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Protein-ligand docking [1,2] is a crucial step in in-silico Structure 
Based Drug design (SBDD). It is mainly based on the binding affinity 
of a small molecule with a specific protein. Molecular level docking has 
obtained significant progress in recent times through the development 
of sophisticated algorithms and advancement of computing resources. 
As a result, pharmaceutical industries have also started implementing 
computational molecular docking at a large scale with the hope of 
curtailing down the time and the capital investment in the drug 
discovery research [3,4]. Docking algorithms mainly comprise two 
major components: 

Generating protein-ligand samples and scoring the generated 
samples. Both components require heavy real number mathematical 
calculations; which essentially raises the overall complexity level of the 
computational approaches. While developing a docking algorithm, 
sample generation can be implemented separately or in conjugation 
with sample scoring [5,6]. Separate sampling of only ligand is a 
promising way to generate mul-tiple ligand conformations through 
the use of translational and rotational operators [6]. Sampling proteins 
along with comes under a flexible docking scheme, where sets of 
pocket lining residues are allowed to undergo conformational changes. 
Although protein sampling improves accuracy, unfortunately it 
multiplies the computational complexity by many folds. Overall, most 
sampling methods such as shape matching [7,8] systematic sampling 
[9] and stochastic sampling [10] are combinatorial in nature and
requires significant execution time. Sample generation thus remains
a great challenge as to which samples are to be generated from the
enormous sample space. Sample scoring functions have their own
high time complexities because of the mathematical rigorousness.
Moreover, many known scoring functions that are based on force field
[11,12] empiricalness [13,14] entropy [15,16] or knowledge-learnt
[17,18] involve all or multi atoms. The purpose of a scoring function is
to allow comparison of various conformations and to select the more
promising ones. A good scoring function can thus effect how further
samples are generated. A pertinent issue is the granularity level of
scoring, given a higher granularity level needs resources extensively.
In this article, we argue for a focussed and comprehensive approach
to look at the computational aspects of the docking holistically. We
suggest to develop a docking method that uses knowledge-based
sampling for focussed search, simplified scoring functions for
accelerated calculations and constraint based approaches for sample
generation and scoring interaction. Further details of these aspects are
provided below. Knowledge-based approaches can help learn from
protein-ligand experimental complexes and exploit the knowledge in
sample generation. For example, rotational bond sampling could be
streamed down to restricted bonds that involve major atom types such
as hydrogen bond donors and acceptors. This can lead to simplified
model of sampling as has been explored in protein folding by Ken Dill
[19]. Moreover, highly probable angles learnt from restricted bonds
and major atom types can be used in finding potential orientations of
the ligand molecules. This would result in both guided search and in
limiting the sample space. Simplified scoring functions help accelerate

computations. Scoring functions are primarily distance based measures 
with additional information either from chemistry principle (e.g. force, 
field, entropy) or even from knowledge based repositories. These 
additional information induces a higher mathematical complexity to 
the algorithm. For example, force field methods can have multiple 
terms including van der Waal forces, electrostatics, solvation, 
hydrogen bonds and many more. One way to reduce the complexity 
of these functions is to eliminate some of their detailing parameters 
and make them take some elementary forms. This can also help unify 
techniques that are needed for both sampling and scoring. Constraint 
based search approaches benefit from not sampling blindly without 
considering scoring functions that essentially capture problem specific 
knowledge through constraints and objectives. While traditional search 
approaches often take a random or exhaustive sampling approach, 
their search guidance mainly comes from scoring of the samples. In 
contrast, constraint-based approaches analyse current samples and 
identify parts that cause poorness of the score. The sample generation 
approaches then generate further samples focussing on the identified 
parts. Thus the sample generation and scoring processes work in an 
interleaving fashion and affect each others performance. In this kind of 
process, new samples are often close to old ones in terms of the changes 
in variable values. A sophisticated change propagation engine such as 
Kangaroo [20] in those cases can make the sample scoring efficient 
as it would recompute scores incrementally taking only the changes 
into account. Also, when multiple scoring functions are used, in an 
interleaving or in an on-demand fashion, computations of unused 
scoring functions could be avoided taking a lazy approach.
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