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Introduction
The Hubbard model is an approximate model used to describe 

the transition between conducting and insulating systems. The 
Hubbard model, named after John Hubbard 1963, is the simplest 
model of interacting particles in lattices, with the only two tennis 
in the Hamiltonian; a kinetic term allowing for hopping of particles 
between soles of the lattice and a potential term consisting of an on 
sites interaction. The particles can either be fermions or bosons [1].

The Hubbard model is a good approximate for particles in a 
periodic potential at sufficiently low temperature that all the particles 
are in the lowest Bloch band, as long as any long-range interactions 
between the particles can be ignored. If interaction between particles 
on different sites of the lattice are included, the model is often referred 
to as the extended Hubbard model [2].

The model was originally proposed to describe electrons in solids 
and has since been the focus of particular interest as a model for high 
temperature super conductivity. For electron in a solid, the Hubbard 
model can be considered as an improvement on the tight-binding 
model, which includes only the hopping term for strong interaction, it 
can give qualitatively different behavior from the tight. Binding model, 
and correctly predicts the existence of so called mott insulators, which 
are prevented from becoming conducting by the strong repulsion 
between the particles [3,4].

The Hubbard model is based on the tight –binding approximation.

In the tight-binding approximation, electrons are viewed as 
occupying the standard orbital of their hopping between atoms, and 
then hopping between atoms, and then hopping between atoms during 
conduction. Mathematically, this is represented as hopping integral 
or transfer integral between neighboring atoms, which can be viewed 
as the physical principle that creates electrons bonds in crystalline 
materials [5-7].

The Hubbard Hamiltonian takes the form:
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σ σ
σ

+= − + + ↑ ↓
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i j
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(1.1)

Where   i jC C and niσ σ
+ are the creation, annihilation, and number

operations, respectively, for an electron of spin σ in the wannier state 
on the on the ith lattice i, jF   means that only interest neighbor site 
hopping are allowed [8,9].

The Hubbard model has been extensively studied the single band 
Hubbard model in both one dimensional ring and two dimensional 
torus. By the exact calculation of the pair correlation function i, jF   
defined as the possibility of finding an electron at site  when there has 
been an electron of opposite at site I, it is shown that for two electrons, 
the  interaction is always repulsive in the ground state for any positive 
value of the on–site coulomb interaction u .

Enable and Idiodi studied the single –band tight-binding model 
with on-site repulsion u  and nearest neighbor-exchange interaction 
j (the so called Hubbard Hirsch Hamiltonian) with the help of a 
correlated variational approach [10,11]. Two finite sized lattices with 
periodic boundary conditions were considered and the criteria for 
the occurrence of a transition from an anti-ferromagnetic phase to a 
ferromagnetic phase were discussed.

Theoretical Background
The Lanczos Tridiagonalization Method

The basic idea of the Lanczos method is that a special basis can be 
constructed where the Hamiltonian has a tridiagonal representation. 
This is carried out iteratively as shown below. First, it is necessary to select 
an arbitrary vector o∅  in the Hilbert space of the model being studied. 
If the Lanczos method  is used to obtain the ground state energy of the 
model, then it is necessary that the overlap between the actual ground 
stat o/ 〉  e  and the initial state ∅o  be non-zero [12,13]. If there is no 
priori information about the ground state is know, this requirement is 
usually satisfied by selecting an initial state with randomly satisfied by 
selecting an initial state randomly chosen co-efficient in the working 
basis that is being used. If some other information about the ground 
state is known, like it is convenient to initiate the iterations with a state 
already belonging to the subspace having those quantum numbers (and 
still with random coefficient within this subspace) [14,15].
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After ∅o  is selected, we can define a new vector by applying 
Hamiltonian H to the initial state subtraction the projection over ∅o , we 
obtain.

o 0
o

o o

Ĥ
Ĥ

∅ ∅
∅

∅ ∅
= ∅ − ∅o o                                                    (2.1.0)

  

Now we can construct a new state that is orthogonal to the previous 
two as:

1 1
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Ĥ
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∅
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= ∅ − ∅o           (2.1.1)
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1  0, 0oSupplemented byb −= ∅ =

  ,         Inthisbasis it canbe shownthat the Hamiltonianmatrixbecomes
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i.e it is tridiagonal, as expected. Once in this form the matrix can be 
diagonalized easily using standard library subroutine. However, to 
diagonalise completely the model being studied on a smote cluster, a 
number of iterations to the size of the Hilbert space (or of the subspace 
under consideration) are needed [16].

However, one of the advantages of this technique is that accurate 
enough information about the ground state of the problem can be 
obtained after a small number of iterations /typically of the order 
of 100  ).or less≈  Thus the method is suitable for the analysis of low 
temperature properties of the models of correlated electrons described.

Ground state energy of the two electrons on 2 sites of aid 
lattice using the lanczos method

 In the Lanczos method, a special basis is constructed such that the 
Hamiltonian has a tridigonal representation [17], Firstly, we select an 
arbitrary vector o∅ 〉  in the Hilbert space of the model being studied 
for a two site system containing 2 electrons, we have the following 
many body states;

1 1 1〉 = ↑ ↓〉

2 1 2〉 = ↑ ↓〉

3 1 2〉 = ↑ ↑〉

6 1 2〉 = ↑ ↓〉

1 2〉 = ↑ ↓〉

oLet 1 1 1 .∅ = 〉 = ↑ ↓〉〉 We now define a new vector o∅ 〉  by applying 
the Hubbard Hamiltonian Ĥ  to the state o∅ 〉  subtracting the 

projection over we obtai

o o
1 o o

o o

Ĥ
___ˆ

∅ ∅
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=〉 〉H

 1.1Recall equation

  .
,

σ σ
σ

+
  = −+ + + ↑ ↓ 
  

∑ ∑i j i iH C C H C u n n
i j i

                                               (2.2.1)

     For twoelectrons ontwo sites

{ } { } 2 1 2 1 1 1 1 2 21 2 1 2 1 2 1
+ + + + + + += −+ + + + + +↑ ↑ ↓ ↓ ↑ ↓ ↓ ↑ ↑↑ ↑ ↓ ↓ ↑ ↑ ↑

H C C C C C C C C u C C C C C C C C

o o21t 1 1∅ ∅+ +
↑↑

= − ↑ ↓ + −〉H C C C

1 1 1 1 1 1 1 1 1 1o1 2 1 1 1 22 1 2 1 1 2 2
∅+ + + + + + +↑ ↓〉 − ↑ ↓〉 − ↑ ↓〉 + ↑ ↓〉 + ↑ ↓〉↑ ↑ ↓ ↑ ↓ ↑↑ ↑ ↑ ↑ ↓ ↑ ↓

tC C tC C tC C UC C C C uC C C (2.2.2)  

1 1 1 1 1 1 1 1o2 1 1 1 21 2 1 1 2 2
∅+ + + + + +↑ ↓〉 − ↑ ↓〉 + ↑ ↓〉 + ↑ ↓〉↑ ↓ ↑ ↓ ↑↑ ↑ ↑ ↓ ↑ ↓

tC C tC C UC C C C uC C C

2 2 1 1 1 1 ,2 1 1+= − ↑ ↓〉 − ↑ ↓〉 − ↑ ↓〉 + ↓ ↓〉t tC t u                                          (2.3.2)

o t 2 1 1 2 1 1∅  = − ↑ ↓〉 + ↑ ↓ + ↑ ↓〉〉H u

o o o o oH t 2 1 t 1 2 u 1 1∅ ∅ ∅ ∅ ∅〈 〉 = − ↑ ↓〉 − ↑ ↓〉 + ↑ ↓〉

1 1 1 1= − 〈 ↑ ↓ ↑ ↓〉t

( )0 0 1= − + u

= u

o o o o o oH u, H u, 1∅ ∅ ∅ ∅ ∅ ∅〈 = 〈 〉 = 〈 〉 =〉

o t1 2 1 2 1 1 1 1∅ + ↑ ↑〉 − ↑ ↓〉 + ↑ ↓〉 − ↑ ↓〉〉 u u

1 2 1 2= ↑ ↓〉 − ↑ ↓〉t t

 ,Similary

1 1 1 1
2 1 2 o
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H
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〈 〈

= − −
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〉〈 〈 〉

H                     (2.3.3)

2 2
oH t 2 2 1 1 t 2 2 1 2 1 1∅ 〉 = − ↓ ↑〉 + ↓ ↑〉 + ↑ ↓〉 + ↑ ↓ + ↑ ↓〉

2 22 2 2 2 1 1= ↑ ↓〉 + ↑ ↓〉t t

2t1 1 2 2= ↑ ↓ + ↑ ↓〉

1 1H 0∅ ∅ 〉〈 =

2
1 1 o o: . H 2t , 1∅ ∅ ∅ ∅〈 = 〈 〉 =〉

2 2 2
2 2t 1 1 2t 2 2 2t 1 1∅ = ↑ ↓〉 + ↑ ↓〉 − ↑〉 ↓〉

2
2 2t 2 2∅ 〉 = ↑ ↓〉

The procedure can be generalized by defining an orthogonal basis 
recursively as:

2
n 1 n n n 1

ˆ∅ ∅ ∅ ∅+ −= − 〉 −〉 〉 〉nH an b                                        (2.3.4)

 0,1, 2,       Wheren and thecoefficients are givenby= − − − −
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Supplemented by o 1b O, 0.∅− =〉=  in this basis. We have the 
Hamiltonian matrix: 
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From equation 1.4

2
3 2 2 2 2 1
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4 4
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Recall that t

t 1 2 t 1 2 t 1 2 ↓ ↑〉 − ↓ ↑〉 − ↑ ↓〉 

2
1 1a 1,∅ ∅ 〉 =〈  a is the normalizing factor 

2 2a t 1 1 1+ =  

2 22a t 1=

1
1: . 1 2 1 2
2

∅  = ↓ ↑〉 − ↑ ↓〉  
〉

Also recall that,

2 4 2
2 2 2 2 1,     4 1∅ = ↑ ↓〉 = =〉 t a is thenormalizing factor t a

2
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2: . 2 2∅ 〉 = ↑ ↓〉

o o o 2 o nH u, H 0, H o,∅ ∅ ∅ ∅ ∅ ∅〈 = 〈 = 〈 〉 =〉 〉

nSince , 2.∅ 〉 = 〉o n

o 1H 2t,∅ ∅ 〉〈 =

o 1 o 2 1 2H 2t, H o, H 2t∅ ∅ ∅ ∅ ∅ ∅〈 = 〈 = 〈 〉〉 =〉

1 nH o for n 2.∅ ∅〈 = 〉〉

2 o 2 1 2 2H o, H 2t, H u∅ ∅ ∅ ∅ ∅ ∅〈 = 〈 = 〈〉 〉 =〉

In this basis, we generate the Hamiltonian matrix
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In the basis 1 1 2,   ,  3 3     .∅ ∅ ∅〉 〉 ×〉 and the Hamiltonian matrix is constructed below

2

2 2

2

 
 
 =
 
  

u t o

H t o t

o t u
                                                  (2.3.7)

Diagonalising equation (2.3.8), we solve the equation.

( )λ− =Dct A I o

2

2 0 2

2

λ

λ

λ

 −
 
 = − =
 

−  

u t o

A t t o

o t u

( ) ( ){ } ( ){ } {}22 2 2 0  0λ λ λ λ= − − − − − − − + =u u t t t u o

By expansions, we have that:

{ }2 2 2 2 32 2 2   2 2   λλ λ λ λ λ= − + − + − + − −u u t u u t t tu t
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3 2 2 2 2

3 2 2 2 2
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2 4 4 0
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0     

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ
λ

= − + + + − =

− + + − =

− + − + =
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=
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u u t t u

u u t u

let u soby inspection
u is a factor
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Hence, by using polynomial division, we have that:

( )

( )
( )
( )( )

3 2 2 2

3 2

2 2

2 2

2

2

2 2 2

2 2
1

2 2

2 4

4

4

: .( 4 4 0
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λ λ λ

λ λ λ
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−
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− +

− −

− −

− − − − =

= − − =

− − =

u u u t u

u
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t u u t

i e u or u t

For u t

To determine the eigenvalue (x), we solve the above equation.

( ) ( )

2

2

2

2 2

2 2 2 2
2 3

4
2

 1, , 4

4 1 4
: .

2 1

16
2

16 16  
2 2

λ

λ

λ λ

− ± −
=

= = − = −

− − ± − − × ×−
=

×

± +
=

+ + +
= =

b b ac
a

Wherea b u C t

u u t

u u t

u u t u tor u

Either:

2 2 2 2
2 3

16 16  
2 2

λ λ+ + +
= =

u u t u tor u

2 2 2 21 116 16
2 2
   + + + −      
u u t or u u t                                       (2.3.8)

Hence equation (2.3.9) is the ground state energy.

2 21 16
2
 = − +  

Eg u u t                                                                                                (2.3.9)

The Corresponding were function is given by:

. 1 2 2 1 3 3∅ ∅ ∅= + + 〉〉 〉/g s X X X

Where:

1

2

3

     
 
 =  
 
 

X
X X is theeigenvector corresponding to

X

2 21 16  2.3.6,
2
 = − +  

Eg u u t from
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( )

( )

1

2

3

1u 2t O
2 0

12t 2t 0
2

01O 2t u
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− − 

    
    − − =    

       − −  

U A
X

U A X
X

U A

2 2 16 .= +Where A u t
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12 ( 2 \
2
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2

 
 
  

  − −   
    + 

 

utA t O
O

t U A t O
O
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( ) 1 2
1 2  
2

+ + =U A X t X O                                                               (1)

( )1 2 3
12 2
2

+ + + =t X U A X t X O                                                       (2)

( ) 3
12 )
2

λ + + =t U A X                                                                        (3)

From equation (i)

( ) 1 2
1 2  
2

+ = −U A X t X

( ) 1
2

1
2

2

+
= −

U A X
X

t

From equation (3)

( ) 3 2
1 2  
2

+ = −U A X t X

( )
2

3
2  

1
2

=
+

t XX
U A

3 1=X X
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1

1

1
2X
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 +
 = − 
 
 
  

X

U A

t
X
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2 2 2
1 1 12

1
4 1

2

+
+ + =

U A
X X X
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2 2 2
1 1 12

1
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+
+ + =

U A
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2 1
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Also,
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1
22 2

2 2

16

2   16

1 16
2 16
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 + 
 

 + + = −
 + 

u U tX
U t

U U tX
U t
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( )

( ) ( )

1 1 12 2

1
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1
22 2
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1
22 2

1 1
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1
22 2

1
22 2

2

2

2 16
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2 16

4

16

2 16

=
+

−
=
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 + −  
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×
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tX
A A u

t A u

A A u A u

t U t U

A U t U

t U t U

A t

U t U

U t

. 1 2 3
1 1 2 1 2 2 2
2
−  = ∅ 〉 + ↑ ↑〉 − ↓ ↑ + ↑ ↓〉  /g s oX X X

2
1 1 1 2 2 1 2 1 2

2
xX    ↑ ↓〉 + ↑ ↓ − ↑ ↓〉 − ↓ ↑〉   

Ground state energy for two electrons on two sites (Exact 
Method)

Recall that:

12 1 11 2 1 2

1 2 21 1 2 2

 + + + +
↑ ↓ ↓↑ ↑ ↓ ↓

+ + + +
↑ ↑ ↓↑ ↓ ↑ ↓

 = − + + + +  
 +  

H t C C C C C C C C

U C C C C C C C

For n electron on N sites, the number of many body states is given 
by 

( )

2 , 2,  2
4! 4! 6

4 2 !2! 2!2!

= =

⇒ = =
−

cnN n N

It has six states which are

1 1 ,      2 2 ,    1 1 ,       1 1↑ ↓〉 ↑ ↓〉 ↓ ↑ ↓ ↓〉and

With these Hamiltonian set up:

1 1 1 2 1 6

2 1 2 2 2 6

3 1 3 2 3 6

4 1 4 2 4 6

5 1 5 2 5 6

6 1 6 2 6 6

H H H

H H H

H H H
H

H H H

H H H

H H H

 − − − − −
 

− − − − − 
 

− − − − − 
=  

− − − − − 
 − − − − − 
 − − − − − 

2 1 2 21 2 1 21  + + + +
↑ ↑ ↓ ↓↑ ↑ ↓ ↓

 〉 = − + + + +  
H t C C C C C C C C

1 1 2 21 1 2 2 1 1+ + + +
↑ ↓ ↑ ↓↑ ↓ ↑ ↓

 + + + ↑ ↓〉  
U C C C C C C C C

2 1 2 21 2 1 21 1 1 1  1 1 1 1+ + + +
↑ ↑ ↓ ↓↑ ↑ ↓ ↓

= − ↑ ↓〉 ↑ ↓〉 ↑ ↓〉 + ↑ ↓〉tC C tC C t C C tC C

2 2 2 2 1 1+ +
↑ ↑ ↓ ↓ ↑ ↓〉UC C C C

Here, 
21

12

21

1 1 0

1 1 0

1 1 0

+
↑↑

+
↑↑

+
↓↓

= − ↑ ↓〉 =

= − ↑ ↓〉 =

= − ↑ ↓〉 =

tC C

tC C

tC C

2 21 2 1 1 1 1+ +
↑ ↓↑ ↓

= ↑ ↓〉 = ↑ ↓〉UC C C C U

2 21 2 1 1 1 1+ +
↑ ↓↑ ↓

= ↑ ↓〉 = ↑ ↓〉UC C C C U

22 2 1 1 0+ +
↑↑ ↓

↑ ↓〉 =UC C C

1 2 1 1 2 1 1〉 = − ↑ ↓〉 − ↑ ↓〉 + ↑ ↓〉H t t U

1 2 1 2 1 1= ↑ ↓〉 − ↑ ↓〉 + ↑ ↓〉t t U

4 3 1〉 − 〉 〉t t U

: . 1   1 1 4 1 3 1 1〈 〉 = 〉 − 〉 + 〉H t t U                         (2.4.0)

For

2 1 0,   3 1 ,4 1 ,     5 1 0,      6 1 0〈 〉 = 〈 〉 = − = 〈 〉 = 〈 〉 =H H t H t H and H

Which  gives

−
−

−
=ij

u o t t o o
o u t t o o
t t o o o o

H
t t o o o o
o o o o o o
o o o o o o

ij

u o t t
o u t t

H
t t o o

t t o o

−
−

=
−

 

We now determine the eigenvalue, Where ( )A Hij=  is a square 
matrix, X is a  column matrix and λ is a scalar quantity [18-22].
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 =A  xλ λ

0− λ =AX x

( )A I 0− λ × =

Result and Discussion
Ground state energy for two electron system on two sites were 

analytically solved using 4× 4 matrix and the results obtained  are 
presented in the figures and table below.

Figure 1 shows ground state energy as a function of positive U 
energy for 2 electrons on 2 sites for Lanczos method while Figure 2 
shows ground state energy as a function of positive U for 2 electrons on 
2 sites for exact method. Thus, the correlation between the two graphs 
are in perfect agreement.

Table 1 below shows the numerical results of Lanczos method and 
exact method which is in a good agreement with experimental values.

Conclusion
In this study, we have shown that Lanczos technique is a reliable 

numerical method in determining the ground state energy of a system 
described by the Hubbard Hamiltonian. Ground state energies obtained 
using the Lanczos  method compare nicely with that obtained using 
exact method. The size of the Hamiltonian matrix to diagonalise is 
reduced from (4×4) matrix to a (3×3) matrix when Lanczos technique 
is applied.
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