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Introduction
When the surface temperature is different from the ambient fluid 

temperature, it gives rise to a density gradient in the thermal boundary 
layer region. This density gradient produces a body force in the form 
of buoyancy of the fluid. The buoyancy force along with some external 
force constitutes a mixed convection flow. There the external force 
can either be in the form of free stream or some moving or stretching 
surface. With this understanding, we formulate the problem of mixed 
convection flow and the possible literature survey for the problem 
under consideration is given in preceding paragraph.

Ostrach [1] presented the similarity solution of natural convection 
along vertical isothermal plate. The instantaneous action of buoyancy 
and induced magnetic forces leading to natural convection heat 
transfer was investigated by Sparrow et al. [2]. They found out that in 
the presence of magnetic field, the natural convection heat transfer to 
liquid metals may be considerably affected [3]. The mixed convection 
over a horizontal surface due to uniform free stream has been studied by 
many researchers. Gebhart [4] used an analytical technique to analyze 
the effect of dissipation on natural convection [5,6]. The joint free and 
forced convection along with uniform heat flux in the presence of strong 
magnetic field was studied by Lioyd el al. [7]. Dwivedi [8] examined the 
free convection oscillatory hydromagnetic laminar flow of a viscous, 
electrically conducting and incompressible fluid over a vertical infinite 
porous plate under the influence of a transverse magnetic field when 
the temperature or heat flux at the surface oscillates in magnitude but 
not in direction. Soundalgekar [9] studied natural convection flow 
along vertical porous plate with suction and viscous dissipation [10].

A particular self-similar solution of the mixed convection flow 
over a horizontal surface was presented by Schneider [11] for the case 
of specified wall temperature as an inverse square root of the distance 
from the top edge. Chakrobarti et al. [12] illustrated the heat transfer 
and flow of an incompressible electrically conducting fluid pass a 
stretching sheet.  They presented an analytical solution for the flow 
and the numerical solution for the heat transfer. Under the influence of 
free stream oscillations, Perdikis et al. [13] examined the laminar free 
convection and mass transfer effects of a viscous, incompressible heat 
generating fluid-flow along an impulsively vertical plate with heat flux 
and constant suction at the plate. Wantanabe et al. [14] investigated 
the heat transfer in thermal boundary layer of MHD flow over a flat 
plate. The mixed convection boundary layer flow of an incompressible, 
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Abstract
The present study concern with the two dimensional viscous, incompressible, electrically con ducting, mixed 

convection flows with algebraic decay of mainstream velocity U(x)=(1-x)-a. The physical phenomenon of the problem 
is simulated by using the Primitive Variable Formulation (PVF) for Finite Difference Method (FDM) and Stream 
Function Formulation (SFF) for Local Non-Similarity Method (LNS). The physical behaviors of momentum and 
temperature fields are given graphically. The results obtained for skin friction and rate of heat transfer for different 
values of physical parameters are also compared by both methods and presented in tabular form.

viscous and electrically conducting fluid in the presence of transverse 
magnetic field along a vertical porous plate was examined by Hosain et 
al. [15]. In the presence of Hall current effect, Chamkha [16] expressed 
the MHD free convection pass a vertical plate in thermally satisfied 
porous medium. Chen [17] presented his study on MHD natural 
convection flow over a permeable inclined surface with variable wall 
temperature and concentration. He studied that increasing the angle of 
inclination decreases the effect of buoyancy force. Mostafa [18] studied 
the heat transfer and flow of an incompressible electrically conducting 
viscous fluid which passes a continuously moving vertical infinite 
plate with uniform suction and heat flux under the action of radiation 
taking into account the effects of variable viscosity. Considering 
a homogeneous chemical reaction of first order, Odat et al. [19] 
numerically examined the effect of magnetic field on the transient free 
convection flow of an electrically conducting fluid pass an impulsively 
started isothermal vertical plate. They observed that increasing the 
chemical reaction parameter decreases the velocity and concentration. 
Makinde [20] performed an analysis to examine the hydromagnetic 
mixed convection flow of a viscous, incompressible and electrically 
conducting fluid and mass transfer along a vertical porous plate with 
constant heat flux embedded in a porous medium.

However, when the free convective flows occur at high temperatures, 
radiation effects on the flow become significant. Many processes 
in engineering areas occur at high temperatures and knowledge of 
radiative heat transfer becomes very important for the design of the 
pertinent equipment. Nuclear power plants, gas turbines and the 
various propulsion devices for aircraft, missiles and space vehicles are 
examples of such engineering areas. The inclusion of radiation effects 
in the energy equation leads to a highly non-linear partial differential 
equation. Under the influence of thermal radiation along with variable 
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suction and thermophoresis. Alam et al. [21] numerically examined 
the two-dimensional steady MHD mixed convection and mass transfer 
flow through an inclined semi-infinite porous plate. In the presence 
of transversely applied magnetic field, MHD flow of an electrically 
conducting, viscous and incompressible fluid through a semi-infinite 
vertical plate with mass transfer was examined by Palani et al. [22]. 
Ferdows et al. [23] presented MHD boundary layer flow of a nanofluid 
through an exponentially stretching sheet. They also discussed and 
observed the heat transfer characteristics and the effects of governing 
parameters on the flow field. Ashraf et al. [24] studied the mixed 
convection flow past a magnetized vertical porous plate numerically.

In the light of above literature survey, we formulate the problem of 
mixed convection flow with algebraic decay of mainstream velocity in 
the presence of applied magnetic field.

Mathematical Analysis and Governing Equations
In this section, we formulate the bulk of mathematical equations 

governing the MHD convective flow along a vertical flat plate. We 
combine the basic momentum and energy equations into self-consistent 
system. This set of equations considers steady two dimensional flow 
of viscous incompressible conducting fluid along a semi-infinite 
vertical surface. The decay is only algebraic for 0<α<1 (Figure 1). A 
magnetic field of strength Bo(x) is considered to be applied parallel to 
the y-axis which is normal to the plate. Under the usual Boussinesq 
approximation, the flow is governed by the following boundary layer 
equations following by Merkin [10].
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u v
x y

( )
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The dimensionless boundary layer equations along with boundary 
conditions are given as:
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The dimensionless boundary conditions are:
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the Richardson Grashof number, Reynolds number, magnetic 
parameter, Prandtl number and the characteristic length respectively.

Method of Solutions 
We now turn to get the numerical solutions of the problem. For 

this purpose we will use Primitive variable formulation for Finite 
Difference Method and Stream function formulation for Local Non- 
Similarity Method.

Primitive variable formulation

We now introduce the group of transformations that is known as 
Primitive Variable Formulation (PVF) to transform the given system of 
equations into convenient form for integration
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2 , ,       , ,     1 αξ ξ −= = = −u U Y v x V Y U x                              (8)
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The appropriate boundary conditions satisfied by the above system 
of equations are
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Figure 1: Boundary layer equations.
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( ) ( ) , 1,      , 0ξ θ ξ∞ = ∞ =V

Discretization: Now we first discretize (9)-(20) using FDM (Finite 
Difference Method)
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From this, we get a tri-diagonal system of algebraic equations, which 
is solved by using Gaussian elimination technique. The computational 
domain is of size 80 × 80 mesh points, and computational is started 
from 0 ξ =  and march down implicitly, for this we have taken the 
step size Δξ=0.05 and ΔY=0.05. We calculate the effects of different 

parameters on coefficients of skin friction, rate of heat transfer, velocity 
and temperature field with the help of equations.
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                               (18)

and velocity can be calculated directly using equation of continuity (4) 
as shown below:
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Stream function formulation

To get the set of equations in convenient form for integration, 
we define the following one parameter of transformations for the 
dependent and independent variables.
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By using this group of transformations we have x and y components 
of velocity as
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Now the complete transformed form of the model of the problem 
attains the following form
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with transformed boundary conditions
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Local non-similarity method

The solution of the set of locally non-similar equations can be 
obtained by using local Non- similarity method (LNS). The governing 
coupled Partial Differential equations are transformed into a sequence 
of coupled ordinary differential equations (ODE), which are then 
solved numerically. The local non-similarity method avoids this by 
deleting the stream-wise a derivative term, that is, the term with / ξ∂ ∂ . 
This changes the partial differential equation (PDE) into non-linear 
ODE, that still has to be solved numerically. The local non-similarity 
method was first developed by Sparrow and Yu [6], Minkowycz and 
Sparrow [2] and later used by Chen [17] in his work.

To adopt this method, we first retain all terms in the transformed 
form with x derivative. Now the systems of equations that we have to 



Citation: Ashraf M, Ahmad U, Ahmad M, Sultana N (2015) Computational Study of Mixed Convection Flow with Algebraic Decay of Mainstream 
Velocity in the Presence of Applied Magnetic Field. J Appl Mech Eng 4: 175. doi:10.4172/2168-9873.1000175

Page 4 of 6

Volume 4 • Issue 4 • 1000175
J Appl Mech Eng
ISSN:2168-9873, an open access journal 

solve by using LNS are equations (23) and (24).

Now by putting  /  = ∂ ∂F G x and /  ϕ θ= ∂ ∂x we have:
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With boundary conditions
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This is the second level of truncation of the Local Non-Similarity 
because this approximation is made by dropping terms in second 
level of equations. This system of coupled nonlinear ordinary 
differential equation now can be solved numerically by employing the 
Nachtsheim-Swigert [5] iteration technique in conjunction with the 
shooting procedure to determine the unknown boundary conditions  

( )0″f and ( )0θ′ . Once we find the unknowns ( )0″f and ( )0 , θ′  we 
are able to find the coefficients of skin friction and rate of heat transfer 
for different effects of parameters such as algebraic decay parameter α, 
Hartmann number M, Richardson parameter Ri and Prandtl number 
Pr with the help of following relations:

( ) ( )
1 1
2 2 ,0 ,           ,0ξ θ ξ

−
= ″ ′=x x x xRe Cf f Nu Re                                      (31)

Results and Discussions
In this section we will discuss the results obtained by Finite 

Difference Method and Local Non- Similarity Method.  In  this  study,  
we  explore  the  effects  of  different  parameters  on coefficients of skin 
friction, rate of heat transfer, velocity field and magnetic field. With this 
understanding the Figures 2a and 2b presents the effects of different 
values of algebraic decay parameter α=0.01, 0.05, 0.1 by keeping other 
parameters constant on momentum and boundary layer thicknesses. 
From these figures it is possible to see how the algebraic decay parameter 

α influences the free stream velocity distribution at Y=16-18, and there 
is no effects of algebraic decay parameter on temperature distribution. 
The reason is that if we see the equation (2) the algebraic decay is only 
the part of free stream velocity U=(1−x) −α outside the boundary so in 
both cases this parameter has its no effects within the boundary layer.

In Figures 3a and 3b, the influence of Prandtl number Pr (which 
is the ratio of kinematic viscosity to thermal diffusion) on momentum 
and thermal boundary layer thicknesses is shown. For increasing value 
of Prandtl number both the momentum and thermal boundary layer 
thicknesses are decreased with the reason that with the increase of 
Prandtl number Pr the fluid become more viscous which slow down 
the fluid motion, so distributions on both cases are decaying and this 
decay is asymptotic. Figures 4a and 4b show some results of variation 
of Richardson/mixed convection parameter Ri=1.0, 10.0, 20.0 on 
velocity and temperature profile. In this range of Richard parameter 
the momentum boundary layer thickness is decreased because 
the Richardson number acts like pressure gradient which take the 
responsibility of this physical phenomena but its effects in the case 
of thermal boundary layer is vice versa. Figures 5a and 5b shows the 
behavior of various values of Hartmann number M=1.0, 10.0, 20.0 
on momentum and thermal boundary layer thicknesses. From this 
numerical exercise we can see the increase of applied magnetic field 
momentum boundary layer is decreased and thermal boundary layer is 
increased for maximum value of M=20.0.

Tables 1 and 2 shows some of the results obtained by Finite 
Difference Method and Local Non-Similarity method for different 
values of Hartmann number M on coefficient of skin friction and rate 
of heat transfer. From these tables, it is conclude that with the increase 
of Hartmann number M the coefficient skin friction and rate of heat 
transfer both are decreased. For increasing value of Hartmann number 
increase the magnetic energy and decrease the kinetic energy in the 
fluid flow domain due to this reason both quantities are decreased. 
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Figure 2: (a) velocity and (b) temperature field profile against boundary layer 
thickness Y for different values of algebraic decay parameter α=0.01, 0.05, 
0.10 when Pr=0.71, M=1.0 and for Richardson number Ri=1.0.
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Figure 3: (a) velocity and (b) temperature field profile against boundary layer 
thickness Y for different values of Prandtl number Pr=1.0, 10.0, 20.0 when 
α=0.07 M=1.0, and for Richardson number Ri=5.0.
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thickness Y for different values of Richardson number Ri =1.0, 10.0, 20.0 when  
α=0.07 M=1.0, and for Prandtl number Pr=0.71.
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The effects of different values of Richardson parameter on coefficients 
of skin friction and rate of heat transfer are shown in Tables 3 and 4. 
From these tables it can be seen that the skin friction and heat transfer 
are both increased because of the influence of the buoyancy force. 
The effects of various values of Prandtl number Pr on coefficients of 
skin friction and rate of heat transfer are shown in Tables 5 and 6. 

From these tables it is concluded that the component of skin friction 
is decreased while the component of rate of heat transfer is increased 
due to the reason that the product of density and thermal diffusion 
is decreased which enhance the rate of heat transfer in the fluid flow 
domain. At the end the numerical results obtained by both methods are 
found to be in good agreement.

Conclusion
 In this article we have illustrated the effects of different parameters 

on some physical quantities such as skin friction, rate of heat 
transfer, momentum and thermal boundary layer thicknesses. The 
dimensionless local balance equations were solved numerically using 
a Finite Difference and Local Non-Similarity method by FORTRAN 
code. At the end, we summarize the following findings.

The algebraic decay parameter a influences the free stream 
velocity distribution at Y=16-18, and there is no effects of algebraic 
decay parameter on temperature distribution. For increasing value of 
Prandtl number Pr both the momentum and thermal boundary layer 
thicknesses are decreased with the reason that with the increase of 
Prandtl number Pr the fluid become more viscous which slow down the 
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Figure 5: (a) velocity and (b) temperature field profile against boundary layer 
thickness Y for different values of Hartman number M=1.0, 10.0, 20.0 when 
α=0.07 Ri=1.0 and for Prandtl number Pr=0.71.

M FDM LNS
0.1 0.79478 0.79104
1.0 0.47204 0.47975
2.0 0.39717 0.37143
3.0 0.35781 0.34295
4.0 0.33172 0.33344
5.0 0.29738 0.29370
6.0 0.28504 0.27167
7.0 0.27465 0.25359
8.0 0.26571 0.22936

Table 1: Numerical values of coefficient of Skin friction 
1
2x xRe Cf obtained for different 

values of M when Pr=10.0, α=0.4, Ri=2.0.

M FDM LNS
0.1 0.58954 0.58320
1.0 0.36669 0.36761
2.0 0.31328 0.31274
3.0 0.28548 0.27415
4.0 0.26716 0.26240
5.0 0.25387 0.23197
6.0 0.24357 0.23177
7.0 0.223526 0.21319
8.0 0.22834 0.20981

Table 2: Numerical values of coefficient of rate of heat transfer 
1
2

−
x xNu Re obtained for 

different values of M when Pr =10.0, α = 0.4, Ri = 2.0.

Ri FDM LNS
0.1 0.22415 0.22304
1.0 0.34958 0.34275
2.0 0.47204 0.46274
3.0 0.58357 0.57495
4.0 0.68803 0.68240
5.0 0.78664 0.78197
6.0 0.88073 0.86677
7.0 0.97108 0.91359
8.0 1.14268 1.0936

Table 3: Numerical values of coefficient of Skin friction 
1
2Re Cfx x

obtained for different 
values of Ri when Pr =10.0, α=0.4, M=1.0.

Ri FDM LNS
0.1 0.28611 0.28014
1.0 0.33156 0.33975
2.0 0.36669 0.36743
3.0 0.39392 0.39214
4.0 0.41644 0.41238
5.0 0.43579 0.43184
6.0 0.45286 0.46671
7.0 0.46819 0.47347
8.0 0.49496 0.50304

Table 4: Numerical values of coefficient of rate of heat transfer 
1
2

−
x xNu Re obtained 

for different values of Ri when Pr=10.0, α=0.4, M=1.0.

Pr FDM LNS
0.1 0.48354 0.48201
1.0 0.48197 0.48175
2.0 0.48039 0.48143
3.0 0.47898 0.47102
4.0 0.47772 0.462240
5.0 0.47658 0.46001
6.0 0.47554 0.45177
7.0 0.47458 0.45093
8.0 0.47368 0.45016

Table 5: Numerical values of coefficient of Skin friction 
1
2x xRe Cf obtained for 

different values of Pr when Ri=2.0, α=0.4, M=1.0.

Pr FDM LNS
0.1 0.10516 0.10404
1.0 0.14134 0.14963
2.0 0.17772 0.17702
3.0 0.20992 0.20495
4.0 0.23859 0.23209
5.0 0.26444 0.25970
6.0 0.28801 0.27653
7.0 0.30973 0.29359
8.0 0.32993 0.31936

Table 6: Numerical values of coefficient of rate of heat transfer 
1
2

−
x xNu Re  obtained 

for different values of Pr when Ri=2.0, α =0.4, M=1.0.
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fluid motion, so distributions on both cases are decaying and this decay 
is asymptotic. With the increase of Richard parameter the momentum 
boundary layer thickness is decreased because the Richardson number 
acts like pressure gradient which take the responsibility of this physical 
phenomena but its effects in the case of thermal boundary layer is 
vice versa. With the increase of applied magnetic field momentum 
boundary layer is decreased and thermal boundary layer is increased for 
maximum value of M=20.0. For increasing value of Hartmann number 
increase the magnetic energy and decrease the kinetic energy in the 
fluid flow domain due to this reason both quantities are decreased. It 
is also noted that the skin friction and heat transfer are both increased 
because of the influence of the buoyancy force. It is also concluded that 
the component of skin friction is decreased while the component of the 
rate of heat transfer is increased due to the reason that the product of 
density and thermal diffusion is decreased which enhance the rate of 
heat transfer in the fluid flow domain.
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