provide a printed report, however there is no capital investment for this system and it is a good option for low-throughput laboratories. Although both the Illumigene and the Verigen require an investment for the analyzers, they each have options to run additional assays. All three platforms offer better sensitivity and specificity over investment for the analyzers, they each have options to run additional laboratories. Although both the Illumigene and the Verigen require an investment for the analyzers, they each have options to run additional assays. All three platforms offer better sensitivity and specificity over EIA, faster turn-around-times compared to culture, and each are viable solutions for rapid C. difficile testing.

References