Control of Simultaneous Osteogenic and Adipogenic Differentiation of Mesenchymal Stem Cells

Rong Cai1,2, Tomoko Nakamoto1, Takashi Hoshiba1, Naoki Kawazoe1 and Guoping Chen1,2*

Keywords: Osteogenesis; Adipogenesis; Differentiation balance; Simultaneous differentiation; Mesenchymal stem cells

Introduction

Mesenchymal stem cells (MSCs) are pluripotent with the ability to differentiate into multiple cell lineages such as osteoblasts and adipocytes. Osteogenesis and adipogenesis of MSCs induced with specific induction factors have been well exploited. However, it is not clear how simultaneous osteogenesis and adipogenesis of MSCs is balanced by the composition of induction medium. In this study, MSCs were cultured in the mixture medium at different ratios of osteogenic medium (OM) and adipogenic medium (AM) to investigate the simultaneous osteogenesis and adipogenesis of MSCs. Differentiation was investigated by histological staining and real-time PCR analysis. The results showed that adipogenesis was dosage dependent on the concentration of adipogenic induction factors, while osteogenesis was not. The balance of osteogenesis and adipogenesis could be controlled by different ratios of osteogenic and adipogenic media. The results will be useful for controlling stem cell differentiation.

Abstract

Mesenchymal stem cells (MSCs) are pluripotent cells which can differentiate into several distinct lineages such as osteoblasts and adipocytes. Osteogenesis and adipogenesis of MSCs induced with specific induction factors have been well exploited. However, it is not clear how simultaneous osteogenesis and adipogenesis of MSCs is balanced by the composition of induction medium. In this study, MSCs were cultured in the mixture medium at different ratios of osteogenic medium (OM) and adipogenic medium (AM) to investigate the simultaneous osteogenesis and adipogenesis of MSCs. Differentiation was investigated by histological staining and real-time PCR analysis. The results showed that adipogenesis was dosage dependent on the concentration of adipogenic induction factors, while osteogenesis was not. The balance of osteogenesis and adipogenesis could be controlled by different ratios of osteogenic and adipogenic media. The results will be useful for controlling stem cell differentiation.

Materials and Methods

Preparation of mixture medium

The osteogenic differentiation medium (OM) was prepared by adding 10 nM dexamethasone (Dex, Sigma, St. Louis, MO) and 10 mM β-glycerophosphate (β-GP, Sigma, St. Louis, MO) in Dulbecco’s modified Eagle’s medium (DMEM, Sigma, St. Louis, MO) with low glucose (1000 mg/L), containing 10% fetal bovine serum (FBS, Equitech-Bio, Kerrville, TX), glutamine (584 mg/L), penicillin (100 units/mL), streptomycin (100 mg/L), nonessential amino acids (0.1 mM), sodium pyruvate (1 mM), proline (0.4 mM) and ascorbic acid (50 mg/L). The adipogenic differentiation medium (AM) was prepared by DMEM with high glucose (4500 mg/L) supplied with Dex (1 μM), 3-isobutyl-1-methylxanthine (0.5 mM, IBMX), insulin (10 μg/mL) and indomethacin (100 nM, Indo). The mixture medium of osteogenic and adipogenic medium was prepared by combining OM and AM at different ratios (OM/AM (v/v)) of 100/0, 95/5, 90/10, 85/15, 80/20, 75/25, 70/30, 65/35, 60/40, 55/45, 50/50, 45/55, 40/60, 35/65, 30/70, 25/75, 20/80, 15/85, 10/90, 5/95 and 0/100. The concentration of induction factors of Dex, β-GP, IBMX, insulin and Indo was calculated from the mixture ratio (Figure 1).

*Corresponding author: Guoping Chen, Principal Investigator and Unit Director, Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Tel: +81-29-860-4496; Fax: +81-29-860-4714; E-mail: Guoping.Chen@nims.go.jp

Received July 14, 2014; Accepted August 01, 2014; Published August 03, 2014

Copyright: © 2014 Cai R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Simultaneous osteogenic and adipogenic differentiation of MSCs

Human bone marrow-derived mesenchymal stem cells (MSCs, passage 2) were obtained from Lonza (Walkersville, MD) and subcultured twice in growth medium (Lonza, MD). The subcultured MSCs (at passage 4) were seeded in tissue culture plates (TCPS) at a density of 5,000 cells/cm² under an atmosphere of 5% CO₂ at 37°C. The mixture medium was used and refreshed every 3 days during culture. The cells were cultured in mixture medium for 3, 7, 14, and 21 days.

Alkaline phosphatase (ALP) staining

After incubation in mixture medium for 1, 2 and 3 weeks, the cells were washed with phosphate-buffered saline (PBS) and fixed with 4% paraformaldehyde in PBS for 10 min. Then the cells were incubated with 0.1% naphthol AS-MX phosphate (Sigma, St. Louis, MO) and 0.1% fast blue RR salt (Sigma, St. Louis, MO) in 56 mM 2-amino-2-methyl-1,3-propanediol (pH 9.9, Sigma, St. Louis, MO) working solution at room temperature for 10 min, washed with PBS twice and then observed under an optical microscope. More than ten bright field images of ALP staining were taken from each sample and at least 3 parallel samples were stained. As reported by Alm et al. [14], the level of ALP activity was quantified by using an ImageJ program analysis. Briefly, a constant threshold value of the reflection intensity was defined from background and the percentage of ALP positively stained area to total area of the cells was calculated.

Alizarin red S staining

To evaluate the deposition level of calcium phosphate, the cultured cells were washed with phosphate-buffered saline (PBS) and fixed with 4% paraformaldehyde in PBS for 10 min. Then the fixed cells were incubated with 0.5% Alizarin red S (Sigma, St. Louis, MO) solution at room temperature for 10 min and extensively washed twice with PBS. The stained cells were observed under an optical microscope. Similarly, Alizarin red S positive areas were quantified by determining the percentage of stained area to total area of the cells using ImageJ.

Oil red O staining

To evaluate the adipogenic differentiation, Oil red O (Sigma, St. Louis, MO) staining of the cytoplasmic droplets of neutral lipids in the differentiated cells was performed according to the previous research [15,16]. The cultured cells were rinsed with PBS and fixed with 4% paraformaldehyde for 10 min. After treatment with 60% 2-propanol solution for 5 min, the cells were treated with Oil red O working solution for 5 min at room temperature. The Oil red O working solution was prepared by mixing three parts of Oil red O stock solution (0.3 g/mL Oil red O powder in 2-propanol) with two parts of MilliQ water. After that, the cells were washed with 60% 2-propanol solution once and PBS three times to help remove the background. The photomicrographs of the stained cells were captured by optical microscopy. The percentage of cells positively stained by Oil red O was calculated from the stained area and total area of cells as mentioned above.

Real-time PCR Analysis

Total RNA was extracted from the cells cultured at different conditions for pre-designated periods by using Sepasol solution.
according to the manufacturer’s instruction (Nacalai Tesque, Kyoto, Japan). Total RNA (1.0 µg) was used as a first strand reaction that included random hexamer primers and murine leukemia virus reverse transcriptase (Applied Biosystems, CA). Real-time PCR was used to quantify 18S rRNA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Alkaline phosphatase (ALP), secreted phosphoprotein 1 (SPP1, osteopontin), bone sialoprotein 2 (IBSP), SP7 transcription factor (SP7, osterix), peroxisome proliferator-activated receptor gamma (PPARG), lipoprotein lipase (LPL), fatty acid binding protein 4 (FABP4) and CCAAT/enhancer binding protein (CEBPA), and fatty acid synthase (FASN). The reaction was performed with 10 ng of cDNA, 90 nM PCR primers, 25 nM PCR probe and FastStart TaqMan Probe Master (Roche Diagnostics Japan, Tokyo, Japan). The expression level of 18S rRNA was used as an endogenous control and gene expression level relative to GAPDH was calculated using the comparative Ct method. The sequences of primers and probes are based on our previous studies as listed in Table 1 [15,17]. The primers and probes were obtained from Applied Biosystems and Hokkaido System Science (Sapporo, Japan).

Statistical analysis

All data are presented as mean ± standard deviation (SD), with 3 biological replicates. The statistically significant effects were detected by one-way analysis of variance (ANOVA) with Tukey’s post hoc test. All the results were performed in at least three independent experiments. A significant difference is marked as *(p<0.05), ***(p<0.01), and *****(p<0.001).

Results

Osteogenic differentiation of MSCs in mixed osteogenic/ adipogenic medium

Specific induction factors are necessary to commit MSCs toward osteogenic and adipogenic differentiation. To investigate how the osteogenic induction medium (OM) and adipogenic induction medium (AM) in the mixture medium affect the osteogenic differentiation of MSCs, cells were cultured in mixture medium at various ratios for 3, 7, 14, and 21 days. ALP was stained acting as the early stage marker of osteogenesis [18-21]. The ALP staining was negative when MSCs were cultured in mixture medium for 3, 7, 14, and 21 days (Figure 1a), while the cells cultured in mixture medium were positively stained. For the first 3 days of culture, the cells were stained weakly. ALP staining became gradually stronger when the culture time increased. After 21 days, cells cultured in medium at all the mixture ratios were positively stained.

The intensity of ALP staining was also dependent on the ratio of OM and AM. The cells cultured in mixture medium with an OM/AM ratio in the range of 90/10–60/40 were more positively stained than the cells cultured in other mixture medium. The ALP staining was further quantified by image analysis of the percentage of positively stained areas (Figure 1b) [14]. The intensity of ALP staining was almost zero after 3 days of culture and increased with culture time. After being cultured in the mixture medium for 14 and 21 days, the ALP intensity was very high, and the dependence of ALP staining on the composition of mixture medium became remarkably obvious after 14 and 21 days culture. The degree of ALP staining increased when the OM/AM ratio was changed from 100/0 to 90/10, remained maximum at the same level from OM/AM ratio of 90/10 to 60/40, and further decreased below a ratio of 55/45. At mixture ratios of 5/95 and 0/100, the cells were only slightly stained by ALP, even after being cultured for 21 days.

Calcium deposition was examined by Alizarin red S staining, as calcium deposition is a late stage indicator of osteogenic differentiation [20]. MSCs cultured in growth medium showed no calcium deposition. MSCs cultured in the OM/AM mixture medium showed no calcium deposition until the cells were cultured for 21 days (Figure 2a). At day 21, the Alizarin red S staining was strong for the cells cultured in mixture medium with OM/AM ratio of 100/0, 95/5, 90/10, 85/15, 80/20, 75/25, 70/30, moderate for cells culture at OM/AM ratio of 65/35, 60/40, 55/45, 55/45, 20/80, 20/80, 15/85, and 15/85, and low for the cells cultured at OM/AM ratio of 50/50, 55/45, 60/40, 65/35, 70/30, 70/30, 90/10, 95/5, and 0/100. The Alizarin red S staining intensity was quantified by image analysis of the percentage of Alizarin red S stained areas (Figure 2b). The Alizarin red S staining was at the same high level when MSCs were cultured in mixture medium with an OM/AM ratio of 100/0 to 70/30. It showed a decrease from an OM/AM ratio of 65/35 to 30/70 and was much lower when the OM/AM ratio was 55/45, 40/60, 35/65, and 30/70. There was a small peak of Alizarin red S intensity when OM/AM ratio was in the range of 25/75–15/85. The intensity of Alizarin red S staining showed a quite low level again when the OM/AM ratio was 10/90, 5/95 and 0/100.

Based on the ALP and Alizarin red S staining results, a few mixture ratios (100/0, 95/5, 85/15, 70/30, 50/50, 20/80, and 0/100) where MSCs showed distinctly high or low intensity of staining were selected for gene expression experiments. Expression of osteogenic genes ALP, SPP1, SP7, and IBSP were measured after MSCs were cultured for 21 days (Figure 3). Compared with that of cells cultured in growth medium, expression level of these osteogenic genes increased significantly when MSCs were cultured in mixture medium. Expression of the osteogenic genes was shown to be dependent on the composition of the mixture medium. Expression level of ALP by MSCs cultured at OM/AM mixture ratios of 100/0, 95/5, 85/15, and 70/30 were higher than that of cells cultured at OM/AM mixture ratios of 50/50, 20/80, and 0/100. Expression level of SPP1, SP7, and IBSP was high in cells cultured in mixture medium with OM/AM mixture ratio of 100/0, 95/5, 85/15, and 70/30. The expression levels were moderate for cells cultured at OM/AM mixture ratio of 20/80, and low for cells cultured at OM/AM mixture ratio of 50/50 and 0/100. ALP and SPP1 are the early stage genes of osteogenesis, while SP7 and IBSP are the late stage genes. High expression of late stage marker genes was in good agreement with the calcium deposition results. Together with the ALP and Alizarin red S staining, gene expression results indicated that MSCs cultured in mixture medium with OM percentage greater than 70% showed strong osteogenic differentiation, and moderate osteogenic differentiation when the OM percentage was in a range of 70%–55%. The OM percentage lower than 50% was not good for osteogenic differentiation.

Table 1: Primers and probes for real-time PCR analysis.

<table>
<thead>
<tr>
<th>mRNA</th>
<th>Oligonucleotide</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S rRNA</td>
<td>Hs99999901_s1</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Hs99999905_m1</td>
</tr>
<tr>
<td>ALP</td>
<td>5'-GACCTTGAGAGGACACCAT-3'</td>
</tr>
<tr>
<td></td>
<td>5'-GCTCTGATGCTGAGTCC-3'</td>
</tr>
<tr>
<td></td>
<td>5'-TGATCTTCTGACACATCC-3'</td>
</tr>
<tr>
<td></td>
<td>5'-GTCCTTACTGACACATCC-3'</td>
</tr>
<tr>
<td>IBSP</td>
<td>Forward</td>
</tr>
<tr>
<td></td>
<td>Hs001541729_m1</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
</tr>
<tr>
<td></td>
<td>Hs00115510_m1</td>
</tr>
<tr>
<td></td>
<td>Probe</td>
</tr>
<tr>
<td></td>
<td>Hs00173425_m1</td>
</tr>
<tr>
<td></td>
<td>SPP1</td>
</tr>
<tr>
<td></td>
<td>Forward</td>
</tr>
<tr>
<td></td>
<td>Hs00173425_m1</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
</tr>
<tr>
<td></td>
<td>Hs00609791_m1</td>
</tr>
<tr>
<td></td>
<td>Probe</td>
</tr>
<tr>
<td></td>
<td>Hs00609791_m1</td>
</tr>
<tr>
<td></td>
<td>FABP4</td>
</tr>
<tr>
<td></td>
<td>Forward</td>
</tr>
<tr>
<td></td>
<td>Hs00609791_m1</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
</tr>
<tr>
<td></td>
<td>Hs00609791_m1</td>
</tr>
<tr>
<td></td>
<td>PPARG</td>
</tr>
<tr>
<td></td>
<td>Forward</td>
</tr>
<tr>
<td></td>
<td>Hs00115510_m1</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
</tr>
<tr>
<td></td>
<td>Hs00173425_m1</td>
</tr>
<tr>
<td></td>
<td>LPL</td>
</tr>
<tr>
<td></td>
<td>Forward</td>
</tr>
<tr>
<td></td>
<td>Hs00115510_m1</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
</tr>
<tr>
<td></td>
<td>Hs00173425_m1</td>
</tr>
<tr>
<td></td>
<td>FASN</td>
</tr>
<tr>
<td></td>
<td>Forward</td>
</tr>
<tr>
<td></td>
<td>Hs00269972_s1</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
</tr>
<tr>
<td></td>
<td>Hs00269972_s1</td>
</tr>
</tbody>
</table>

Page 3 of 9

Volume 4 • Issue 8 • 1000223

ISSN: 2157-7633 JSCRT, an open access journal
except the range between 25% and 15%. During the range between 25% and 15%, MSCs also showed moderate osteogenic differentiation.

Adipogenic differentiation of MSC in mixed osteogenic/adipogenic medium

Adipogenic differentiation of MSCs in the OM/AM mixture medium was investigated by Oil red O staining and real-time PCR. Oil red O staining of cells was negative for 3 days culture and slightly positive for 7 days culture, and became strongly positive after 14 and 21 days culture (Figure 4a). Few cells were positively stained in mixture medium with an OM/AM ratio of 100/0, 95/5, and 90/10. The number of stained cells increased with an increase in AM percentage, and a considerable amount of cells were stained when AM percentage was higher than 50%. MSCs cultured in growth medium were not positively stained.

Quantification of the positive stained area showed the staining intensity of the cells cultured in mixture medium (Figure 4b). The positive stained area was almost zero when MSCs were cultured in the mixture medium for 3 days and very low after 7 days of culture. The positive stained area showed a significant increase after 14 and 21 days of culture, respectively. The positive stained area was dependent on the composition of the mixture medium. It increased with increasing AM percentage and became plateau when the AM percentage was higher than 75%.

Expression of adipogenesis related genes *LPL*, *FABP4*, *PPARG*,
Expression of the genes was very low when MSCs were cultured in growth medium. All the genes showed low expression in mixture medium containing less AM, and higher expression in mixture medium containing more AM. The expression of the genes increased with the AM percentage. For **PPARG** and **LPL**, expression levels were high when AM percentage was greater than 70%. For **CEPBA**, **FABP4**, and **FASN**, their expression reached the highest level when AM percentage was greater than 80%.

Discussion

Osteogenic and adipogenic differentiation are the most important...
characteristics of MSCs. Control of their osteogenesis and adipogenesis is very important for tissue engineering and regenerative medicine [12,22,23]. Usually, differentiation of MSCs is studied by culturing them in a specific differentiation medium. The classical cocktail of induction factors for osteogenic and adipogenic differentiation of MSCs in vitro has been well established. The composition of medium has significant effect on the differentiation of MSCs. The osteogenic induction medium and adipogenic induction medium have some similar components.

However, it is unclear whether MSCs can simultaneously differentiate to osteogenic and adipogenic lineages and whether the medium components can balance the osteogenesis and adipogenesis of MSCs. In this study, the effect of these two types of induction media in mixture on balance of the osteogenic and adipogenic differentiation of MSCs was investigated. Simultaneous osteogenic and adipogenic differentiation of MSCs was induced by culturing MSCs in the mixture medium with different ratio of OM and AM. After they were cultured in the mixture medium for 21 days, MSCs showed strong osteogenic differentiation in the mixture medium containing an OM/AM ratio from 100/0 ~ 70/30. Moderate osteogenic differentiation was observed at OM/AM ratio of 70/30~50/50 and 25/75~15/85. OM/AM ratios of 50/50~25/75 and 15/85~0/100 showed low levels of osteogenic differentiation. Adipogenic differentiation of MSCs in the mixture medium showed a simple dependence on the AM percentage. High ratio of AM resulted in strong adipogenic differentiation, while at low ratio adipogenic differentiation was weak.

Therefore, the mixture medium can be divided into 5 ranges to balance the osteogenic and adipogenic differentiation of MSCs. They are OM/AM ratios of 100/0~70/30 for strong osteogenic differentiation and weak adipogenic differentiation, 70/30~50/50 for moderate differentiation, 50/50~25/75 for moderate osteogenic differentiation and strong adipogenic differentiation, 25/75~15/85 for moderate osteogenic differentiation and weak adipogenic differentiation, and 15/85~0/100 for weak osteogenic differentiation and strong adipogenic differentiation.

![Figure 5](image_url): (a) Photomicrographs of Oil red O staining of MSCs after culture in different ratio of OM and AM for 3, 7, 14, and 21 days. 100/0 indicates the medium containing 100% OM and 0% AM, and so forth. GM indicates the growth medium. Scale bar=500 μm. (b) Percentage of cells that were positively stained with Oil red O after culture in different ratio of OM and AM for 21 days. Data represent mean ± SD (n ≥ 30, n represents the total number of images taken from 3 duplicate wells with more than 10 images from each well).
osteogenic differentiation and moderate adipogenic differentiation, 50/50–25/75 for weak osteogenic differentiation and moderate adipogenic differentiation, 25/75–15/85 for moderate osteogenic differentiation and strong adipogenic differentiation, 15/85–0/100 for weak osteogenic differentiation and strong adipogenic differentiation.

A large number of evidence suggests that an inverse correlation exists between osteogenesis and adipogenesis [11, 24, 25], mainly based on different culture supplements. The up-regulation of osteogenic differentiation is associated with down-regulation of adipogenic differentiation, and vice versa [10]. The general trend of osteogenic and adipogenic differentiation in the mixture medium was consistent with the previously reported results. However, the results in this study showed more detailed information on the balance of simultaneous osteogenic and adipogenic differentiation by the mixture medium.

Typically, the culture supplements regulate key transcription factors that control the balance of osteogenesis and adipogenesis. Dex and β-GP are the two inductors for osteogenic differentiation of MSCs [26]. Dex, IBMX, insulin, and Indo are the main inductors for adipogenic differentiation. The concentration of these inductors in the OM/AM mixture medium is shown in Figure 6. The favorable osteogenic differentiation at high percentages of osteogenic induction medium and favorable adipogenic differentiation at high percentages of adipogenic induction medium should be due to the appropriate concentration range of their respective induction factors.

Dex, a synthetic glucocorticoid, has been reported to be an essential soluble factor for osteogenesis of MSCs, but it has also been recognized as a adipogenesis promoter at a higher concentration [9]. Many reports found that Dex modulates osteogenesis and adipogenesis in MSCs by regulating Sp7 expression [25], Wnt signaling [27], TAZ [28], and SPP1 [29] expression. The Dex concentration in the mixture medium with an OM/AM ratio of 100/0–70/30 was 10–300 nM. Alm et al. [14] reported that treatment with 10 nM Dex was not as effective as with 100 nM Dex.

For mineralization, the late stage of osteogenesis, the presence of both calcium and phosphate ions is necessary. β-GP serves as a crucial source of calcium phosphate. Furthermore, the calcium phosphate deposition is highly dose dependent on the concentration of β-GP. The β-GP concentration decreased with the change of OM/AM ratios from 100/0 to 0/100. The increase of Dex concentration and decrease of β-GP concentration in the mixture medium explains the best osteogenesis-stimulation effect of mixture medium with an OM/AM ratio of 100–70/30. The reason for the stimulation effect at an OM/AM ratio of 25/75–15/85 is not clear. It probably is due to the synergistic effects from all the combined components in the mixture medium.

During the adipogenesis of MSCs, high concentration of Dex usually induces expression of CEBPA and PPARγ, which act as two key transcription factors of adipogenic differentiation [30]. The positive effect of Dex on adipogenic differentiation of MSCs can be amplified by cAMP-elevating agents such as IBMX [31]. On other hand, IBMX can up-regulate the expression of PPARγ and LPL and also down-regulate osteogenic gene makers such as Runx2 and SPP1 by activation of protein kinase A. Therefore, Dex and IBMX play important roles in modulating the balance between osteogenesis and adipogenesis. Beside these two adipogenic factors, insulin and indomethacin can also promote adipogenic differentiation by stimulating PPARγ or binding with PPARγ [32].

We also analyzed the main transcription factor for osteogenic differentiation of MSCs, SP7. SP7 can induce preosteoblasts to differentiate into mature osteoblasts that mineralize and express high level of osteogenic-specific genes, such as bone sialoprotein (IBSP).
Frequently, LPL expression and observation of oil droplets are used as the early and late markers of adipogenesis, respectively. During the terminal differentiation of adipogenesis, adipocytes markedly increase the expression of proteins related to lipid metabolism, such as FABP4, an adipocyte-specific fatty acid protein, also identified as aP2. All the adipogenesis related genes were up-regulated with an increase in the AM percentage. This should be attributed to the increase of the adipogenesis induction factors.

These results established an important relationship between osteogenesis and adipogenesis. In bone marrow, osteoblasts and adipocytes are derived from the mesenchymal stem cells, transcription factors and genes involved in these two lineages could be manipulated by induction factors to favor osteogenic or adipogenic differentiation of MSCs. It has been reported that PPARG is proposed as a major factor in lineage skewing, promoting adipogenesis at the expense of osteogenesis [11]. PPARG activating led to ROS accumulation cause apoptosis of osteoblasts [12], and PPARG silencing stimulated a higher level of matrix mineralization [24]. Our results indicate that when the normal osteogenesis of MSCs is disrupted under interventions, adipogenesis dominates the differentiation process, and the reverse is also true. Shifting in balance between these two processes is regulated by involved transcription factors, which can be activated or silenced by soluble factors.

Conclusion

In conclusion, the simultaneous osteogenic and adipogenic differentiation of MSCs was studied by culturing MSCs in mixture medium. The composition of the mixture medium showed a significant effect on the osteogenesis and adipogenesis of MSCs. Adipogenic differentiation became stronger with the increase of adipogenic differentiation medium percentage and decrease of osteogenic differentiation medium percentage in the mixture medium. Osteogenic differentiation happened at two different ranges of compositions. It was very strong when the percentage of osteogenic differentiation medium was high and decreased to very weak levels when the percentage decreased to 50%. However, osteogenic differentiation became strong again when the percentage of osteogenic differentiation medium was in the range of 25% to 15%. Balancing of simultaneous osteogenic and adipogenic differentiation of MSCs by the mixture medium should provide useful information for stem cell studies and tissue regeneration.

Acknowledgment

This work was supported by the World Premier International Research Center Initiative on Materials Nanarchitectonics and a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

