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Introduction
Rational functions are widely used in many branches of mathematics 

such as numerical analysis i.e Pade Approximations, mathematical analysis 
as well as mathematical modelling and they appear in mathematical 
representations of many problems in science and engineering [1-7]. 
Unfortunately, working with rational functions except polynomials is 
generally not very easy. From the point of view, some methods can be 
used to facilitate the computations. One of the famous and simplest 
methods is partial fraction decomposition method (PFD) for suitable 
applications: Consider a polinomial function ( )Q x  with real coefficients 
and recall that there exist some integers ≥1 1,..., , ,..., 1p qk k l l  such that

= − − − + − +1 1 4
2 22 2

1 1 1 4( ) ( ) ...( ) ( 2Re( ) ) ...( 2Re( ) )pkk l l
p qQ x x x x x x z x z x z x z

and observe that Q(x) can be equally represented as 

− − − − − −1 1 1 1 4 4
1 1 1 4 4( ) ...( ) ( ) ( ) ) ...( ) ( )pkk l l l l l

px x x x x z x z x z x z ,

where ∈1 ,..., px x  are pairwise different and ∈ 1 ,..., \qz z  are also 
pairwise different.

Assume that P(x) is another polynomial such that deg(P)<deg(Q). 
In this case, the real partial fraction decompositions of the rational 
function

( )
( )

P x
Q x   

looks as follows:

β γ

= = = =

+
= +

− +
∑∑ ∑∑ 221 1 1 1

( )
( ) ( ) 2Re( ) )

ji
lkp q

js jsir
r si r j si j j

xaP x
Q x x x x z x z

  (1)

where  β γ ∈, , .ir js jsa

One important problem of these PFDs is to determine the 
corresponding coefficients. To determine the coefficients of these PFDs, 
some methods/algorithms can be applied with respect to the given 
rational functions. For example, long division (routine calculation), 
algorithms introduced in [1,2] can be used for suitable applications. 
These algorithms especially focus for determining the real PFDs for 
given rational functions. On the other hand, real PFDs may fail in 
some applications; for example a failure of real PFD is mentioned in 
[3]. From the point of view, complex PFD can alternatively be used and 
this yields simplest form for representation of rational function (1). In 
this paper, we aim to expose the full complex PFDs of rational function 

(1). We first give some complex partial fraction decompositions and 
then emphasize the relationship between the coefficients of real PFD 
and complex PFD. Then, some applications of these complex PFDs will 
be discussed.

Complex Partial Fraction Decompositions
Complex PFDs can effectively be used in the parts of suitable 

applications. For example, rational algorithm, which is introduced in 
[3] for computing the coefficients of formal power series of a rational
functions, requires complex section we provide the relations between
the coefficients of real PFD and the coefficients of their complex PFD.
Note that to find corresponding real PFDs, the algorithms discussed in
[1,2] can be used for suitable applications.

Theorem 1
ω ωω∈ = ∈ = +
− −

  

1 \ ,   ( ) ,      ,  
2 Im( ) ( ) ( )

k k

k k kIf z and R x where k is a positive integer then
i z x z x z

ωω ωω+ −= + ≥ = +2
1 1 1 1 1 2 11. , 2 2k k kR R R R R forall k and R R R

ωω ω ω ω ω ω ω ω ω− − −
+ −= + + + + + ≥1 1 12 2

1 1 1 2 2 12. ... 2 2 , 2j j j j j j
j j j jR R R R R R R R for all j

 

ωω ω ω ω ω− − −
− + − −

=
− +

= + + + +

1 22

1 1 11 2 2 2
1 1 1 2 2 2 1

13. ( )
( 2Re( ) )

...

q

q

q q q q
q q q q q q

the rational funcion R x canbe represented as
x z x z

R R C R C R C R

Proof 1: (1) we have successively: 
ω ω ω ω

ω ω ω ω ωω

ω ω ωω ω ω

ωω

+ +

+ +

+ + − −

+ + − −

+ −

  
= + +  − −− −   
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− − − − − −
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1 1

1 1
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( ) ( ) ( ) ( ) ( )( )
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Moreover,

ω ω

ω ω ωω

ω ω ω ωωω

ωω

 
= + − − 

= + +
− −− −
 

= + + + − −− −  
= +

2
2
1

2 2

2 2

2 2

2 2

2 1

2
( )( )( ) ( )

2
( ) ( )

2

R
x z x z

x z x zx z x z

x z x zx z x z
R R

 

(2) We first observe that

 ωω ω−
+ −= + ⇔ − = =

21 1
1 1 1 1 ,k k

k k k k k

R R R
R R R aR R where a

a a
By assigning successively the values 2; 3; : : : ; j to k, one gets:

ω ω

− +

−

− =

− =

− =



32 1 1 1
2 2 2

3 1 3 1 4
3 2 3

1 1 1 1
1 ,j j j

j j

RR R R R
a a

R R R R R
a a a

R R R R R
aj a a

 

which shows that

+− = + + +1 131 1 4
2 3 ... ,j j

j J

R R RRR R R
a a a aa  

that is
− −

+= + + + + +1 22
1 1 3 1... .j j

j j j jR R a R a R aR aR R

Since  = +2
1 2 12 , the announced relationR R aR

follows now easily.

(3) We first observe that

 ω ω
= + =

− −− +
122

1 ,
2 ( )j

R
x z x zx Re z x z

which implies that

ω ω 
= + = − − − +

122

1 .
( 2 ( ) )

q
q

q
j

R
x z x zx Re z x z 

The proof is done by induction on q. If q = 1 or q = 2 one gets the 
obvious equalities

= = +2
1 2 1 2 12 .R R and R R aR   

Assume the equality for q-1 and observe that one gets successively:

 

−

− −
− − − − −

− −
− − − − −

−−
− − − −

− −
− −

=

= + + + +

= + + + +
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1
1 1 1

2 21 2 2
1 1 2 3 2 4 1 1

2 21 2 2
1 1 1 2 1 3 1 2 4 1 1

122 1 1
1 1 2 1 2
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1 1 2 2 1

( ... )
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... 2

... 2

q q

q q
q q q q q q

q q
q q q q q q

qq
q q q q q

q q
q q q q q q

R R R
R aC R a C R a C R R

R R aC R R a C R R a C R R

R aR a C R a C R a

C R a C R a C R a C R

a − − − −
− −+2 2 1 2

2 4 2 2 4 12q q q q
q qC R a C R

 

− − − − − −

− − − −
− − − − − −

= + + + + + + +

+ + + + + + + +

0 1 2 0 0 2
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2 2 1 20 1 0 1
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( ) ( ) ...

( ... ) 2 ( ... ) .
q q q q q q q q

q q q q
q q q q q q

R a C C R a C C C R

a C C C R a C C C R

By using the formula  −
− −= + 1

1 1 ,one getsk k k
n n nC C C

 
− −
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−
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+ + = + =

+ + + + = + + +
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0 1 1
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22
1 2 4
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... ...

...

q q q

q q q q q q

q q
q q q q q q q

q
q q

q
q

C C C

C C C C C C

C C C C C C C

C C

C
Consequently

−
− − − − − −

− − −
− − − − − −

− − − −
− + − − −
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= + + + + + + +

+ + + + + + + =
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+ +
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1 2 2
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C C C R a C C C R

R aC R a C R a C R a C R
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2 2 1 11 2 2
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... ( )

...

q q q q q
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R a C R a C C R

R aC R a C R a C R a C R 

Now the new algorithms for finding the desired complex coefficients 
of a certain type of rational function with respect to corresponding 
PFDs are given by the following proposition and corollary:

Proposition 1

  β γ β γ∈ ∈  1 1 1\ , ,..., , ,lz and then
β γ

β ω ω β ω ωγ ω

β ω ω β ω ω γ ω

β ω β ω

= =

−
−− −

− −
= =

− −− −
− −

= =

−
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+
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− −− +

= + +
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∑ ∑
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221 1
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2( 1)2 2 1
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b C z C

b C z C

b z ω γ β ω ω γ ω

β ω ω γ

− − −
−+ + +
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21 1 1 1
1 ( )
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l l l
l l l l
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Proof 2: Considering for the rational function β γ

=

+
=

− +
∑ 221 ( 2 ( ) )

l
s s

ss

x
S

x Re z x z
one gets successively:
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Hence

β ω ω β ω ωγ ω
− −− −

− −
= =

= + +∑ ∑2( 2) 2( 1)2 2 1
1 2 3 2( 1)'

2 1
( )

l ls ss s
s s s s s

s s
b C z C

β ω ω β ω ω γ ω
− −− −

− −
= =
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2 2 4 2 3
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β ω β ω ω γ β ω ω γ ω

β ω ω γ
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− − −= + + + +

= +

21 1 1 1 1
1 1 1 ( )

.

l l l l l
l l l l l l j

l l
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b z z C
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Corollary

Let 1 ,...., px x  be pairwise different real numbers and ∈ 1 ,...., \qz z  
be also pairwise different. If  is a polinomial with real coefficients whose 
degree satisfies the inequality deg < + + +( ( )) 2( ... ),l qP x p l l  then there 
exists  β γ ∈ ∈ , ,ir js js jsa and b such that

 = = = =

= + +
−− −∑∑ ∑∑

1 1 1 1

( ) ( ),
( ) ( )( ) ( )

ji
lkp q

js jsir
r s

i r j s ji j

b baP x
Q x x zx x x z

where

 = − − − + − +1 1
22 2

1 1 1( ) ( ) ...( ) ( 2 ( ) ) ...( 2 ( ) .qp
lkk l

p q qQ x x x x x x Re z x z x Re z x z

The relations between the coefficients of the real partial fraction 
decomposition and the coefficients of the complex partial fraction 
decomposition are:

β ω ω β ω ω γ ω
−− − −

− −
= =

= + +∑ ∑
2( 1)2( 2)2 2 1

1 2 3 2( 1)'
2 1

( )
l l ss s s

j js j s js j j js j s
s s

b C z C

β ω ω β ω ω γ ω
− −

− −
− −

= =

= + +∑ ∑
2( 3) 2( 2)3 3 2 2 2

2 2 4 2 3'
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l ls ss s

j js j j s js j js j s
s s

b C z C
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− −= + + − + +

= +

21 1 1 1 1
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l l l ll
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jlj jl j j jl
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 ω =
1

2 ( )j
j

where
iIm z

 (2)

Example 1

Consider the rational function

+
=

+ + + +2 2

2 1( ) .
( 4 5)( 2)

xf x
x x x x

 For the first step we need to find corresponding PFD of given 
function. The given rational function is decomposed in [3] by "Two 
Brick Method" as

 − − +
= + + + + + 

2 2

1 7 4( ) .
6 ( 4 5) ( 2)

x xf x
x x x x

Then, according to the Proposition (1) the complex PFDs of 
decomposed functions are obtained respectively as, 

− + +− −
= −

+ − + ++ +
 
− + − −  +  = +

   + +
+ − + + − −      
   

2

2

51 1 5( ) ( )7 2 2 2 2
(2 ) (2 )( 4 5)

7 77 7( ) 2 24 2 2 .
( 2) 1 7 1 7

2 4 2 4

j i
x and

x i x ix x

ii
x

x x ix x i

Thus,

 

 
 − + + − − − ++  = − + +
 + − + ++ + + +

+ − + + − − 
 

2 2

1 5 1 5 7 7 7 7( ( ( ) (2 1 1 2 2 2 2 2 2 2 2
6 (2 ) (2 )( 4 5)( 2 1 7 1 7( ) ( )

2 4 2 4

i i i i
x

x i x is x x x
x i x i

Example 2

Apply complex PFD of a more complicated rational function
+

=
+ +2 3

2 1( ) .
( 6 10)

xf x
x x

Using proposition 2, the desired complex PFDs with corresponding 
complex coefficients can be given as

=

 +
= + 

+ + − − + − − − 
∑3

2 3 1

2 1
( 6 10) ( ( 3 )) ( ( 3 ))

s s
s ss

b bx
x x x i x i

where  −
= = − = −1 2 3

15 15 1 5, .
16 16 8 4 8

i i ib b and b

Differentiation via Complex Partial Fraction 
Decompositions

Higher order derivatives of functions can be used in many 
applications. Hovewer, representing the higher order derivatives of 
many functions explicitly cannot be easy and in general they are 
computed recursively. From the point of view, higher order derivatives 
of a certain class of rational functions can easily be computed through 
complex PFDs and the kth order derivatives can be computed directly. 
In this section we will give the general form of higher order derivatives 
of rational function (1). Finally, the results then will be used in some 
certain applications.

In order to find the high order derivatives of rational functions in 
(1), we suppose to find the high order derivatives of rational functions 
of types

β+
− − +

22
0

 and 
( ) ( 2 ( ) )

r s

a ax
x x x Re z x z  

where α β ∈0, , , .a x  While computing high order derivatives of 
the first type of rational functions is direct, computing the high order 
derivatives of the other type of rational functions needs some more 
computations which will be given in this section.

If  ∈z  is a fixed complex number, then the function

→
−

  

1\{ } , ,
( )kz x
x z

with k an integer, is arbitrarily many times differentiable and

+ −
+

  −
= − − 

1( 1)1 ,
( ) ( )

n nn
n k

n k n k

Ad
dx x z x z

where p
mA  stands for = − − + =

−
! ( 1)....( 1) 0! 1

( )
m m m m p and

m p
Indeed, it can be easily done by induction on n. Consequently

−

+ − + −
+ − +

   + +
= +   − − −   

− −
= + +

− −

1

2 1
1

( ) ( ) ( )
( 1) ( 1)

( ) .
( ) ( )

n n

n k n k k

n n n n
n k n k
n k n k

d ax b d a az b
dx x z dx x z x z

A A
a az b

x z x z
 (3)

In particular
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1 ( 1) !( 1) ! and .
( ) ( )

n n n
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d ax b az b d nn
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Corollary 6: The nth order derivatives of the function R and R, 
respectively, are given by the following formulae.
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and Theorem 1. Indeed, taking into account that ω =
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Proposition 7: If a; b are real numbers and z is a complex number, 
then the following formula holds for every positive integer n
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Proof: It follows immediately by induction on n.

Corollary 8: If  =
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 is the rational function as in corollary (3), 

then its nth order derivative is given by
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Some Applications Involve Higher Order Derivatives
One of the important applications of complex PFDs is the 

differentiation of rational functions. The higher order derivatives of the 
rational function (1) can easily be computed by using the relation (2) 
and corollary 6. In this section we discuss different problems involving 
higher order derivatives in which complex PFDs can be applied.

Power series expansion

According to the Taylor theorem, a function f can be approximated 
by power series, if exists, about x0 as
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When x0 = 0 (Maclaurin series of f), this series has the form
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Thus the coefficients of Maclaurin series are represented by higher 
order derivatives:
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Practically, it may be difficult to represent ak explicitly for all k for a 
certain class of functions. From the point of view, if the desired power 
series deals with a rational function, the complex PFDs can be applied 
to represent the coefficients explicitly by the following theorem:

Theorem 1: Let f be a rational function of (1). The coefficients of the 
Maclaurin series of f are

( )

ω

β γ

−
+ −

+ −+
= = = = =

−
− −

  − = +   
−   

= +

∑∑ ∑∑ ∑
1

21
1

1 1 1 1 1

( 1) ( )

( 1)1 ,
! ( )

(0) ( (0).

ji
lk kkp q q

i iir k r
k k q ik r

i r j s ii

k k
k js q i js q i

a A
a a C

k x

where a k R R



Citation: Özyapici A, Pintea CS (2012) Complex Partial Fraction Decompositions of Rational Functions. J Applied  Computat Mathemat 1:120. 
doi:10.4172/2168-9679.1000120

Page 5 of 5

Volume 1 • Issue 6 • 1000120
J Applied  Computat Mathemat
ISSN: 2168-9679 JACM, an open access journal 

Proof: It is easily obtain from (1) and Proposition 7.

Example 1: Consider the rational function

=
+ +2 3

1( )
( 2 2)

f x
x x

Then the complex number z = -1+i and the coefficients of Maclaurin 
series of given function according to the Theorem 9 can be given as
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Thus, Maclaurin series of given rational function f is
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On the other hand, in which cases ak=0 for all k; the coefficients 
should alternatively be computed. This problem is processed by 
Computer Algebra Systems (CASs). In [4] new algorithms are 
introduced for finding hypergeometric power series of given function. 
As we mentioned before, rational algorithm is one of important 
algorithm for finding power series of rational functions in which 
complex PFD is the first step of the algorithm. Thus, our algorithm 
given in corollary (3) can be used for the first step of rational algorithm.

Higher order schwarzian derivatives

Schwarzian derivative of a function f (real or complex valued) is 
defined by
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and it is invariant under linear fractional transformations. Schwarzian 
derivatives appears in different fields of mathematics such as complex 
analysis, differential equations, hypergeometric series as well as 
dynamical systems. Since Schwarzian derivative involve higher order 
ordinary derivatives and their combinations, the Schwarzian derivative 
as well as higher order Schwarzian derivatives for a certain class of 
functions cannot easily be derived in a closed form. Although the 
simplest class of functions for ordinary differentiation is polynomials, 
the closed form of Schwarzian derivatives of a polynomial function
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is complicated comparing with ordinary one and it was given in [3] as
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Since the formula (5) is a rational function of x, it can directly 
be decomposed by complex PFDs algorithm for suitable part of 
applications whenever

+
>

+

2
3 2

2
1 1

( 1)
( 2)

a n a
a n a

Moreover the higher order Schwarzian derivatives for a function f 
were defined inductively in [6] as
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f  (6)

From the point of view, the higher order Schwarzian derivatives 
involve more complicated combinations of higher order ordinary 
derivatives. For example, second and third order Schwarzian derivatives 
of the function f; according to the (6), are given [2] as
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If the function f is deal with the rational function (1); the complex 
PFD algorithms can be used to defined its Schwarzian derivative as well 
as higher order Schwarzian derivatives in a closed form. Let us consider 
a particular type of rational functions
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Then the higher order derivatives of the rational function R(x) 
according to complex PFDs is
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Thus Schwarzian derivative of the rational function R(x) can be 
easily represented in the closed form as
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