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Introduction
Consider the following system of first order n-dimensional system 

of stiff IVPs of the form:
~

' , , 1, 2, ,i iy f x Y i n = = … 
 

,   (1)

with ( )
~ ~
Y a η= , in the interval a ≤ x ≤ b, where

( )
~

' ' '
1 1 2, , ,  nY y y y y= … and 

~
' ' '
1 2 ( , , )nη η η η= … .

System (1), which arise frequently in the study of electrical 
circuits, vibrations, chemical reactions, kinetics, automatic control 
and combustion, theory of fluid mechanics etc., is said to be stiff if its 
solution contains components with both slowly and rapidly decaying 
rates, due to large difference of time scales exhibited by the system 
[1,2]. Dahlquist [3] defines stiffness as systems containing very fast 
components as well as very slow components. It is difficult to develop 
suitable methods for stiff problems. However, considerable research 
efforts have been made by researchers, such as Suleiman [1,2], Musa 
[4-8], Abasi [9,10], Ibrahim [11,12], Zawawi [13] and Cash [14], to 
develop suitable methods for stiff ODEs. This paper discussed the order 
and convergence of diagonally implicit 2-point superclass of BBDF 
with off step points for solving (1) developed by Babangida [15] and 
it is as follows:
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The derivation of the method in details can be found in 
Babangida [15].

Order of the Method
This section derives the order of the method (2). Method (2) can be 

rewritten in matrix form as follows
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Definition 2.1: The order of the block method (2) and its associated 
linear operator L is given by

( )
7

'
j j

j 0

h hL y x ;h D y x j hG y x j
2 2=

    = + − +            
∑ .                (4)
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Expanding the functions hx j
2

y + 
 

 and ' hy x j
2

 + 
 

 as Taylor 

series around x and substitute in (4) gives

( ) ( ) ( ) ( )
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1 1 1L y x ;h 2 2
2 4 2!
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k
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j
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j D j G h y x

= = =

=

  = + − + −           

 + − +…  

∑ ∑ ∑

∑
 (5)

Definition 2.2: The difference operator (5) and the associated 
method (2) is considered of order p if E0=E1=E2=…=Ep=0 and Ep+1 ≠ 0.

It follows that
7

0 j
j 0

E D 0 
=

= =∑ .			                                      (6)
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=

= − =∑ 				                    (7)

7
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2!=

= − =∑ 			                     (8)
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=
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∑ .                (9)

It was therefore shown from (9) that method (2) is of order 2, with 

error constant
3

9
10
0 E
0
0

 − 
 

=  
 
  
 

.

Convergence of the Method
An acceptable linear multistep method (LMM) must be 

Convergence. This section shows the convergence of the method 
(2). Consistency and zero stability are the necessary and sufficient 
conditions for the convergence of any numerical method. We start by 
presenting the following definitions related to the convergence of (2) 
taken from Musa [16] as follows:

Definition 3.1 (Linear multistep method)

A general k-step linear multistep method is defined as
k k

j n j j n j 
j 0 j 0

y h f+ +
= =

α = β∑ ∑ . 			                 (10)

Where αj and ßj are constants and αk ≠ 0.α0 and ß0 cannot both be 
zero at the same time. For any k step method, αk is normalized to 1.

Definition 3.2 (Linear difference operator)

The linear operator L associated LLM (10) is defined by

( ) ( ) ( )
k

'
j j

j 0

y x ;h y x jh h x jh ]L y
=

   = α + − β +   ∑ .  	               (11)

Where y(x) is an arbitrary test function and it is continuously 
differentiable on [a, b]. Expanding y(x + jh) and ý(x+jh) as Taylor series 
about x, and collecting common terms yields.

L[y(x); h]=C0y(xn)+C1hy'(xn) +…+ Cqh
qy(q)(xn) + …	               (12)

Where Cq are constants given by

C0=α0 + α1 + …+ αk,

C1=α1 + 2α2 + …+ kαk – (ß0 + ß1+…+ ßk),⋮ 		              (13)

( ) ( ) ( )( )q 1q q q 1
q 1 2 k 1 2 k

1 1C 2 k 2 k
q! q 1 !

−−= α + α +…+ α − β + β +…+ β
−

q=2,3,……

Definition 3.3 (Consistency)

The LMM (10) is said to be consistent if its order p ≥ 1.

It also follows from (13) that the LMM (10) is consistent if and 
only if

k

j 
j 0

0
=

α =∑
and

k k

j j 
j 0 j 0

j
= =

α = β∑ ∑ 					                 (14)

Definition 3.4 (Zero stability)

 A Linear Multistep Method (10) is said to be zero stable if no root 
of its first characteristics polynomial has modulus greater than one and 
that any root with modulus one is simple.

Consistency of the method

In section 2, it has shown that the 2-point DISBBDF with off-step 
points proposed by Babangida [15] is of order 2, which satisfies the 
consistency conditions given in definition 3.3. It now remains to show 
that the method is consistent.

The method (2) is consistent if and only if the following conditions 
are satisfied:

7

j
 j 0

D  0 
=

=∑ , 					                   (15)

7 3

j j
j 0 j 0

jD  G
= =

=∑ ∑ . 				                  (16)

Where Dj's and Gj's are previously defined in section 2.

Equation (15) then becomes
7

j 0 1 2 3 4 5 6 7
j 0

0
0

D  D D D D D D D D
0
0

=

 
 
 = + + + + + + + ==  
  
 

∑ , 	             (17)

Hence condition (15) is therefore met.

Equation (16) also becomes
7

j 0 1 2 3 4 5 6 7
j 0

3
20
4

47jD  0D 1D 2D 3D 4D 5D 6D 7D
3
44
4

67

=

 
 
 
 
 

= + + + + + + + =  
 
 
 
  
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∑ ,      (18)
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3
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67
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 
 
 
 = + + + + + + + =
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 
 
 
 
 
 

∑ .	              (19)
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Hence 
7 7

j j
j 0 j 0

3
20
4

47jD  G
3
44
4

67

= =

 
 
 
 
 

= =  
 
 
 
  
 

∑ ∑ .    (20)

Thus, the second conditions in (18) and (19) are also satisfied.

The consistency conditions are therefore met. Hence, method (2) 
is consistent.

Zero Stability
It now remains to show that the method is zero stable. The stability 

polynomial of the method (2) is given by
2 2 3

4 3 2 2 2 3 3 3

3 4 2 3
2 3 4 4 4

24874 6449 49463 10734 1447 4304 8283t t t t h h t h t h t h t
18425 18425 346390 865975 157450 15745 157450

4304 729 251472 129973 28704 2304h t h t h t h t h t h
15745 173195 173195 173195 173195 173195

− − − − −

− − − − −

− + + + + − +

− − − + − +
4

4t 0. 
−

=

  (21)

For zero stability, we set h
−

=0 in (21). Hence we have:

4 3 224874 6449t t t 0
18425 18425

− + = .              (22)

Solving equation (22) for t gives the following roots:

t=0, t=0, t=0.350014 and t=1. 			                  (23)

From the definition 3.4, method (2) is zero-stable. Since the method 
(2) is both consistent and zero stable, it thus method (2) converges.

Conclusion
The 2-point Diagonally Implicit Superclass of BBDF with off-step 

points method proposed by Babangida had been studied. The necessary 
conditions for the convergence of method is discussed. The method 
is zero stable and consistent. It is therefore conclude the method 
converges.
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