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The close relationship between mathematics and physical reality is 
well reflected in one of the fundamental questions of our time: how to 
assess the complexity of a problem? Whether the problem we consider 
is in essence mathematical or technological our assessment of its 
complexity relies upon the same intuition. It is clear that a problem 
is complex if it is hard to solve. An object is complex if its properties 
cannot be easily derived from its definition. Also, we expect complexity 
to be universal and portable, transferrable from one approach to 
another. In particular, if we know that a problem is computationally 
hard we will have little hope of solving it easily via a mathematical trick.

Consider the following classical theorem of A.M. Ostrowski [1]:

If a Dirichlet series 
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is a solution of a differential algebraic equation, then the set of all 
prime factors of all n for which an ≠ 0 is finite. This remarkable result 
implies in particular that the Riemann’s zeta function, which is defined 
via the special Dirichlet series with an=1 for all n, is not a solution 
of any differential algebraic equation. Apparently the zeta function 
is more complex than any Dirichlet series solution of a differential 
algebraic equation. The high complexity of the zeta is the very reason 
it does not admit a simple description such as a differential-algebraic 
equation would supply. However, loosely speaking, one may view the 
Dirichlet series whose most or even all an ≠ 0 as nontrivial operators 
in a Hilbert space, [2]. Some of those operators will be related to 
special bases in the Hilbert space which in turn may, but need not to, 
stem from a differential algebraic eigenvalue problem. An eigenvalue 
problem is tantamount to a whole family of differential equations 
and the complete set of eigen functions is a higher ranking object, or 
an object of higher complexity, than any single function. While the 
psychological intuition behind it seems always the same complexity 
has many avatars, at least one for every particular area of science or 
culture where it is encountered. In the theory of dynamical systems 
we take the presence of chaos to be a signature of higher complexity. 
Likewise, we know that the phenomenon of turbulence is what makes 
the tasks of predicting the weather or designing airplanes more 
complex than they would otherwise be. In Computer Science we have 
the precise notion of algorithm time complexity which relies upon a 
count of the number of operations required to run it. For comparison, 
the Complex System Theory, which seeks mathematized concepts and 
computational methods with which to study the problems of social 
sciences, often reaches for more intuitive descriptions of complexity 
such as the dancing landscapes model, [3]. As we know, the discrete 
Fourier transform was an inefficient computational procedure until 
Cooley and Tukey found the FFT algorithm. The lesson of this story 
is quite clear: Despite our a priori intuitions we cannot know for sure 
whether a given problem is truly complex or not until someone invents 
an efficient method of solving it or proves that no efficient method can 
exist. We tend to think that a nut is hard if for a long time many people 
try to crack it open but to no avail. Yet this is insufficient to conclude 
that the perceived complexity is real --- perhaps lack of an effective 
solution at this instance stems from our taking the wrong approach, 
looking at things from the wrong perspective. One of the famous 
open questions about the nature of complexity is P≠? NP. Although 
there have been remarkable results shedding light on its nature, such 

as the celebrated Razborov-Rudich theorem, [4], we still do not know 
the answer. Let us briefly return to the signature of complexity that is 
suggested by the theorem of Ostrowski. Suppose we would like to assess 
the complexity of a Dirichlet series by computing the prime factors as 
indicated above. For the complex input such as the series for the zeta 
function the number of primes at the output will steadily grow, while 
for a simple input the number of primes on the output will stabilize. An 
infinite chain of calculations might not be achievable in practice and 
we will eventually take a guess whether the input is indeed complex 
or not. However, the main reason that this task is computationally 
hard is that it involves integer factorization which itself is believed NP-
hard. This scenario synchronizes rather beautifully with the essential 
message from the Razborov-Rudich theorem. Namely, one can expect 
that any computational test of complexity will itself be computationally 
complex, [5]. Mathematics has always had a close relationship with 
the contemporaneous technologies. From a certain point of view 
mathematical proofs are constructions and the notion of construction 
is essentially physical. In its first advanced stage, reached in antiquity by 
Euclid, Eratosthenes and Archimedes, mathematics relied on tangible, 
visible construction. To prove a theorem meant to find a construction 
with a compass and ruler according to certain rules, and with the 
support of logical arguments and conventional interpretations. While 
Calculus was invented by Newton in the age of Restoration in order 
to describe mechanical systems, in the 20th century the situation was 
partly reversed as people began using analogue electronic circuits to 
solve differential equations. When discrete-state machines took over 
computation they in turn became the technology of mathematics. 
Although modern day computers mostly bring to mind complex 
electronics in truth the digital revolution stemmed from the intellectual 
movements in the early 20th century, particularly the revolution in the 
philosophy of mathematics initiated perhaps by Bertrand Russell. That 
culture, as well as the challenges that ensued of the Second World 
War, brought us a whole slew of intellectual giants, to mention but 
a few: the logician Gödel, the par excellence applied mathematician 
von Neumann, the pioneers of theoretical computer science Church 
and Turing, the Bletchley Park mathematician Newman, and the 
early Enigma-breaker Rejewski, see e.g. [6]. Those people and their 
collaborators and scientific kin gradually honed in on the concept 
of a programmable computing device. Their conceptual advances 
were luckily concurrent with the development of electronically 
controlled switches: vacuum tubes (‘valves’ in British English) and later 
semiconductor based transistors. Only that remarkable confluence 
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of conditions and ideas could result in the two famous prototypes of 
a computer: COLOSSUS and ENIAC. COLOSSUS was built at the 
Bletchley Park and it is quite easy to see how such a concept could arise 
from the unique and rich intellectual culture of that place, [7]. ENIAC 
was physically constructed at the Moore School at the University of 
Pennsylvania but its conceptual roots spread farther and encompass the 
Institute for Advanced Studies at Princeton, [8]. The microchip based 
computing technology and the present day approach to mathematics 
are joined at the hip just as were the compass-ruler constructions and 
theoretical geometry in times Hellenistic. With the nascent of quantum 
computers with prototype devices already being sold while their concept 
and principle of operation are theoretically debated, [9] it is again a 
good time to pay close attention to the various nontrivial relations 
of mathematics and technology. The new technologies may usher in 
a reevaluation of complexity of some problems, and a revision of the 
very meaning of complexity. In particular it is now debated whether 
the paradigm of quantum computing will change our perspective at the 
complexity of integer factorization, [10]. Applied Mathematics is all 
about constructions: a mathematician working on an applied problem 
typically has no choice but to deal with infinities in an approximate way 
via a constructive and thus intuitionist approach. (It is appropriate to 
understand the term intuitionism used here in its rigorous philosophical 
sense introduced by Brouwer, where intuitionism is compared and 
contrasted with the mathematical Platonism). It is not clear that this 
provides a full view at the fundamental problems of mathematics but it 
is quite certain that this activity is never really far from the fundamental 

and even philosophical aspects of mathematics. Let us look at applied 
and computational mathematics broadly and open-mindedly, and 
let us not underestimate its historic or present contributions to the 
foundations of mathematics.
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