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Abstract
In the course of studies directed towards the synthesis of novel AChE and BChE inhibitors, for the treatment 

of Alzheimer disease, we focused on the conventional versus microwave assisted synthesis of seventeen 
benzohydrazide derivatives and tested their ability as AChE and BChE inhibitors. These derivatives were 
characterized by FT-IR, 1H-NMR, 13C-NMR and EI-MS. Seventeen derivatives exhibited varied acetylcholinesterase 
inhibition with IC50 values ranging between 72.04 ± 1.12 to 1320.65 ± 0.95 μM as well as butyrylcholinesterase 
activity with IC50 values ranging between 3.04 ± 1.48-1876.17 ± 0.95 μM as compared with standard eserine 
(IC50=0.85 ± 0.0001 μM). Only two analogs 3k and 3o exhibited moderate acetylcholinesterase inhibitor potential 
with IC50 values 72.04 ± 1.12 and 94.06 ± 1.17 μM respectively. Five analogs 3d, 3h, 3q, 3o and 3l exhibited good 
potent butyrylcholinesterase inhibitory potential with IC50 values 3.04 ± 1.48, 9.01 ± 0.58, 15.12 ± 0.66, 45.00 ± 
0.99 and 50.19 ± 0.62 μM respectively. Molecular docking studies were carried out in order to find out the binding 
affinity of benzohydrazide derivatives with the enzyme.

Keywords: Benzohydrazide; Acetylcholinesterase; Butyrylcholinesterase; 
Microwave assisted; Docking studies

Introduction
Microwave irradiation has been effectively utilized as a non-

conventional energy source in organic chemistry [1]. In conventional 
heating, energy is transferred from the surfaces of the material due 
to thermal gradients. However, microwave heating rather than 
heat transfer is the conversion of highly polarizing electromagnetic 
radiation to thermal energy which is delivered directly to materials 
through molecular interaction with the electromagnetic field. Better 
yields with higher product purities, shorter reaction times, milder 
reaction conditions and energy savings all have been reported. In fact, 
a number of reactions that do not occur by conventional heating can 
be accomplished using microwaves [2]. A great deal of literature has 
been found on the application of microwaves to heterocyclic chemistry 
[3], fullerene chemistry [4], cycloaddition reactions [5], polymers [6], 
homogeneous [7] and heterogeneous catalysis [8], green chemistry [9] 
and many more.

Alzheimer’s disease (AD) is a complex neurodegenerative disorder 
which is irrevocable and is considered the most common cause of 
dementia which is a clinical syndrome that involves progressive 
deterioration of intellectual function [10]. Dementia can compromise 
several cognitive abilities including memory, reasoning, decision 
making, language and visuospatial. Daily activities of an individual 
like social activities, work and relationships are impaired by the 
cognitive and behavioral changes that follow dementia [11]. AD is also 
linked with hypertension and raised serum cholesterol [12]. AD is a 
complex disease, with no single cause, age is the major threat for the 
progress of AD [13]. It is estimated that in 2010 alone, AD has cost the 
world $604 billion. Approximately 36 million case of AD worldwide 
today, is predicted to be tripled by 2050 [14]. Modern drug-discovery 
methodology aims on the synthesis of unique anti-Alzheimer agents 
which has the effectiveness of inhibiting both acetylcholinesterase and 
butyrylcholinesterase [15].

Acetylcholine (ACh) is an organic molecule that acts as a 
neurotransmitter and neuromodulator in the central nervous system. 

ACh together with associated neurons in CNS forms a cholinergic system, 
which is inclined to initiate inhibitory actions and trigger cognitive loss 
associated with Alzheimer’s disease [16,17]. Butyrylcholinesterase, 
another cholinesterase that catalyzes the hydrolysis acetylcholine. 
While AChE activity remains unchanged or declines, BChE activity 
gradually increases in patients with AD and, therefore, BChE is gaining 
interest [18]. It is reported that patients suffering from hyperlipidemia 
and hypertension have higher BChE enzymatic activity than those who 
experienced heart attack or undertaken medication with β-blockers. 
While inactivation of AChE in nerve synapses can be fatal, specific 
inhibition of BChE has no adverse effects [19]. Therefore, BChE is 
often taken as a fundamental supplement of novel drug development 
to handle with the problems relating Alzheimer disease. 

A great deal of literature has been found on Schiff bases revealing 
their important biological activities and a wide range of significant 
practical applications. Some of their prominent biological activities 
include antibacterial [20], antifungal [21], antimalarial [22], antiviral 
[23], inter alia, antitumor [24], herbicidal [25], antioxidant [26], 
anticonvulsant [27], anti-inflammatory [28], antiproliferative [29], anti 
HIV [30], antiglycation [31] and lipid lowering [32] properties. Our 
research group is focused on development of lead molecules through 
green approach. Herein we are going to report benzohydrazide 
derivatives as new Acetylcholinesterase and butyrylcholinesterase inhibitors.
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Experimental Section
General methods

The progress of all reactions was monitored by TLC using pre coated 
silica gel aluminum plates (Kieselgel 60, 254) purchased from Merck 
(Germany). Chromatograms were visualized by UV at 254 and 365 nm. 
Melting points of the synthesized compounds were determined in open 
capillaries using SMP10 melting point apparatus and are uncorrected. 
The FTIR spectra were performed on Schimadzu Fourier Transform 
Infra-Red Spectrophotometer model 270 using ATR (Attenuated total 
reflectance) facility. NMR spectra were recorded on Bruker Avance 
300 MHz and 500 MHz spectrophotometers using DMSO as solvent. 
Electron ionization (EI) mass spectra (MS) were recorded on Jeol JMS-600H.

General procedure for the synthesis of compounds

Conventionally, Schiff bases 3a-3q were synthesized by condensing 
2-aminobenzohydrazide and 4-methoxy benzo hydrazide via reflux 
with different substituted aromatic aldehydes in absolute ethanol 
containing acetic acid for 2-4 hours. After completion of reactions 
(TLC analysis), the reaction mixtures were cooled at ambient 
temperature, then ice cooled distilled water was added and allowed to 
withstand overnight. The precipitate formed were filtered, and dried 
up to afford the required compounds. The same reaction mixtures were 
also subjected to microwave irradiation for 2-6 minutes and the yield 
of reactions were noted. For structure confirmations, the synthesized 
products were investigated using 1H NMR, 13C NMR FTIR and EI-MS 
spectroscopy.

Characterization of compounds

( E ) - 2 - a m i n o - N ' - ( 2 - h y d r o x y - 5 - n i t r o b e n z y l i d e n e )
benzohydrazide (3a): m.p. 274°C; IR (ῡ, cm-1): 3465 (OH), 3354, 3301 
(NH), 3217 (imino NH), 3042 (Csp2‑H), 1661 (C=O), 1608 (C=N), 1519 
(C=C), 1332 (N-O), 941 (N-N), 820, 744 (Ar-H oop); 1H NMR (300 
MHz, DMSO-d6): δ (ppm) = 6.35 (s, 2H, NH2), 6.57 (t, J = 7.8 Hz, 1H, 
HAr), 6.76 (d, J = 7.8 Hz, 1H, HAr), 7.10 (d, J = 9.0 Hz, 1H, HAr), 7.22 (t, 
J = 7.8 Hz, 1H, HAr), 7.60 (d, J = 7.8 Hz, 1H, HAr), 8.15 (dd, J = 9.0 Hz, 
J = 2.7 Hz, 1H, HAr), 8.54 (m, 1H, HAr), 8.66 (s, 1H, Hvin.), 12.05 (s, 1H, 
NH), 12.46 (s (br), 1H, OH); 13C NMR (300 MHz, DMSO-d6) δ 165.38, 
163.03, 150.02, 145.59, 138.85, 132.27, 131.62, 128.57, 126.07, 116.54, 
115.09, 120.11, 119.99, 112.83; EI-MS (EI, 70 eV): m/z (%) = 300 (M+, 
19), 151 (04), 135 (05), 120 (100), 92 (18), 65 (09), 28 (18).

( E ) - 2 - a m i n o - N ' - ( 2 - h y d r o x y - 3 - m e t h o x y b e n z y l i d e n e )
benzohydrazide (3b): m.p. 138°C; IR  (ῡ, cm-1): 3409 (OH), 3367, 
3316 (NH), 3204 (imino NH), 3066 (Csp2-H), 2964, 2883 (Csp3‑H), 1647 
(C=O), 1604 (C=N), 1505 (C=C), 1251 (Csp2-O), 1204 (Csp3‑O), 957 (N-
N), 845 (Ar-H oop); 1H NMR (300 MHz, DMSO-d6): δ (ppm) = 3.80 
(s, 3H, OCH3), 6.46 (s, 2H, NH2), 6.58 (d, J = 7.8 Hz, 1H, HAr), 6.90 (d, 
J = 8.1 Hz, 1H, HAr), 7.06 (t, J = 7.8 Hz, 1H, HAr), 7.20 (t, J = 8.1 Hz, 1H, 
HAr), 7.28 (t, J = 7.8 Hz, 1H, HAr), 7.58 (d, J = 7.8 Hz, 1H, HAr), 7.77 (d, 
J = 8.1 Hz, 1H, HAr), 8.56 (s, 1H, Hvin), 11.29 (s, 1H, NH), 11.82 (s (br), 
1H, OH); 13C NMR (300 MHz, DMSO-d6) δ 165.36, 150.80, 150.01, 
149.37, 146.27, 132.24, 131.97, 125.74, 119.76, 117.36, 116.65, 115.17, 
114.05, 112.95, 56.37; EI‑MS (EI, 70 eV): m/z (%) = 285 (M+, 18), 270 
(32), 259 (38), 254 (81), 241 (25), 197 (14), 161 (11), 136 (11), 120 (100), 
92 (13), 65 (09), 28 (31).

(E)-2-amino-N'-(4-nitrobenzylidene)benzohydrazide (3c): m.p. 
243 °C; IR (ῡ, cm-1): 3333, 3285 (NH), 3201 (imino NH), 3039 (Csp2-H), 
1638 (C=O), 1599 (C=N), 1518 (C=C), 1342 (N-O), 937 (N-N), 841, 
758 (Ar-H oop); 1H NMR (300 MHz, DMSO-d6): δ (ppm) = 6.42 (s, 
2H, NH2), 6.57 (t, J =7.8 Hz, 1H, HAr), 6.76 (d, J = 8.10 Hz, 1H, HAr), 

7.21 (t, J = 7.8 Hz, 1H, HAr), 7.58 (d, J = 7.8 Hz, 1H, HAr), 7.95 (d, J = 
8.7 Hz, 2H, HAr), 8.29 (d, J = 8.7 Hz, 2H, HAr), 8.47 (s, 1H, Hvin), 11.88 
(s, 1H, NH); 13C NMR (300 MHz, DMSO-d6) δ 165.35, 150.80, 149.32, 
148.19, 140.65, 132.35, 131.89, 125.97, 125.08, 116.60, 115.22, 112.86; 
EI‑MS (EI, 70 eV): m/z (%) = 284 (M+, 09), 151 (08), 135 (02), 120 
(100), 92 (40), 77 (03), 65 (16), 28 (11).

(E)-2-amino-N'-(2,4-dichlorobenzylidene)benzohydrazide (3d): 
m.p. 209 °C; IR (ῡ, cm-1): 3393, 3347 (NH), 3223 (imino NH), 3042 
(Csp2‑H), 1651 (C=O), 1602 (C=N), 1513 (C=C), 1043 (C‑Cl), 944 (N-
N), 838, 758 (Ar-H oop); 1H NMR (300 MHz, DMSO-d6): δ (ppm) = 
6.42 (s, 2H, NH2), 6.56 (t, J = 7.8 Hz, 1H, HAr), 6.75 (d, J = 8.1 Hz, 1H, 
HAr), 7.20 (t, J = 8.1 Hz, 1H, HAr), 7.51 (dd, J = 8.4 Hz, 1.8 Hz, 1H, HAr), 
7.58 (d, J = 7.8 Hz, 1H, HAr), 7.70 (d, J = 1.8 Hz, 1H, HAr), 7.99 (d, J = 8.4 
Hz, 1H, HAr), 8.74 (s, 1H, Hvin), 11.86 (s, 1H, NH); 13C NMR (300 MHz, 
DMSO-d6) δ 165.35, 150.80, 144.52, 134.73, 134.15, 132.33, 131.80, 
130.85, 129.17, 128.30, 127.32, 116.62, 115.12, 112.91; EI-MS (EI, 70 
eV): m/z (%) = 308 (M+, 2), [M-1]+ 307 (04), [M+1]+ 309 (03), 214 (18), 
186 (21), 173 (27), 136 (20), 120 (100), 92 (31), 77 (20), 65 (13), 28 (25).

(E)-2-amino-N'-(4-methoxybenzylidene)benzohydrazide (3e): 
m.p. 234 °C; IR (ῡ, cm-1): 3325, 3297 (NH), 3185 (imino NH), 3058 
(Csp2-H), 2960, 2905 (Csp3-H), 1650 (C=O), 1604 (C=N), 1504 (C=C), 
1360 (CH3), 1246 (Csp2-O), 1028 (Csp3‑O), 962 (N-N), 833, 756 (Ar-H 
oop); 1H NMR (300 MHz, DMSO-d6): δ (ppm) = 3.78 (s, 3H, OCH3), 
6.35 (s, 2H, NH2), 6.71 (t, J = 7.8 Hz, 1H, HAr), 6.76 (d, J = 7.8 Hz, 1H, 
HAr), 6.86 (t, J = 8.7 Hz, 2H, HAr), 6.98 (d, J = 8.7 Hz, 2H, HAr), 7.27 (t, J 
= 7.8 Hz, 1H, HAr), 7.69 (d, J = 7.8 Hz, 1H, HAr), 8.75 (s, 1H, Hvin.), 11.86 
(s, 1H, NH); 13C NMR (300 MHz, DMSO-d6) δ 165.35, 162.05, 150.80, 
146.79, 132.34, 131.89, 129.07, 127.52, 116.72, 115.27, 115.01, 112.79, 
55.80. EI-MS (EI, 70 eV): m/z (%) = 269 (M+, 01), 210 (14), 196 (06), 
136 (05), 130 (18), 120 (100), 92 (23), 65 (15), 51 (05), 28 (12).

(E)-2-amino-N'-(2,3,4-trimethoxybenzylidene)benzohydrazide 
(3f): m.p. 231 °C; IR (ῡ, cm-1): 3375, 3312 (NH), 3216 (imino NH), 
3047 (Csp2-H), 2970, 2913 (Csp3-H), 1632 (C=O), 1597 (C=N), 1502 
(C=C), 1363 (CH3), 1258 (Csp2-O), 1036 (Csp3‑O), 945 (N-N), 837, 752 
(Ar-H oop); 1H NMR (300 MHz, DMSO-d6): δ (ppm) = 3.70 (s, 3H, 
OCH3), 3.82 (s, 6H, OCH3), 6.32 (s, 2H, NH2), 6.56 (t, J = 7.5 Hz, 1H, 
HAr), 6.74 (d, J = 8.1 Hz, 1H, HAr), 6.99 (s, 2H, HAr), 7.19 (t, J = 7.5 Hz, 
1H, HAr), 7.54 (d, J = 7.5 Hz, 1H, HAr), 8.29 (s, 1H, Hvin), 11.58 (s, 1H, 
NH); 13C NMR (300 MHz, DMSO-d6) δ (ppm) 165.42, 153.14, 149.92, 
146.68, 139.05, 132.14, 130.02, 128.35, 116.29, 114.56, 113.63, 104.13, 
60.08, 55.90. EI-MS (EI, 70 eV): m/z (%) = 329 (M+, 68), 195 (05), 136 
(12), 120 (100), 92 (13), 65 (05), 28 (01).

(E)-2-amino-N'-(3,4-dimethoxybenzylidene)benzohydrazide 
(3g): m.p. 125 °C; IR (ῡ, cm-1): 3371, 3320 (NH), 3221 (imino NH), 
3049 (Csp2-H), 2973, 2922 (Csp3-H), 1640 (C=O), 1601 (C=N), 1500 
(C=C), 1255 (Csp2-O), 1033 (Csp3-O), 945 (N‑N), 825, 755 (Ar-H oop); 
1H NMR (300 MHz, DMSO-d6): δ (ppm) = 3.67 (s, 3H, OCH3), 3.78 
(s, 3H, OCH3), 6.35 (s, 2H, NH2), 6.76 (t, J = 7.8 Hz, 1H, HAr), 6.71 
(d, J = 7.8 Hz, 1H, HAr), 6.86 (d, J = 8.5 Hz, 1H, HAr), 6.98 (d, J = 8.5 
Hz, 1H, HAr), 7.28 (t, J = 7.8 Hz, 1H, HAr), 7.60 (d, J = 7.8 Hz, 1H, 
HAr), 7.66 (s, 1H, HAr), 8.56 (s, 1H, Hvin), 11.29 (s, 1H, NH); 13C NMR 
(300 MHz, DMSO-d6) δ 165.35, 150.80, 150.06, 148.90, 145.57, 132.53, 
131.89, 127.38, 126.29, 116.86, 115.20, 112.76, 110.20, 109.87, 55.98; EI-
MS (EI, 70 eV): m/z (%) = 299 (M+, 2), 253 (64), 238 (100), 196 (03), 
147 (26), 135 (09), 119 (14), 105 (07), 92 (04), 77 (06), 65 (02), 51 (02), 
28 (04).

(E)-2-amino-N'-(4-hydroxybenzylidene)benzohydrazide (3h): 
m.p. 218 °C; IR (ῡ, cm-1): 3425 (OH), 3355, 3314 (NH), 3226 (imino 
NH), 3056 (Csp2-H), 1649 (C=O), 1602 (C=N), 1511 (C=C), 953 (N-N), 
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844, 756 (Ar-H oop); 1H NMR (500 MHz, DMSO-d6): δ (ppm) = 6.13 
(s, 2H, NH2), 6.70 (d, J = 7.8 Hz, 1H, HAr), 6.76 (t, J = 7.8 Hz, 1H, HAr), 
6.86 (d, J = 8.5 Hz, 2H, HAr), 7.21 (t, J = 7.8 Hz, 1H, HAr), 7.54 (d, J = 
8.5 Hz, 2H, HAr), 7.65 (d, J = 7.8 Hz, 1H, HAr), 8.45 (s, 1H, Hvin), 9.95 
(s (br), 1H, OH), 11.65 (s, 1H, NH); 13C NMR (300 MHz, DMSO-d6) 
δ 165.35, 153.82, 150.79, 148.79, 133.11, 132.53, 131.86, 127.78, 116.84, 
115.24, 113.02, 112.60; EI-MS (EI, 70 eV): m/z (%) = 255 (M+, 03), 195 
(04), 167 (07), 147 (25), 135 (06), 120 (100), 92 (14), 65 (07), 28 (13).

(E)-2-amino-N'-(2-methylbenzylidene)benzohydrazide (3i): 
m.p. 147 °C; IR (ῡ, cm-1): 3369, 3291 (NH), 3155 (imino NH), 3028 
(Csp2-H), 2956, 2920 (Csp3-H), 1643 (C=O), 1606 (C=N), 1514 (C=C), 
948 (N-N), 844, 743 (Ar-H oop); 1H NMR (300 MHz, DMSO-d6): δ 
(ppm) = 2.42 (s, 3H, CH3), 6.38 (s, 2H, NH2), 6.65 (d, J = 7.8 Hz, 1H, 
HAr), 6.76 (t, J = 7.8 Hz, 1H, HAr), 7.13 – 7.32 (m, 4H, HAr), 7.56 (d, J = 
7.8 Hz, 1H, HAr), 7.81 (d, J = 8.4 Hz, 1H, HAr), 8.67 (s, 1H, Hvin), 11.55 
(s, 1H, NH); 13C NMR (300 MHz, DMSO-d6) δ 165.35, 150.78, 146.37, 
137.00, 132.53, 131.89, 131.80, 131.55, 129.31, 128.99, 127.03, 116.86, 
115.20, 112.59, 19.55; EI‑MS (EI, 70 eV): m/z (%) = 253 (M+, 69), 165 
(04), 147 (56), 136 (20), 120 (100), 92 (28), 77 (07) 65 (13), 28 (03).

( E ) - N ' - ( 2 - h y d r o x y - 5 - n i t r o b e n z y l i d e n e ) - 4 -
methoxybenzohydrazide (3j): m.p. 281 °C; IR (ῡ, cm-1): 3385 (OH), 
3188 (imino NH), 3061 (Csp2-H), 2972, 2937 (Csp3‑H), 1643 (C=O), 
1605 (C=N), 1506 (C=C), 1338 (NO), 1257 (Csp2‑O), 1026 (Csp3‑O), 958 
(N-N), 843 (Ar-H oop); 1H NMR (500 MHz, DMSO-d6): δ (ppm) = 
3.83 (s, 3H, OCH3), 7.06 (d, J = 8.5 Hz, 2H, HAr), 7.10 (d, J = 9.0 Hz, 1H, 
HAr), 7.93 (d, J = 8.5 Hz, 2H, HAr), 8.16 (dd, J = 9.0 Hz, 3.0 Hz, 1H, HAr), 
8.56 (s, 1H, HAr), 8.71 (s, 1H, Hvin), 12.15 (s, 1H, NH), 12.39 (s (br), 1H, 
OH); 13C NMR (300 MHz, DMSO-d6) δ 163.46, 162.13, 160.99, 146.45, 
137.55, 129.68, 128.69, 126.24, 124.74, 120.40, 121.03, 113.70, 55.35; EI-
MS (EI, 70 eV): m/z (%) = 315 (M+, 10), 285 (02), 165 (01), 151 (14), 
135 (100), 119 (01), 107 (10), 92 (09), 77 (13), 64 (03), 28 (04).

( E ) - N ' - ( 2 - h y d r o x y - 3 - m e t h o x y b e n z y l i d e n e ) - 4 -
methoxybenzohydrazide (3k): m.p. 117 °C; IR (ῡ, cm-1): 3466 (OH), 
3189 (imino NH), 3059 (Csp2-H), 2929, 2877 (Csp3‑H), 1651 (C=O), 
1606 (C=N), 1512 (C=C), 1250 (Csp2-O), 1034 (Csp3-O), 958 (N‑N), 849, 
783 (Ar-H oop); 1H NMR (500 MHz, DMSO-d6): δ (ppm) = 3.80 (s, 
3H, OCH3), 3.83 (s, 3H, OCH3), 6.85 (t, J = 8.0 Hz, 1H, HAr), 7.02 (d, 
J = 8.0 Hz, 1H, HAr), 7.07 (d, J = 8.5 Hz, 2H, HAr), 7.11 (d, J = 8.0 Hz, 
1H, HAr), 7.92 (t, J = 8.5 Hz, 2H, HAr), 8.62 (s, 1H, Hvin), 11.04 (s, 1H, 
NH), 11.95 (s (br), 1H, OH); 13C NMR (300 MHz, DMSO-d6) δ 163.32, 
162.08, 152.88, 146.54, 129.66, 126.29, 124.74, 119.81, 117.93, 113.72, 
112.90, 56.54, 55.41; EI-MS (EI, 70 eV): m/z (%) = 300 (M+, 77), 177 
(08), 151 (24), 135 (100), 92 (06), 77 (07), 65 (04), 28 (29).

(E)-4-methoxy-N'-(4-nitrobenzylidene)benzohydrazide (3l): 
m.p. 212 °C; IR (ῡ, cm-1): 3110 (imino NH), 3065 (Csp2-H), 2945, 2863 
(Csp3-H), 1649 (C=O), 1600 (C=N), 1506 (C=C), 1246 (Csp2-O), 1024 
(Csp3‑O), 944 (N-N), 839 (Ar-H oop); 1H NMR (500 MHz, DMSO-d6): 
δ (ppm) = 3.83 (s, 3H, OCH3), 7.07 (d, J = 8.5 Hz, 2H, HAr), 7.93 (d, J 
= 8.5 Hz, 2H, HAr), 7.97 (d, J = 8.5 Hz, 2H, HAr), 8.29 (d, J = 8.5 Hz, 
2H, HAr), 8.53 (s, 1H, Hvin), 12.03 (s, 1H, NH); 13C NMR (300 MHz, 
DMSO-d6) δ 163.37, 162.11, 148.79, 146.43, 140.72, 129.69, 125.92, 
125.58, 124.74, 113.69, 55.42; EI‑MS (EI, 70 eV): m/z (%) = 299 (M+, 
24), 251 (04), 176 (14), 151 (47), 135 (100), 107 (25).

(E)-N'-(2,4-dichlorobenzylidene)-4-methoxybenzohydrazide 
(3m): m.p. 130 °C; IR (ῡ, cm-1): 3157 (imino NH), 3062 (Csp2‑H), 2949, 
2861 (Csp3-H), 1634 (C=O), 1604 (C=N), 1506 (C=C), 1256 (Csp2-O), 
1047 (Csp3-O, C-Cl), 954 (N-N), 847 (Ar‑H oop); 1H NMR (500 MHz, 
DMSO-d6): δ (ppm) = 3.83 (s, 3H, OCH3), 7.06 (d, J = 8.5 Hz, 2H, 
HAr), 7.51 (d, J = 8.5 Hz, 1H, HAr), 7.70 (m, 1H, HAr), 7.92 (d, J = 8.5 

Hz, 2H, HAr), 8.02 (d, J = 8.5 Hz, 1H, HAr), 8.79 (s, 1H, Hvin), 11.98 (s, 
1H, NH); 13C NMR (300 MHz, DMSO-d6) δ 162.21, 161.81, 144.54, 
134.80, 134.10, 130.96, 129.68, 129.00, 128.30, 127.40, 124.68, 113.70, 
55.30; EI‑MS (EI, 70 eV): m/z (%) = 323 (M+, 01), 171 (02), 151 (19), 
135 (100), 123 (02), 107 (05), 92 (05), 77 (05), 64 (02), 44 (02), 21 (06).

(E)-4-methoxy-N'-(4-methoxybenzylidene)benzohydrazide 
(3n): m.p. 172 °C; IR (ῡ, cm-1): 3203 (imino NH), 3065 (Csp2-H), 2965, 
2889 (Csp3-H), 1649 (C=O), 1605 (C=N), 1504 (C=C), 1249 (Csp2-O), 
1024 (Csp3‑O), 955 (N-N), 842 (Ar-H oop); 1H NMR (300 MHz, 
DMSO-d6): δ (ppm) = 3.80 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 7.00 
– 7.06 (m, 4H, HAr), 7.65 (d, J = 8.5 Hz, 2H, HAr), 7.89 (d, J = 8.5 Hz, 
2H, HAr), 8.38 (s, 1H, Hvin), 11.57 (s, 1H, NH); 13C NMR (300 MHz, 
DMSO-d6) δ 162.57, 161.92, 161.15, 147.79, 129.68, 128.60, 127.81, 
124.69, 115.16, 113.66, 55.42; EI-MS (EI, 70 eV): m/z (%) = 284 (M+, 
18), 268 (32), 240 (05), 161 (26), 151 (86), 135 (100), 107 (14), 92 (12), 
77 (20), 64 (04).

 (E)-4-methoxy-N'-(4-(methylthio)benzylidene)benzohydrazide 
(3o): m.p. 187 °C; IR (ῡ, cm-1): 3122 (imino NH), 3064 (Csp2-H), 
2959, 2873 (Csp3-H), 1655 (C=O), 1605 (C=N), 1507 (C=C), 1308 (S-
CH3), 1259 (Csp2-O), 1025 (Csp3-O), 960 (N-N); 1H NMR (500 MHz, 
DMSO-d6): δ (ppm) = 2.51 (s, 3H, SCH3), 3.82 (s, 3H, OCH3), 7.04 (d, 
J = 8.5 Hz, 2H, HAr), 7.32 (d, J = 8.0 Hz, 2H, HAr), 7.64 (d, J = 7.5 Hz, 
2H, HAr), 7.89 (d, J = 8.5 Hz, 2H, HAr), 8.38 (s, 1H, Hvin), 11.67 (s, 1H, 
NH); 13C NMR (300 MHz, DMSO-d6) δ 162.41, 161.81, 147.75, 139.30, 
133.09, 129.68, 128.35, 126.71, 124.74, 113.73, 55.35, 15.72; EI-MS (EI, 
70 eV): m/z (%) = 300 (M+, 47), 177 (9), 151 (49), 135 (100), 107 (07), 
92 (8), 77 (12), 64 (2).

(E)-4-methoxy-N'-(4-methylbenzylidene)benzohydrazide (3p): 
m.p. 184 °C; IR (ῡ, cm-1): 3156 (imino NH), 3062 (Csp2-H), 2924, 2850 
(Csp3-H), 1659 (C=O), 1605 (C=N), 1508 (C=C), 1365 (CH3), 1250 
(Csp2-O), 1026 (Csp3‑O), 940 (N-N), 838 (Ar-H oop); 1H NMR (500 
MHz, DMSO-d6): δ (ppm) = 2.36 (s, 3H, CH3), 3.82 (s, 3H, OCH3), 7.05 
(d, J = 8.5 Hz, 2H, HAr), 7.26 (d, J = 7.5 Hz, 2H, HAr), 7.60 (d, J = 7.5 Hz, 
2H, HAr), 7.89 (d, J = 8.5 Hz, 2H, HAr), 8.39 (s, 1H, Hvin), 11.65 (s, 1H, 
NH); 13C NMR (300 MHz, DMSO-d6) δ 162.21, 161.78, 148.00, 143.02, 
131.85, 129.68, 129.27, 126.37, 124.74, 113.73, 55.35, 21.67; EI‑MS (EI, 
70 eV): m/z (%) = 268 (M+, 4), 151 (30), 135 (100), 107 (4), 92 (4), 77 
(06), 64 (2), 28 (2).

N',N'''-((1E,1'E)-1,4-phenylenebis(methanylylidene))bis(2-
aminobenzohydrazide) (3q): m.p. 253 °C; IR (ῡ, cm-1): 3350, 3317 
(NH), 3205 (imino NH), 3057 (Csp2-H), 1634 (C=O), 1599 (C=N), 
1514 (C=C), 937 (N-N), 842, 748 (Ar-H oop); 1H NMR (300 MHz, 
DMSO-d6): δ (ppm) = 5.78 (s, 4H, NH2), 6.62 - 6.67 (m, 4H, HAr), 7.18 
(t, J = 7.8 Hz, 2H, HAr), 7.29 (s, 4H, HAr), 7.61 (d, J = 7.8 Hz, 2H, HAr), 
8.38 (s, 2H, Hvin), 11.88 (s, 2H, NH); 13C NMR (300 MHz, DMSO-d6) 
δ 165.35, 150.80, 148.79, 133.30, 132.46, 131.89, 126.48, 116.86, 115.24, 
112.65; EI‑MS (EI, 70 eV): m/z (%) = 400 (M+, 57), 180 (08), 162 (09), 
120 (100), 92 (32), 77 (19), 65 (16), 50 (06), 28 (18).

Results and Discussion
Chemistry

The Schiff base ligands 3a-3q were synthesized using conventional 
method as well as microwave irradiations. Conventionally, 
2-aminobenzohydrazide and 4-methoxy benzohydrazide were refluxed 
with substituted benzaldehydes (Table 1) in ethanol as a solvent and 
acetic acid as a catalyst. In an experimental procedure, a mixture 
of 2-aminobenzohydrazide/4-methoxybenzohydrazide (1 mmol), 
substituted benzaldehydes (1 mmol) and 2-3 drops of acetic acid in 
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absolute ethanol (15 ml) were refluxed for 2-4 hours (Scheme 1). 
These reaction mixtures were also subjected to microwave irradiation 
for 2-5 minutes and the yield of reactions were noted. Comparison 
between conventional and MW assisted synthesis is given in Table 2. 
The Progress of reaction was monitored by TLC. In either method, on 
completion of reaction, the mixture was cooled and the solvent was 
evaporated under reduced pressure to obtain the desired products 
which were then washed with DCM (25 ml) and dried. The structures 
were determined by using spectroscopic techniques such as FTIR, 
1HNMR, 13C NMR and EI-MS spectroscopy.

Acetyl cholinesterase and butyrylcholinesterase inhibition

Analogs 3a-3q showed acetylcholinesterase inhibition with IC50 
values ranging between 72.04 ± 1.12 to 1320.65 ± 0.95 μM as compared 
with standard eserine (IC50=0.85 ± 0.0001 μM). Only two analogs 3k 
and 3o exhibited moderate acetylcholinesterase inhibitor potential 
with IC50 values 72.04 ± 1.12 and 94.06 ± 1.17 μM respectively. Analog 
3k was found the most potent among the series. This compound has a 
hydroxyl and methoxy groups on one phenyl ring and one methoxy 
group on other phenyl ring. The presence of these hydroxyl and 
methoxy groups seem to play an important role in this inhibition. 
The hydroxyl might be involved in hydrogen bonding. Analog 3o was 
found to be second active among the series. This compound illustrate 
activity have one thiomethyl group on one phenyl ring and a methoxy 
group on other phenyl part. Similarly, other active analogs have either 
EWG or EDG on phenyl ring, whose position, nature and arrangement 
on phenyl ring greatly affect the inhibition.

Analogs 3a-3p also showed a variable degree of butyrylcholinesterase 
inhibition with IC50 values ranging between 3.04 ± 1.48-1876.17 ± 0.95 
μM as compared with standard eserine (IC50=0.85±0.0001 μM). Five 
analogs 3d, 3h, 3q, 3o and 3l exhibited good potent butyrylcholinesterase 
inhibitory potential with IC50 values 3.04 ± 1.48, 9.01 ± 0.58, 15.12 ± 
0.66, 45.00 ± 0.99 and 50.19 ± 0.62 μM respectively. Compound 3d was 
found to be the most potent among the series. This compound has two 

chloride groups on one phenyl ring and one amino group on other 
phenyl ring. The presence of these two chloride group seems to be 
play an important role in this inhibition. The amino group might be 
involved in hydrogen bonding. Analog 3h was found to be second most 
active among the series. This compound has hydroxyl moiety on one 
and amino group on other phenyl ring both of which might be involved 
in hydrogen bonding. Analog 3q has two amino groups one on each 
phenyl ring which might be involved in hydrogen bonding. Analog 
3o has thiomethyl group on one phenyl part and methoxy group on 
the other phenyl part both of which are electron donating in nature. 
Analog 5c on the other hand has one electron withdrawing nitro group 
on one phenyl ring and methoxy group on other phenyl part. All other 
analogs also showed moderate to less activities.

Molecular docking

From the docking simulation and in vitro studies it was observed 
that compound 3d (IC50: 3.00 ± 2F.728 μM), is the most active analog 
among all the compounds which are included in this study. This 
compound fits intensely into the active site of Butyrylcholinesterase 
enzyme making interactions with the residues Trp82, Gly116, Thr120, 
Tyr128 and Tyr332 as show in Figure 1. Trp82 was found in making 
hydrogen bond interaction with the hydrogen of amide NH, Gly116 
established interaction with oxygen of carbonyl group, Thr120 was 
found in making two interactions one with carbonyl oxygen and other 
with the hydrogen of amide NH, Tyr128 interact with amino group by 
making hydrogen bond, Tyr332 was found in arene-arene interactions 
with 2,4-dichlorosubstituted phenyl ring. The highest activity of 
compound 3d might be due to the presence of two chlorine atoms 
attached to the same benzene ring. The chlorine atoms are well-built 
activating groups which polarize the molecule and facilitate it to make 
several interactions with other residues.

Compound 3h is ranked as second most active compound 
establishing five interactions with different moiety of the compound 
as show in Figure 2, Trp82 establish π-interaction with the 2-amino 

Comp. R1 R2
IC50 ± SEMa (μM)

Buterycholinesterase
IC50 ± SEMa (μM)

Acetylcholinesterase

3a

NH2

OH

O2N

1220.78 ± 1.73 435.37 ± 1.21

3b

NH2
  

OH

OMe

250.23 ± 0.65 202.14 ± 0.56

3c

NH2

       
NO2

135.52 ± 1.12 1320.65 ± 0.95

3d

NH2
Cl

Cl

03.04 ± 1.48 394.33 ± 0.83
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Comp. R1 R2
IC50 ± SEMa (μM)

Buterycholinesterase
IC50 ± SEMa (μM)

Acetylcholinesterase

3e

NH2
OMe

1876.17 ± 0.95 243.36 ± 0.90

3f

NH2
OMe

OMe

OMe
316.59 ± 1.50 560.47 ± 0.77

3g

NH2 OMe

OMe

-- --

3h

NH2
OH

09.01 ± 0.58 380.21 ± 0.58

3i

NH2
    

1300.65 ± 1.20 N/A

3j

OH

O2N

OH

O2N

243.21 ± 0.21 250.54 ± 0.56

3k

MeO

OH

OMe

188.87 ± 1.32 72.04 ± 1.12

3l

MeO
NO2

50.19 ± 0.62 117.13 ± 1.16

3m

MeO
    Cl

Cl

1408.69 ± 1.76 375.61 ± 0.84

3n

MeO
OMe

1560.45 ± 0.95 402.25 ± 1.25
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Comp. R1 R2
IC50 ± SEMa (μM)

Buterycholinesterase
IC50 ± SEMa (μM)

Acetylcholinesterase

3o

MeO
SMe

45.00 ± 0.99 94.06 ± 1.17

3p

MeO
168.11 ± 1.81 362.81 ± 0.50

3q 15.12 ± 0.66 335.93 ± 1.01

eserine 0.85 ± 0.0001 0.85 ± 0.0001

Table 1: Buterycholinesterase and Acetylcholinesterase Inhibition by Benzohydrazide Derivatives.

Comp. m. p. (°C)
Conventional MW Irradiation

Time (min) Yield (%) Time (min) Yield (%)
3a 274 165 82 5 84
3b 138 240 79 5 80
3c 243 120 84 3 83
3d 209 150 86 4 89
3e 234 210 83 5 81
3f 231 240 82 5 85
3g 125 240 85 5 85
3h 218 180 78 4 81
3i 147 150 82 5 88
3j 281 130 84 5 88
3k 117 180 83 4 84
3l 212 90 85 4 85

3m 184 150 80 5 81
3n 130 180 84 3 82
3o 172 180 84 5 85
3p 187 180 86 5 91
3q 253 120 84 5 83

Table 2: Convential vs Microwave Assisted Synthesis of Benzohydrazide Derivatives.
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N
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Scheme 1: Synthesis of Bezohydrazide Derivatives.
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Figure 1: 3D Interactions of Butyrylcholinesterase Enzyme with Compound 3d.

Figure 2: 3D Interactions of Butyrylcholinesterase Enzyme with Compound 3h.
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substituted benzene ring. Glu197 and Pro285 make hydrogen bond 
interactions with the hydrogen of amino and OH groups attached on 
two different benzene rings respectively. Tyr332 establish π-interaction 
with the 4-hydroxy substituted benzene ring. His438 interact with the 
hydrogen of amino through hydrogen bond.

Compound 3q (IC50=15.00 ± 2.728 μM) with two binding 
interactions is rank third moderate active compound. The hydrogen 
of amino group on each benzene ring of the compound establishes 
hydrogen interactions with Thr120 and Gly133 as show in Figure 3. 
Compounds 3j and 3c also exhibited weak potency against BChE.

The rest of the compounds reflects no interaction with the active 
site residues of BChE, which might be due to the inverted orientation, 
and these compounds also show least inhibitory activity (IC50 value) 
against the human BChE enzyme which contain much differences, 
if compared with the standard substrate (Eserine: IC50 value 0.85 ± 
0.0001). Therefore, these compounds were not further evaluated for 
further study. 

The structural difference between the most active compound 
3n and the least active compounds are the Ortho and Para-oriented 
chlorine atoms of the compound. These chlorine moieties may provide 
enzymatic potency against butyrylcholinesterase enzyme.

Docking results of compound 3d, 3h and 3q with BChE provided 
valuable information about the nature of the binding interactions 
that were delightfully associated with the experimental studies. This 
information could be utilized to design new leads against the BChE.

The molecular docking study of these compounds revealed that the 
ligands with polar, light and nucleophilic groups like chlorine atom 
and hydroxyl group showed better interaction mode and high docking 
score against the target protein and therefore have good inhibitory 
activities. On the other hands ligands with electrophilic group like nitro 
group, non-polar like methyl or benzene and bulky groups have shown 
poor interactions and low docking scores.

Computational methods

The current study was designed to dock Schiff base derivatives 
(codes)in the active site of Butyrylcholinesterase (BChE) enzyme with 
the following PC specifications; Intel(R) xenon(R) CPU E5620@2.40 GHz 
system having 3.8 GB RAM with the open 11.4 (X 86_64) operating 
platform. Protein-Ligand docking was carried out using the Molecular 
Operating Environment (MOE 2010.11) software package. Among 
thirty-one X-ray crystal structures of human BChE in the protein data 
bank [33,34] (Pdb code 1P0P with 2.30 Å resolution) was selected 
as the target protein based on suitable resolution and co-crystallized 
Ligand, BCh. The entire system (target protein) was energy minimized 
by MMFF94x force field [35], after adding the missing hydrogen atoms. 
3D structures of all seventeen synthesized compounds were built by 
molecule builder which is incorporated in MOE modeling package 
and the structures (Ligands) were subjected to MMFF94x for energy 
minimization.

Subsequently for the evaluation of potential energy, partial 
charges were calculated by MMFF94x force field [36]. Both prepared 
systems (protein and Ligand) were introduced for molecular docking 
simulation. Docking simulations were performed by using Triangle 

Figure 3: 3D Interactions of Butyrylcholinesterase Enzyme with Compound 3q.
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matcher placement method. A total of 30 conformations were 
generated for each Ligand protein complex with docking score. Each 
complex was analyzed for interactions and their 3D images were taken.

The default parameters of MOE-Dock program were used for 
the molecular docking of the ligands. At the end of docking, the best 
conformations were analyzed for hydrogen bonding/π-π interactions.

Anticholestenerase assays

AChE from electric eel and BChE from equine serum were used to 
explore the enzyme inhibitory potential of benzohydrazide derivatives, 
using Ellman’s assay [37,38]. The assay is based on the hydrolysis of 
acetlthiocholine iodide butylrathiocholestine iodide by respective 
enzymes and the formation of 5-thio-2-nitrobenzoate anion followed 
by complexation with DNTB to give yellow color compound which is 
detected by spectrophotometer beside reaction.

Preparation of solutions: Benzohydrazide derivatives were 
dissolved in phosphate buffer (0.1 M) in concentration ranging from 
125-1000 μg/ml. for preparation of 0.1 M and 8.0 ± 0.1 pH phosphate 
buffer solution K2HPO4 and KH2PO4 (13 g/L) were prepared and were 
mixed in 94% and 6% ratio respectively. Finally, KOH was added 
to adjust the pH. BChE (7-16 U/ml) was diluted in freshly prepared 
buffer solution until final concentrations of 0.03 μ/ml and 0.01 μ/ml 
were obtained. Solutions of DNTB (0.0002273 M), ATchI (0.0005 M) 
were prepared in distilled water and were kept in eppendorf caps in 
refrigerator at 8°C. Galanthamine (Positive control) was dissolved in 
methanol and aforementioned dilutions were prepared. 

Spectroscopic analysis: For each assay, an enzyme solution of 5 
μl was added to the cuvette followed by addition of samples solution 
(205 μl), and finally DTNB reagent (5 μl). The solution mixture was 
maintained at 30°C for 15 min using water bath with subsequent 
addition of substrate solution (5 μl) was added. A double beam 
spectrophotometer (Thermo electron corporation USA) was used to 
measure the absorbance at 412 nm. Negative control contained all 
components apart from the sample solutions, whereas positive control 
eserine (10 μg/ml) was used in the assay as standard cholinesterase 
inhibitor. The absorbance along with the reaction time were taken for 
four minutes at 30°C. The experiments were performed in triplicate. 
The enzyme activity and enzyme inhibition by control and tested 
samples were calculated from the rate of absorption with change in 
time

(V=ΔAbs/Δt) as follow;

Enzyme inhibition (%)=100-percent enzyme activity

Enzyme activity (%)=100 × V/Vmax 

where (Vmax) is enzyme activity in the absence of inhibitor drug

Statistical data analysis: Anticholestenerase inhibitory ability was 
calculated by a linear regression analysis among the percent inhibition 
against the samples concentrations via Microsoft Excel 365 program. 
All the assays were repeated in triplicate and vales were expressed 
as means ± S.E.M. IC50 values were calculated using EZ–Fit Enzyme 
kinetics software (Perrella Scientific Inc. Amherst, USA).

Conclusion
Seventeen analogs were prepared through conversational as well 

as microwave irradiation and evaluated for acetylcholinesterase 
and butyrylcholinesterase inhibition. Only two analogs 3k and 3o 
exhibited moderate acetylcholinesterase inhibitor potential with IC50 
values 72.04 ± 1.12 and 94.06 ± 1.17 μM respectively, compared to the 

standard eserine (IC50=0.85 ± 0.0001 μM). Five analogs 3d, 3h, 3q, 3o 
and 3l exhibited good potent butyrylcholinesterase inhibitory potential 
with IC50 values 03.04 ± 1.48, 09.01 ± 0.58, 15.12 ± 0.66, 45.00 ± 0.99 
and 50.19 ± 0.62 μM respectively. All other analogs exhibited moderate 
to less enzyme inhibition. The binding affinity was confirmed through 
molecular docking studies. All compounds were characterized through 
FTIR, 1H NMR, 13C NMR and EI-MS.
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