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Introduction
As a spectroscopic technique, laser induced breakdown 

spectroscopy (LIBS) have attracted numerous attention in the scientific 
community for the past decades, due to its potential application in fields 
such as material processing, biomedical, military, industrial analysis, 
pharmaceutical studies, and environmental monitoring [1-6]. Laser 
induced breakdown spectroscopy (LIBS) which is sometimes referred 
to as laser-induced plasma spectroscopy (LIPS) uses the radiations 
produced from the plasma as a result of the interaction of the laser 
with the target material, to analyze qualitatively and quantitatively the 
elemental composition of the target sample [7]. LIBS hold numerous 
advantages over other conventional atomic emission spectroscopy 
techniques: LIBS is applicable to both conducting and non-conducting 
target sample analysis, and it also requires little or no preparation of 
sample [8-11]. LIBS employs a high power energy laser pulse which 
is focused onto a target material by a focusing lens to ablate the target 
surface to generate a plasma plume [12,13]. The light emitted is 
collected, through a fiber optic cable into the spectrometer. The light 
is then analyzed by the spectrometer, which is used to characterize and 
investigate the sample composition, electron temperature and number 
density.

The laser-target interaction process can be classified into; the 
evaporation of the surface (ablation of the target material), plasma 
formation of the ablated material, plasma expansion, and plasma 
radiation and cooling. The analytical performance of laser produced 
plasmas is influenced by several factors such as: (i) the material 
properties; (ii) laser parameters. The properties of plasma that affects 
light emitting are the electron density, electron number density and 
electron temperature of the emitting species. Therefore the knowledge 
of plasma temperature and electron density is necessary to understand 
the physical processes involved [14,15].

In our previous work [16], we investigated on the influence of laser 
energy on the electron temperature and we found that, the electron 
temperature increases rapidly with increasing laser energy. Several 
research papers have been reported on the electron temperature and 
electron density of a plasma plum. Krähling et al. [17] investigated 

on the electron temperature and number density of a liquid electrode 
dielectric barrier discharge, LE-DBD from the Stark broadening of three 
strontium lines. They also studied the OH(A) rotational distribution, 
and found that it exhibited a non-Boltzmann characteristic with a 
superposition of two Boltzmann distributions.

Mahmood et al. [18] also investigated on the electron temperature 
and density of a neon in a hollow cathode discharge lamb, using 
Boltzmann’s plot and Stark broadening respectively. They also studied 
the behavior of the optogalvanic signal as a function of laser energy.

In this study, we shall report on the investigation of laser-induced 
Mg plasma produced by 1064 nm Nd:YAG laser in the atmospheric 
air. The spatial evolution of the emission has been resolved along 
the distance of the plasma expansion. We have studied the electron 
temperature of the Mg plasma from the Boltzmann plot method 
using the relative intensities ratio of the Mg spectral lines. We further, 
studied the electron number density of the Mg plasma from the 
Stark broadening method, and the temporal evolution of the electron 
temperature and number density have also been resolved.

Experimental Setup and Procedure
The schematic diagram of the experimental setup of a laser induced 

breakdown spectroscopy is depicted in the Figure 1. A Q-switched Nd-
YAG laser operating at its fundamental wavelength of 1064 nm having 
a pulse duration of 10 ns and a repetition frequency of 1 Hz with a 
laser energies of 400 mJ, 450 mJ and 500 mJ, measured by a pyrometric 
detector was used to generate the plasma. 
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We assumed that the plasma was quasi-stationary for the delay 
times chosen for our experiment.

From the Mg emission spectra obtained the line intensity rapidly 
decreases with increasing delay time, as depicted in Figure 3. This is as 
a result of the radiative recombination between the electrons and ions, 
and the Bremsstrahlung emission. 

Determination of electron temperature

The spectroscopic performance of the plasma can be analyzed by the 
parameters such as the electron density, electron number density and 
temperature of the species. If thermodynamic equilibrium exists, then 
the properties of the plasma such as speed distributions of the particles 
and the population of the energy levels can be explained through the 
temperature. The electron temperature is determined from the relative 
intensities of the Mg I lines utilizing the Boltzmann plot method. This 
method is applied by assuming that the excitation temperature and 
the kinetic temperature are equal. This requires the plasma to be in 
the state of local thermodynamic equilibrium LTE. For the Mg plasma 
lines used, the validity of the existence of the local thermodynamic 
equilibrium was satisfied for longer delay times [20,21]. In most papers 
the McWhirter criterion has been widely used to justify the existence of 
LTE. Which can be mathematically represented as [22]?

( )
1 312 21.6 10e mnN T E≥ × ∆                         (1)

Where T is the plasma temperature (K), ∆Emn higher energy 
difference (eV) of the Mg lines used and Ne is the electron density (cm-3).

Recent publications have shown that McWhirter criterion is 
essential but insufficient justification technique for local thermodynamic 
equilibrium to exist [23].

From Boltzmann’s distribution law, the population of the energy 
levels of the species at a given position can be mathematically expressed as:
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where the superscript z represents the ionization of the species (z=0) for 
the neutral ionized atoms and z=1 for singly ionized atoms), z

jN and 
z
jg  are the population of the energy levels (m-3) and degeneracy of the 

upper energy levels respectively. z
jE  is the energy (eV), NZ is the number 

density of the species (m-3), k is the Boltzmann’s constant (eVK-1), QZ(T) 

A quartz lens with 150 mm focal length was used to focus the laser 
on the target surface. The target was a certified 99.99% magnesium 
plate, which was mounted on a three-dimensional xyz-stage. The 
distance between the target and the laser was set slightly shorter than 
the focal length of the lens in order to avoid any breakdown of the 
ambient air in front of the target surface. The data acquisition was done 
by polishing the surface of the target material before it was exposed to 
the focused laser beam. The spot area of the laser beam was ∼1 mm2 on 
the target surface.

The light emitted from the plasma was collected and analyzed by 
an optical fiber bundle in conjunction with a Mechelle spectrometer 
equipped with a getable intensified charged-coupled device (ICCD) 
camera (1024 × 1024) pixels istar from Andor Technology). The 
ICCD was triggered by a digital generator (Stanford Research System, 
model DG645) connected to an oscilloscope (YOKOGAWA, digital 
oscilloscope DL9140, Japan). Throughout the experiment the gate 
width was kept at 1 µs and the delay time was varied by means of a delay 
generator, which was monitored by signals collected by the photodiode 
to the digital oscilloscope.

The target was translated after 15 laser shots, and to ensure that the 
signal to noise ratio was increased. The experiment was done at a room 
temperature in air and atmospheric pressure. 

Results and Discussion
Plasma emission and spectral analyses

The interaction of a high-power laser with a sample of magnesium 
target generated a plasma plume. The light from the plasmas were 
collected for analyses. The emission spectra of the plasma was recorded 
at different distances along the direction of the plasma expansion with 
a plasma energies of 400 mJ, 450 mJ and 500 mJ in air at atmospheric 
pressure as depicted in the Figure 2a-c plasma spectra induced by the 
laser consists of a strong continuum and ionic lines of the components 
of the target sample. The plasma expansion rapidly drops out at larger 
distance from the target surface [19].

In order to avoid inhomogeneity and time integration, which may 
as a result affect the spectral line profile. Care was taken in selecting- the 
time between the laser shot and the data acquisition- the delay time and 
the gate width. Several delay times were used for the plasma diagnosis 
which ranges from 1 µs-16 µs. The selected delay times and gate width 
was suitable to enhance the signal-to-background ratio. 

Figure 1: Schematic diagram of the experimental set-up for laser induced breakdown spectroscopy.
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graph of the slope equal to -1/KT. The temperatures are then obtained 
through calculation from the value of the slopes of the Boltzmann’s plot 
(Table 1).

From the Boltzmann’s plot method the highest electron temperature 
were recorded at 17556 K with a delay time of 1 µs, and laser energy of 
500 mJ. At the same delay time and pulse repetition rate, an electron 
temperature of 17341 K and 17085 K were obtained for the energies of 
450 mJ and 400 mJ respectively as depicted if Figure 4. Decreasing the 
pulse repetition frequency to 1 Hz and a delay time 1 µs, the electron 

is the partition function and T is the electron temperature. From eqn. 

(2), the emissivity ( )z 3
ji Wm−ε of a given species at a particular transition 

can be represented as
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where z
jA i denotes the transition probability (s-1), λji represents the 

transition wavelength (m), h is the Planck’s constant (Js) and c is the 
speed of light ms-1 Taking the natural logarithm of the expression of the 
emissivity in equation (3) [14,18,24,25]:
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By using the wavelength of the 383.2 nm, 470.3 nm and 518.4 nm 
and the data of the following parameters z

jA i , z
jE  and z

jg  of MgI 
lines retrieved from the database of the NIST [26], a linear plot can 
be deduced from equation (4). Plotting the magnitude of the left hand 
side of the equation to the right hand side of the equation gives a linear 

(a) (b)

(c)

Figure 2: (a) The emission spectrum generated by a 1064 nm laser at a distance of 1 mm from the target surface, with a delay time of 1µs and laser energy of 500 
mJ (b) Spectral region from 382 nm-385 nm (c) Spectral region from 516 nm-520 nm.

λji(nm) Ej(eV) Aji(108s-1) gj

383.0 5.95 0.90 3
383.2 5.95 1.21 5
470.3 6.98 0.22 5
516.8 5.11 0.11 3
517.3 5.11 0.34 3
518.4 5.11 0.56 3
448.1 11.63 2.33 8

Table 1: The spectroscopic data of the MgI and MgII spectral lines retrieved from 
the database of NIST for the determination of the electron temperature.
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temperature dropped to 17350 K, 17121 K and 16891 with laser energies 
of 500 mJ, 450 mJ and 400 mJ respectively, as shown in Figure 5. A plot 
of the characteristic intensities of the Mg spectra versus the delay times 
in Figure 6, depicted a rapid decrease of the spectra intensities with 
increasing delay time.

We observed the spatial behavior of the emission spectra of the 
Mg plasma recorded at several distances along the direction of the 
expansion of the plasma plum from 0.5-5.5 mm. The emitted electrons 
were established to be highly dense closer to the target surface. A graph 
of the electron temperature against the distance along the plasma 
expansion was depicted in Figure 7 (a-b). When the target material was 
exposed to the laser energy at a distance close to the target surface, it 
constantly absorbs radiation during the exposure time of the pulse. This 
caused the electron to attain higher temperature. The higher value of 
the temperature closer to the surface of the magnesium target was as 
a result of the inverse Bremsstrahlung absorption and the rapid drop 
in temperature at a distance away from the magnesium target surface 
was also attributed to the conversion of the thermal energy into kinetic 
energy.

Electron density of the plasma

In this section, we report the measurements of the electron density 
for the Mg plasmas. The electron number density can be evaluated from 
the line broadening. The primary line broadening of the Mg lines are the 
Stark broadening, which is as a result of the collision of charged species. 
The Experimental line profile was fitted to a Lorentzian fit as depicted 

Figure 3: Time-resolved emission spectra of a laser-induced Mg plasma at a 
delay time of 5 µs, 10 µs and 15 µs, in the spectral region of 515.97-519.22 nm.

Figure 4: Temporal evolution of the electron temperature of the magnesium 
plasma, with a pulse repetition frequency of 5 Hz, delay time of 1µs and a laser 
energy of 500 mJ.

Figure 5: Temporal evolution of the electron temperature of the magnesium 
plasma, with pulse repetition frequency of 1 Hz and laser energy of 500 mJ.

Figure 6: A plot of the characteristic intensities of the Mg spectra versus the 
delay time, with laser energy of 500 mJ and a pulse repetition rate of 1 Hz.

(a)

(b)

Figure 7: A graph of electron temperature against the distance along the 
plasma expansion. (a) with a delay time of 5 µs and a laser energy of 500 mJ, 
(b) with a delay time of 5 µs and a laser energy of 450 mJ.
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in Figure 8. From Maxwell distribution law, the half width FWHM for 
the Doppler broadening can be calculated from the expression [27,28];

2
1/ 2 2 2  ln2 /  kT mc∆λ = λ                        (5)

Where λ is the wavelength (m), T is the absolute temperature (K), 
k is the Boltzmann constant (JK-1), m is the represent the atomic mass 
(kg) and c denotes the speed of light ms-1. 

The half width FWHM of the stark broadening line can be related 
to the electron number density by the equation

( )
5/ 4

1/3e e
1/ 2 16 16

32  3.5 A 1   
10 10  4 D
N Nnm N −     ∆λ = ω + × − ω          

              (6)

Where the ion broadening parameter is A(nm), ω(nm) is the 
electron impact width parameter, ND is the number of particles in the 
Debye sphere and Ne(cm-3) is the electron number density. Since the 
broadening is mainly due to electron contribution, the ionic broadening 
can therefore be neglected. Hence the eqn. (6)

( ) e
1/ 2 162  

10
Nnm  ∆λ = ω 

 
                           (7)

The electron number density was determined to be in the range 
of 1.29 × 1017-1.78 × 1017 cm-3 and 1.46 × 1017-1.89 × 1017 cm−3 with 
an electron temperature ranges of 17341-8946 K and 17556-9785 K 
respectively. Figures 8-10, depicts the temporal evolution of the electron 
number density with laser energies of 450 mJ and 500 mJ respectively. 
It was observed from the figures that the electron number density 
decreases slowly with the increase in the delay times. 

Conclusion
The spectroscopic performance of the Mg plasma induced by a 

Q-switch Nd-YAG laser was investigated. A study of the distance along 
the plasma expansion was also conducted from 0.5-5.5 mm. The electron 
number density and the electron temperature were calculated from the 
Stark Broadening and the Boltzmann’s plot method respectively. At a 
delay time of 1 µs and laser energy of 500 mJ, the highest temperature 
of 17556 K was obtained from the calculations. With further increase 
in the delay time from 1 µs to 16 µs, the electron temperature rapidly 
decreased to 9785 K. Temperatures of 17341-8946 K was also recorded 
for the laser energy of 450 mJ. The electron number density was also 
determined to be in the range of 1.46 × 1017-1.89 × 1017 and 1.29 
×1017-1.78 × 1017 cm-3, for 500 mJ and 450 mJ energy respectively. 
The graph of the electron temperature against the distance along the 
plasma expansion revealed that, the plasma expansion rapidly drops 
at larger distance away from the target surface. This was attributed to 
the radiative recombination and the Bremsstrahlung emission. From 
the emission spectra of the Mg lines, we observed a decrease in the 
line intensities with increasing delay time and also a decrease in both 
the electron temperature and number density along the distance of the 
plasma expansion. 
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