Hydrops Fetalis due to Direct Hepatic Compression of the Right Atrium in a Newborn with Right Congenital Diaphragmatic Hernia

Michael Narvey¹ and Reeni Soni²

¹Department of Pediatrics, Section of Neonatology, University of Manitoba, Canada
²Department of Pediatrics, Section of Pediatric Cardiology, University of Manitoba, Canada

Corresponding author: Michael Narvey, Department of Pediatrics, Section of Neonatology, University of Manitoba, Canada, Tel: + 2047872720; E-mail: mnarvey@hsc.mb.ca

Rec date: December 11, 2015; Acc date: December 28, 2015; Pub date: January 5, 2016

Abstract

Right sided Congenital Diaphragmatic Hernia (CDH) has been previously associated with venous or lymphatic obstruction of vessels by the herniated liver. We report an unusual case of direct cardiac atrial compression by the liver causing limitation of preload and resultant fetal non-immune hydrops fetalis.

Keywords: CDH; Congenital diaphragmatic hernia; Non-immune hydrops

Case Report

A 28 year old, G3P2 mother with an unremarkable pregnancy presented to a rural hospital with premature rupture of membranes at 36 weeks gestation. Breech presentation was noted on ultrasound, so referral to an urban tertiary care hospital for expectant delivery by C-section was arranged. Upon arrival, a repeat ultrasound demonstrated hydrops fetalis with a right sided diaphragmatic hernia and fetal liver in the thorax.

A male infant was born with an estimated weight of 4.0 kg and aside from generalized edema there were no obvious features to suggest a syndromic form of CDH. His apgar scores were 2/1/3/3 at 1, 5, 10 and 15 minutes respectively.

The venous cord gas showed a pH of 7.27, pCO₂ 54 mm Hg, pO₂ 20 mm Hg, HCO₃ 20 mmol/L. His caseroom resuscitation included intubation, paralysis, normal saline bolus, one minute of chest compressions and a single dose of epinephrine. A chest radiograph confirmed the antenatal ultrasound findings (Figure 1).

Following these events, the first umbilical arterial gas on conventional mechanical ventilation revealed significant compromise with a pH of 6.83, pCO₂ 111 mm Hg, HCO₃ 9 mmol/L, lactate 6.4 mmol/L and a pre-ductal oxygen saturation of 34% despite receiving 100% FiO₂.

Pediatric Cardiology performed an echocardiogram at 3 hours of age due to volume resistant hypotension. This revealed severe pulmonary hypertension, a hypoplastic right pulmonary artery, displacement of the heart by the herniated bowel and liver, a dysplastic aortic valve with mild to moderate aortic regurgitation as well as a large PDA with a small amount of pericardial fluid seen. What was most unusual however was that the herniated liver was noted to be compressing the right and left atria potentially causing limitation of preload (Figure 2). Although both atria were affected the compressive effect was deemed to be greater on the right than the left.

Over the next five hours, he experienced transient improvement with his highest pre-ductal saturation being 94%. He then developed a further deterioration with respect to oxygenation and systemic systolic blood pressures consistently in the low 30s. After escalating doses of epinephrine failed to address this issue and with worsening oxygenation, his parents chose to withdraw support. He died at 13 hours of age.

The family declined an autopsy and genetic testing was unavailable.

Figure 1: Radiograph demonstrating significant subcutaneous edema and left mediastinal shift by the right CDH.
Discussion

The incidence of Congenital diaphragmatic hernia is between 1 in 2500 to 4000 live born infants [1,2]. The majority of patients have left sided defects with 14-25% of patients having a defect on the right and less than 1% having bilateral involvement [3,4]. In a recent modern cohort, a survival rate of 55% was reported for those with right sided defects [5]. Some reports suggest a lower survival rate for patients with right sided defects and the need for ECMO may play a role, which has been estimated to be 40% in right sided defects versus 15% in those on the left [4]. Additionally, prenatal diagnosis of right CDH is less common possibly due to liver echogenicity masking the defect [6,7]. Inability to plan for such deliveries likely contributes to both significant morbidity and increased mortality as well.

Superior vena cava syndrome may result from the presence of the liver in the fetal thorax obstructing IVC or other venous inflows [8,9]. This disturbance in flow may compromise preload culminating in biventricular compromised output. Alternatively, intrathoracic liver may be associated with impaired lymphatic flow leading to hydrothorax and lethal pulmonary hypoplasia [10].

Hydrops fetalis in late gestation fetuses with CDH appears to be a rare event. In 2002, Sydorak et al. described their experience with 175 patients referred to a single centre for CDH [11]. Of these patients, only 10 had isolated CDH with hydrops and of these 6 were right sided. Only five of these patients survived and of these, all received fetal intervention. In this series, the development of hydrops was speculated to be secondary to fetal venous compression by the herniated viscera. The liver may have been responsible for this compression as in the series described above, 9 of the 10 patients had liver in the fetal thorax.

What makes this case unique is the visualization of direct compression of the right and left atria by the herniated liver.

In conclusion, hepatic atrial compression may limit venous return of both systemic and pulmonary blood flows and should be considered as an etiology for hydrops in this population. Identification of this condition antenatally may help in planning for postnatal management.

References


