Coupled Fixed Points of $\alpha-\Psi$-Contractive Type Multi Functions

Mohammadi B* and Alizade E

Department of Mathematics, Marand Branch, Islamic Azad University, Tehran, Iran

Abstract

Recently, Samet, Vetro and Vetro introduced $\alpha-\psi$-contractive mappings and gave some results on fixed points of the mappings . In fact, their technique generalized some ordered fixed point results. Also they have proved some results on coupled fixed points of $\alpha-\psi$-contractive mappings. In 1974 Ciric introduced quasicontractive mappings and obtained an important generalization of Banach's contraction principle. Recently Mohammadi, Rezapour and Shahzad have proved some fixed point results on $\alpha-\psi$-contractive and $\alpha-\psi$-quasicontractive multifunction's. By using the main idea of, we give some new results for coupled fixed points of $\alpha-\psi$-contractive multifunction.

Keywords: Coupled fixed point; $\alpha-\psi$-Contractive; Multifunction

Introduction

Denote by Ψ the family of non-decreasing functions $\psi:[0,+\infty) \rightarrow$ $[0,+\infty)$ such that $\sum_{n=1}^{+\infty} \psi^{n}(t)<+\infty$ for all $t>0$. It is well known that $\psi(t)$ $<t$ for all $t>0$.

Definition 1.1: Let (X, d) be a metric space and $\alpha: X \times X \rightarrow[0, \infty)$ be a map. We say that X satisfies condition $\left(C_{a}\right)$, if for any sequence $\left\{x_{n}\right\}$ in X, that $x_{n} \rightarrow x$ and $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all n, then $\alpha\left(x_{n^{\prime}}, x\right) \geq 1$ for all n . Also, we say that the selfmap T on X is α-admissible whenever $\alpha(x, y) \geq$ 1 implies $\alpha\left(T_{x}, T_{y}\right) \geq 1$.

Definition 1.2: Let X is an arbitrary space and $\alpha: X^{2} \times X^{2} \rightarrow[0,+\infty)$ a map. A mapping $F: X^{2} \rightarrow X$ is said to be α-admissible whenever $\alpha((x$, y), $(u, v)) \geq 1$ implies

$$
\alpha((F(x, y), F(y, x)),(F(u, v), F(v, u))) \geq 1 .
$$

Definition 1.3: Let (X, d) be a metric space and $\alpha: X^{2} \times X^{2} \rightarrow[0, \infty$). We say that X satisfies condition $\left(C_{\alpha}\right)$ if for any two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X, that $x_{n} \rightarrow x, y_{n} \rightarrow y$ and
$\alpha\left(\left(x_{n}, y_{n}\right),\left(x_{n+1}, y_{n+1}\right)\right) \geq 1, \alpha\left(\left(y_{n+1}, x_{n+1}\right),\left(y_{n}, x_{n}\right)\right) \geq 1$
For all n , then we have
$\alpha\left(\left(x_{n}, y_{n}\right),(x, y)\right) \geq 1, \alpha\left((y, x),\left(y_{n}, x_{n}\right) \geq 1\right.$
for all n .
Definition 1.4: Let X is an arbitrary space and $F: X^{2} \rightarrow X$ is a mapping. We say that $\left(x^{*}, y^{*}\right) \in X^{2}$ is a coupled fixed point of F, if we have $F\left(x^{*}, y^{*}\right)=x^{*}$ and $F\left(y^{*}, x^{*}\right)=y^{*}$.

In 2011, Samet, Vetro and Vetro have proved the following theorem [1].

Theorem 1.1: Let (X, d) be complete a metric space, $\alpha: X^{2} \times X^{2} \rightarrow[0$, $\infty)$ a function, $\psi \in \Psi$ and $F: X^{2} \rightarrow X$ an α-admissible mapping such that

$$
\alpha((x, y),(u, v)) d(F(x, y), F(u, v)) \leq \frac{1}{2} \psi(d(x, u)+d(y, v))
$$

for all $(x, y),(u, v) \in X^{2}$. Assume that the following assertions hold. (i) There exists $\left(x_{0^{\prime}}, y_{0}\right) \in X^{2}$ such that

$$
\begin{aligned}
& \alpha\left(\left(x_{0}, y_{0}\right),\left(F\left(x_{0}, y_{0}\right), F\left(y_{0,}, x_{0}\right)\right)\right) \geq 1, \\
& \alpha\left(\left(F\left(y_{0^{\prime}}, x_{0}\right), F\left(x_{0}, y_{0}\right)\right),\left(y_{0^{\prime}}, x_{0}\right)\right) \geq 1 .
\end{aligned}
$$

(ii) Either F is continuous or X satisfies condition $\left(C_{\alpha}^{*}\right)$. Then F has a coupled fixed point in X^{2}.

Let (X, d) be a metric space. Define the metric δ on X^{2} by $\delta((x, y)$, $(u, v))=d(x, u)+d(y, v)$, for all $(x, y),(u, v) \in X^{2}$. Also if $F: X^{2} \rightarrow X$ then put [2].
$m((x, y),(u, v))=\max \{\delta((x, y),(u, v)), \delta((x, y),(F(x, y), F(y, x)))$, $\delta((u, v),(F(u, v), F(v, u)))$

$$
\left.\frac{1}{2}[\delta((x, y),(F(u, v), F(v, u)))+\delta((u, v),(F(x, y), F(y, x)))]\right\}
$$

for all $(x, y),(u, v) \in X^{2}$. It is easy to see that $m((x, y),(u, v))=m((v, u)$, $(y, x))$. Recently Rezapour and H. Asl have extended theorem 1.1 to quasi-contractions as follow [3].

Theorem 1.2: Let (X, d) be a complete metric space, $\alpha: X^{2} \times X^{2} \rightarrow$ $[0,+\infty)$ a function, $\psi \in \Psi$ and $F: X^{2} \rightarrow X$ an α-admissible mapping such that [4]

$$
\alpha((x, y),(u, v)) d(F(x, y), F(u, v)) \leq \frac{1}{2} \psi(m((x, y),(u, v))) .
$$

for all $(x, y),(u, v) \in X^{2}$. Assume that the following assertions hold. (i) There exists $\left(x_{0}, y_{0}\right) \in X^{2}$ such that

$$
\begin{aligned}
& \alpha\left(\left(x_{0}, y_{0}\right),\left(F\left(x_{0}, y_{0}\right), F\left(y_{0}, x_{0}\right)\right)\right) \geq 1, \\
& \alpha\left(\left(F\left(y_{0}, x_{0}\right), F\left(x_{0}, y_{0}\right)\right),\left(y_{0}, x_{0}\right)\right) \geq 1 .
\end{aligned}
$$

(ii) Either F is continuous or ψ is right upper semi continuous and X satisfies condition $\left(C_{\alpha}^{*}\right)$.

Then F has a coupled fixed point in X^{2}.
Definition 1.5: Let (X, d) be a metric space and $F: X^{2} \rightarrow X$. We say that F is orbitally continuous if for any two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X , that $x_{n} \rightarrow x, y_{n} \rightarrow y$ and $x_{n+1}=F\left(x_{n} y_{n}\right), y_{n+1}=F\left(y_{n}, x_{n}\right)$, then $F\left(x_{n}, y_{n} \rightarrow F(x, y)\right.$.

Obviously theorem 1.2 is true if F be orbitally continuous instead of continuity. Now we give the following example to show that theorem 1.2 is a real generalization of theorem 1.1, which is there exist mappings

[^0]that we can use theorem 1.2, but we can't use theorem 1.1 for them [5].

Example 1.6:

Let $\quad M 1=\left\{\frac{m}{n}: m=0,1,3,9, \ldots\right.$ and $\left.n=3 k+1(k \geq 0)\right\}$, $M 2=\left\{\frac{m}{n}: m=1,3,9,27, \ldots\right.$ and $\left.n=3 k+2(k \geq 0)\right\}$. Set $M=M 1 \cup M 2$, $d(x, y)=|x-y|$ and define $F: M^{2} \rightarrow M$ by

$$
F(x, y)= \begin{cases}3 x / 13 & x, y \in M_{1}, x \geq y \tag{1}\\ x / 8 & x, y \in M_{2}, x \geq y \\ 0 & \text { otherwise }\end{cases}
$$

and $\alpha: M^{2} \times M^{2} \rightarrow[0,+\infty)$ by
$\alpha((x, y),(u, v))=\left\{\begin{array}{l}1(x, y),(u, v) \in M_{1}{ }^{2} \cup M_{2}{ }^{2}, x \geq y, u \geq v \\ 0 \text { otherwise } .\end{array}\right.$
If $(x, y) \in M_{1}^{2}, x \geq y$ and $(u, v) \in M_{2}^{2}, u \geq v$, then
$d(F(x, y), F(u, v))=\left|\frac{3 x}{13}-\frac{u}{8}\right|=\frac{3}{13}\left|x-\frac{13 u}{24}\right|$.
Now we consider two cases. If $x>\frac{13}{24} u$, then we have
$\frac{3}{13}\left|x-\frac{13 u}{24}\right|=\frac{3}{13}\left(x-\frac{13 u}{24}\right) \leq \frac{3}{13}\left(x-\frac{u}{8}\right)=\frac{1}{2}\left(\frac{12}{13}\right) \frac{d(x, F(u, v))}{8}$.
$\left.\leq \frac{1}{2}\left(\frac{12}{13}\right) \frac{\delta(x, \mathrm{y}, F(u, v), F(u, v)))}{2} \leq \frac{1}{2}\left(\frac{12}{13}\right) \mathrm{m}(\mathrm{x}, \mathrm{y}),(\mathrm{u}, \mathrm{v})\right)$.
Hence
$\left.d(F(\mathrm{x}, \mathrm{y}), F(u, v)) \leq \frac{1}{2}\left(\frac{12}{13}\right) \mathrm{m}(\mathrm{x}, \mathrm{y}),(\mathrm{u}, \mathrm{v})\right)$.
If $x<\frac{13}{24} u$, then
$\frac{3}{13}\left|x-\frac{13 u}{24}\right|=\frac{3}{13}\left(\frac{13 u}{24}-x\right) \leq \frac{3}{13}(u-x)$
$\left.\left.\leq \frac{1}{2}\left(\frac{6}{13}\right) \delta(x, \mathrm{y}),(u, v)\right) \leq \frac{1}{2}\left(\frac{12}{13}\right) \mathrm{m}(\mathrm{x}, \mathrm{y}),(\mathrm{u}, \mathrm{v})\right)$.
Hence
$\left.d(F(\mathrm{x}, \mathrm{y}), F(u, v)) \leq \frac{1}{2}\left(\frac{12}{13}\right) \mathrm{m}(\mathrm{x}, \mathrm{y}),(\mathrm{u}, \mathrm{v})\right)$.
If $(x, y),(u, v) \in M_{1}^{2}, x \geq y, u \geq v$, then
$\left.d(F(\mathrm{x}, \mathrm{y}), F(u, v))=\left|\frac{3 x}{13}-\frac{3 u}{13}\right|=\frac{3}{13} \mathrm{~d}(x, u) \leq \frac{1}{2}\left(\frac{12}{13}\right) \mathrm{m}(\mathrm{x}, \mathrm{y}),(\mathrm{u}, \mathrm{v})\right)$.
If $(x, y),(u, v) \in M_{2}{ }^{2}$, then
$\left.d(F(\mathrm{x}, \mathrm{y}), F(u, v))=\left|\frac{x}{8}-\frac{u}{8}\right|=\frac{1}{8} \mathrm{~d}(x, u) \leq \frac{1}{2}\left(\frac{12}{13}\right) \mathrm{m}(\mathrm{x}, \mathrm{y}),(\mathrm{u}, \mathrm{v})\right)$.
Now put $\psi(t)=\frac{12 t}{13}$, for all $t \geq 0$, and then we see that

$$
\alpha((x, y),(u, v)) d(F(x, y), F(u, v)) \leq \frac{1}{2} \psi(m((x, y),(u, v)))
$$

for all $(x, y),(u, v) \in M^{2}$. Also
$\alpha((1,1),(F(1,1), F(1,1)))=\alpha((1,1),(3 / 13,3 / 13))=1$,
$\alpha((F(1,1), F(1,1)),(1,1))=\alpha((3 / 13,3 / 13),(1,1))=1$.

To show that F is α-admissible, assume $\alpha((x, y),(u, v)) \geq 1$. Then $(x, y),(u, v) \in M_{1}^{2} \cup M_{2}^{2}, x \geq y, u \geq v$. Hence either $x>y$ and $F(y$, $x)=0$ or $x=y$ and $F(x, y) F(y, x)$. However $F(x, y) \geq F(y, x)$. Similarly $F(u, v) \geq F(v, u)$. On the other hand $F(x, y), F(y, x), F(u, v), F(v, u)$ $\in M_{1}$. Hence

$$
\alpha((F(x, y), F(y, x)),(F(u, v), F(v, u))) \geq 1
$$

It is easy to check that F is orbitally continuous. Now by theorem 1.2 we can say that F has a coupled fixed point in X^{2}. In fact $(0,0)$ is a coupled fixed point of F [6].

Now, we show that we cannot apply theorem 1.1 in this example. To see this put [7]

$$
x=y=9, u=\frac{243}{26}, v=\frac{243}{29} . \text { Then }
$$

$$
\alpha((x, y),(u, v)) d(F(x, y), F(u, v))=\left|\frac{27}{13}-\frac{243}{26 \times 8}\right|=\frac{189}{208}=0.9 .
$$

On the other hand
$\frac{1}{2} \psi(\delta((x, y),(u, v))) \leq \frac{1}{2} \delta((x, y),(u, v))=\frac{1}{2}(|x-u|+|y-v|)$

$$
\left.\frac{1}{2}\left|9-\frac{243}{26}\right|+\left|9-\frac{243}{26}\right|\right)=\frac{729}{1508}=0.48
$$

Hence

$$
\alpha((x, y),(u, v)) d(F(x, y), F(u, v))>\frac{1}{2} \psi(\delta((x, y),(u, v))) .
$$

Let (X, d) be a metric space and $C B(X)$ is the set of all nonempty closed bounded subsets of $X, \alpha: X \times X \rightarrow[0, \infty)$ a mapping and T : $X \rightarrow C B(X)$ a multifunction. We say that T is α-admissible whenever for each $x \in X$ and $y \in T x$ with $\alpha(x, y) \geq 1$ we have $\alpha(y, z) \geq 1$ for all $z \in T y$ ([4]). Recall that T is continuous whenever $H\left(T x_{n}, T x\right) \rightarrow 0$ for all sequence $\left\{x_{n}\right\}$ in X with $x_{n} \rightarrow x$, where H is the Hausdorff metric on $C B(X)$ defined by $H(A, B)=\max \left\{\sup _{x} \in_{A} d(x, B), \sup _{y} \in_{B} d(y, A)\right\}$, for all $A, B \in C B(X)$. Also we say that T is orbitally continuous whenever H $\left(T x_{n}, T_{x}\right) \rightarrow 0$ for all sequence $\left\{x_{n}\right\}$ in X with $x_{n+1} \in T x_{n}$ for all n and x_{n} $\rightarrow x$. Recently Mohammadi, Rezapour and Shahzad have proved the following lemma [8].

Lemma 1.3: ([4] Let (X, d) be a complete metric space, $\alpha: X \times X \rightarrow$ $[0, \infty)$ a function, $\psi \in \Psi$ a strictly increasing map and $T: X \rightarrow C B(X)$ an α-admissible multifunction such that $\alpha(x, y) H(T x, T y) \leq \psi(d(x$, $y)$) for all $x, y \in X$ and there exist $x_{0} \in X$ and $x_{1} \in T x_{0}$ with $\alpha\left(x_{0}, x_{1}\right) \geq$ 1. If T is continuous or X satisfies the condition $\left(C_{\alpha}\right)$, then T has a fixed point. Note that if T be orbitally continuous instead of continuity, then the lemma1.3 is also true [2].

Main Results

Now, we are ready to state and prove our main results.
Definition 2.1: Let X is an arbitrary space and $\alpha: X^{2} \times X^{2} \rightarrow[0$, $+\infty$) a map. A multifunction $F: X^{2} \rightarrow C B(X)$ is said to be α-admissible whenever if $(x, y) \in X^{2},(u, v) \in F(x, y) \times F(y, x)$ and $\alpha((x, y),(u, v)) \geq$ $1, \alpha((v, u),(y, x)) \geq 1$, then $\alpha((u, v),(w, z)) \geq 1, \alpha((z, w),(v, u)) \geq 1$, for all $(w, z) \in F(u, v) \times F(v, u)$.

Definition 2.2: Let (X, d) be a metric space and $F: X^{2} \rightarrow C B(X)$ is a multifunction. We say that $\left(x^{*}, y^{*}\right) \in X^{2}$ is a coupled fixed point of F if we have $x^{*} \in F\left(x^{*}, y^{* *}\right)$ and $y^{*} \in F\left(y^{*}, x^{*}\right)$.

Theorem 2.1: Let (X, d) be a complete metric space, $\alpha: X^{2} \times X^{2} \rightarrow[0$,
$+\infty)$ a function, $\psi \in \Psi$ a strictly increasing map and $\mathrm{F}: \mathrm{X}_{2} \rightarrow \mathrm{CB}(\mathrm{X})$ an α-admissible multifunction such that [7]

$$
\alpha((x, y),(u, v)) H(F(x, y), F(u, v)) \leq \frac{1}{2} \psi(d(x, u)+d(y, v)) .
$$

for all $(x, y),(u, v) \in X^{2}$. Assume that the following assertions hold.
(i) There exists $\left(x_{0}, y_{0}\right) \in X_{2}$ and $\left(x_{1}, y_{1}\right) \in F\left(x_{0}, y_{0}\right) \times F\left(y_{0}, x_{0}\right)$ such that

$$
\alpha\left(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)\right) \geq 1, \quad \alpha\left(\left(y_{1}, x_{1}\right),\left(y_{0}, x_{0}\right)\right) \geq 1 .
$$

(ii) Either F is continuous or X satisfies condition $\left(C^{*}\right)$. Then F has a coupled fixed point in X^{2}.

Proof Define β : $X_{2} \times X_{2} \rightarrow[0,+\infty)$ by
$\beta\left(\left(\xi_{1}, \xi_{2}\right),\left(\eta_{P} \eta_{2}\right)\right)=\min \left\{\alpha\left(\left(\xi_{1}, \xi_{2}\right),\left(\eta 1, \eta_{2}\right)\right), \alpha\left(\left(\eta_{\eta_{1}} \eta_{2}\right),\left(\xi_{1}, \xi_{2}\right)\right)\right\}$
for all

$$
\xi=\left(\xi_{1}, \xi_{2}\right) \in X^{2}, \eta=\left(\eta_{1}, \eta_{2}\right) \in X^{2} .
$$

Also suppose $T: X^{2} \rightarrow C B\left(X^{2}\right)$ is defined by $T(x, y)=F(x, y) \times F$ (y, x). Obviously the metric space (X^{2}, δ) is complete. Now since F is α-admissible, it is easy to see that T is β-admissible. Also by assumption

$$
\begin{aligned}
& \alpha((x, y),(u, v)) H(F(x, y), F(u, v)) \leq \frac{1}{2} \psi(d(x, u)+d(y, v)), \\
& \alpha((\mathrm{v}, \mathrm{u}),(\mathrm{y}, \mathrm{x})) H(F(\mathrm{v}, \mathrm{u}), F(\mathrm{y}, \mathrm{x})) \leq \frac{1}{2} \psi(d(\mathrm{v}, \mathrm{y})+d(\mathrm{u}, \mathrm{x})) .
\end{aligned}
$$

for all $(x, y),(u, v) \in X^{2}$. By adding the above two relations we obtain.
$\beta((x, y),(u, v))[H(F(x, y), F(u, v))+H(F(v, u), F(y, x))] \leq \psi(\delta((x$, $y),(u, v))$.

Assume that H_{δ} is the Hausdorff metric on $\left(X^{2}, \delta\right)$. We should show that
$H_{\delta}(T(x, y), T(u, v)) \leq H(F(x, y), F(u, v))+H(F(v, u), F(y, x))$.
For this we have

$$
\begin{aligned}
& H_{\delta}(T(x, y), T(u, v))=H_{\delta}(F(x, y) \times F(y, x), F(u, v) \times F(v, u)) \\
& =\max \left\{\underset{\left(\xi_{1}, \xi_{2}\right) \in F(x, y) \times F(x, x)}{\sup _{\left.\left(\eta_{1}, \eta_{2}\right) \in F(u, v) \times F(, u)\right)}} \delta\left(\left(\xi_{1}, \xi_{2}\right), F(u, v) \times F(v, u)\right),\right. \\
& \left.\delta\left(\left(\eta_{1}, \eta_{2}\right), F(x, y) \times F(y, x)\right)\right\} .
\end{aligned}
$$

Let $\left(\xi_{1}, \xi_{2}\right) \in F(x, y) \times F(y, x)$. Then

$$
\begin{aligned}
\delta\left(\left(\xi_{1}, \xi_{2}\right), F(u, v) \times F(v, u)\right) & =\inf _{\substack{\left(\eta_{1}, \eta_{2}\right) \in F(u, v) \times F(v, u)}} \quad \delta\left(\left(\xi_{1}, \xi_{2}\right),\left(\eta_{1}, \eta_{2}\right)\right) \\
& \inf _{\substack{\left(\eta_{1}, \eta_{2}\right) \in F(u, v) \times F(v, u)}} \quad\left[d\left(\xi_{1}, \eta_{1}\right)+d\left(\xi_{2}, \eta_{2}\right)\right] \\
& =\inf d\left(\xi_{1}, \eta_{1}\right)+\inf d\left(\xi_{2}, \eta_{2}\right) \\
& \eta_{\eta 1 \in F(u, v)} \quad \eta_{2} \in F(v, u)
\end{aligned}
$$

$$
=d\left(\xi_{1}, F(u, v)+d\left(\xi_{2}, F(v, u) \leq H(F(x, y), F(u, v))+H(F(y, x), F(v, u))\right.\right.
$$

Similarly for $\left(\eta_{1}, \eta_{2}\right) \in F(u, v) \times F(v, u)$ we have
$\delta\left(\left(\eta_{1}, \eta_{2}\right), F(x, y) \times F(y, x)\right) \leq H(F(x, y), F(u, v))+H(F(y, x), F$ $(v, u))$.

Hence (5) holds. By (4) and (5) we have
$\beta((x, y),(u, v)) H_{\delta}(T(x, y), T(u, v)) \leq \psi(\delta((x, y),(u, v)))$.
Hence for any $\xi=\left(\xi_{1}, \xi_{2}\right) \in X^{2}, \eta=\left(\eta_{1}, \eta_{2}\right) \in X^{2}$ we have
$\beta(\xi, \eta) H_{\delta}(T \xi, T \eta) \leq \psi(\delta(\xi, \eta))$.
So $T: X^{2} \rightarrow C B\left(X^{2}\right)$ is a $\beta-\psi$-contractive multifunction. Put $P_{0}=\left(x_{0}\right.$, $\left.y_{0}\right), P_{1}=\left(x_{1}, y_{1}\right)$. Then $P 1 \in T \mathrm{P}_{0}, \beta\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right) \geq 1$. Now let F be continuous. We show that T is continuous. To see this let $\left\{\left(x_{n}, y_{n}\right)\right\}$ be a sequence in X^{2} such that $\delta\left(\left(x_{n^{\prime}}, y_{n}\right),(x, y)\right) \rightarrow 0$. Then $d\left(x_{n^{\prime}}, x\right)+d\left(y_{n^{\prime}} y\right) \rightarrow 0$ and hence $d\left(x_{n}, x\right) \rightarrow 0, d\left(y_{n}, y\right) \rightarrow 0$. Now since F is continuous, hence

$$
H\left(F\left(x_{n}, y_{n}\right), F(x, y)\right) \rightarrow 0, H\left(F\left(y_{n}, x_{n}\right), F(y, x)\right) \rightarrow 0
$$

Therefore
$H_{\delta}\left(T\left(x_{n}, y_{n}\right), T(x, y)\right) \leq H\left(F\left(x_{n}, y_{n}\right), F(x, y)\right)+H\left(F\left(y_{n}, x_{n}, F(y\right.\right.$, x)) $\rightarrow 0$.

This shows that $T: X^{2} \rightarrow C\left(X^{2}\right)$ is continuous.
Also if X has $\left(C_{\alpha}^{*}\right)$ condition, it is easy to see that X^{2} has condition C_{β}. Now all of the conditions of lemma 1.3 hold. Hence by the lemma there exists $\left(x^{*}, y^{*}\right) \in X^{2}$ such that $\left(x^{*}, y^{*}\right) \in T\left(x^{*}, y^{*}\right)=F\left(x^{*}, y^{*}\right) \times F\left(y^{*}\right.$, $\left.x^{*}\right)$, hence $x^{*} \in F\left(x^{*}, y^{*}\right)$, $y^{*} \in F\left(y^{*}, x^{*}\right)$. That is $\left(x^{*}, y^{*}\right)$ is a coupled fixed point of F in X^{2}. Now by using the following simple definitions we want to prove another version of theorem 2.1.

Definition 2.3: Let (X, d) is a metric space and $\alpha: X^{2} \times X^{2} \rightarrow[0$, $+\infty)$ is a map. A multifunction $F: X^{2} \rightarrow C B(X)$ is said to be modified α-admissible whenever if $(x, y) \in X^{2},(u, v) \in F(x, y) \times F(y, x)$ and $\alpha((x$, $y),(u, v)) \geq 1$, then $\alpha((u, v),(w, z)) \geq 1$, for all $(w, z) \in F(u, v) \times F(v, u)$.

Definition 2.4: Let (X, d) be a metric space and $\alpha: X 2 \times X 2 \rightarrow[0$, $\infty)$. We say that X satisfies condition $\left(B_{a}^{*}\right)$ if for any two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X, that $x_{n} \rightarrow x, y_{n} \rightarrow y$ and $\alpha\left(\left(x_{n}, y_{n}\right),\left(x_{n+1}, y_{n+1}\right) \geq 1\right.$ for all n, then we have $\alpha\left(\left(x_{n}, y_{n}\right),(x, y)\right) \geq 1$ for all n .

Theorem 2.2: Let (X, d) be a complete metric space, $\alpha: X^{2} \times X^{2} \rightarrow[0$, $+\infty)$ a function, $\psi \in \Psi$ a strictly increasing map and $F: X^{2} \rightarrow C B(X)$ a modified α-admissible multifunction such that

$$
\alpha((x, y),(u, v)) H(F(x, y), F(u, v)) \leq \frac{1}{2} \psi(d(x, u)+d(y, v)) .
$$

For all $(x, y),(u, v) \in X^{2}$. Assume that the following assertions hold.
(i) There exist $\left(x_{0,} y_{0}\right) \in X^{2}$ and $\left(x_{1}, y_{1)} \in F\left(x_{0}, y_{0}\right) \times F\left(y_{0}, x_{0}\right)\right.$ such that
$A\left(\left(x_{0}, y_{0}\right),(x 1, y 1)\right) \geq 1, \alpha\left(\left(y_{0}, x_{0}\right),\left(y_{1}, x_{1}\right)\right) \geq 1$.
(ii) Either F is continuous or X satisfies condition $\left(B_{\alpha}^{*}\right)$.

Then F has a coupled fixed point in X^{2}.
Proof Define β : $X^{2} \times X^{2} \rightarrow[0,+\infty)$ by
$\beta\left(\left(\xi_{1}, \xi_{2}\right),\left(\eta_{1}, \eta_{2}\right)\right)=\min \left\{\alpha\left(\left(\xi_{1}, \xi_{2}\right),\left(\eta_{1}, \eta_{2}\right)\right), \alpha\left(\left(\xi_{2}, \xi_{1)^{\prime}}\left(\eta_{2}, \eta_{1}\right)\right)\right\}\right.$
for all

$$
\xi=\left(\xi_{1}, \xi_{2}\right) \in X^{2}, \eta=\left(\eta_{1}, \eta_{2}\right) \in X^{2}
$$

The remain of proof is completely similar to proof of theorem 2.1
Example 2.5: Let X be the space of real numbers with the usual metric $d(x, y)=|x-y|$ and define $F: X^{2} \rightarrow C B(X)$ by
$F(x, y)= \begin{cases}{\left[0, \frac{x-y}{3}\right]} & x \geq y \\ \{0\} & x<y\end{cases}$
Also define α : $X^{2} \times X^{2} \rightarrow[0,+\infty)$ by

$$
\alpha((x, y),(u, v))= \begin{cases}1 & x \geq y, u \geq v \tag{9}\\
0 & \begin{array}{l}
\text { otherwise }
\end{array}\end{cases}
$$

If $(x, y),(u, v) \in X^{2}$ and $x \geq y, u \geq v$, then
$H(F(x, y), F(u, v))=H\left(\left[0, \frac{x-y}{3}\right],\left[0, \frac{u-v}{3}\right]\right)$
$\left.=\frac{1}{3}|x-y-(u-v)| \leq \frac{1}{2}\left(\frac{2}{3}\right)\right)(\mathrm{d}(\mathrm{x}, \mathrm{u})+\mathrm{d}(\mathrm{y}, \mathrm{v}))$.
Now put $\psi(t)=\frac{2 t}{3}$. We see that
$\alpha((x, y),(u, v)) H(F(x, y), F(u, v)) \leq \frac{1}{2} \psi(d(x, u)+d(y, v))$.
Also for $\left(x_{0^{\prime}}, y_{0}\right)=(1,1),\left(x_{1}, y_{1}\right)=(0,0)$ we have
$F\left(x_{0} y_{0}\right)=F\left(y_{0}, x_{0}\right)=\{0\},\left(x_{1}, y_{1}\right)=(0,0) \in\{(0,0)\}=F\left(x_{0}, y_{0}\right) \times F\left(y_{0}, x_{0}\right)$,
$\alpha\left(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)\right)=\alpha((1,1),(0,0))=1$,
$\alpha\left(\left(y_{0}, x_{0}\right),\left(y_{1}, x_{1}\right)\right)=\alpha((1,1),(0,0))=1$.
Now let $(x, y) \in X^{2},(u, v) \in F(x, y) \times F(y, x)$ and $\alpha((x, y),(u, v))$ ≥ 1. Then $x \geq y, u \geq v$. Hence $F(v, u)=\{0\}$. Now if $(w, z) \in F(u, v) \times F$ (v, u), then $w \geq 0=z$. Therefore $\alpha((u, v),(w, z)) \geq 1$. This shows that F is modified α-admissible. It is easy to see that F is continuous. Hence by theorem 2.2, F has a coupled fixed point in X^{2}. For example $(0,0)$ is a coupled fixed point of F.

Example 2.6: Let X be the space of real numbers with the usual metric $d(x, y)=|x-y|$ and define $F: X^{2} \rightarrow C B(X)$ by $F(x, y)=[0,2|x-y|]$ for all $x, y \in X$. Also define $\alpha: X^{2} \times X^{2} \rightarrow[0, \infty)$ by

$$
\alpha((x, y),(u, v))= \begin{cases}\frac{1}{8} & (x, y, u, v) \neq(0,0,0,0) \\ 1 & \mathrm{x}=\mathrm{y}=\mathrm{u}=\mathrm{v}=0\end{cases}
$$

Now put $\psi(t)=\frac{t}{2}$. We see that

$$
\alpha((x, y),(u, v)) H(F(x, y), F(u, v)) \leq \frac{1}{2} \psi(d(x, u)+d(y, v)) .
$$

Also for $\left(x_{0}, y_{0}\right)=\left(x_{1}, y_{1}\right)=(0,0)$ we have

$$
F\left(x_{0^{\prime}} y_{0}\right)=F\left(y_{0^{\prime}} x_{0}\right)=\{0\},\left(x_{i^{\prime}}, y_{1}\right)=(0,0) \in\{(0,0)\}=F\left(x_{0^{\prime}}, y_{0}\right) \times F\left(y_{0^{\prime}}\right.
$$

$$
\left.x_{0}\right), \alpha\left(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)\right)=\alpha((0,0),(0,0))=1,
$$

$\alpha\left(\left(y_{0}, x_{0)}\left(y_{1}, x_{1}\right)\right)=\alpha((0,0),(0,0))=1\right.$.
It is easy to see that F is modified α-admissible. Obviously F is continuous. Hence by theorem 2.2, F has a coupled fixed point in X^{2}. For example $(0,0)$ is a coupled fixed point of F. Note that coupled fixed point of F is not unique for example $(2,1)$ is a coupled fixed point of F too. In fact for any $x, y \geq 0$ that $x \geq 2 y$ or $y \geq 2 x,(x, y)$ is a coupled fixed point of F.

Corollary 2.3: Let (X, d) be a complete metric space and \leq be an order on X^{2}. Suppose $\psi \in \Psi$ a strictly increasing map and $F: X^{2} \rightarrow$ $C B(X)$ a multifunction such that

$$
H(F(x, y), F(u, v)) \leq \frac{1}{2} \psi(d(x, u)+d(y, v))
$$

for all comparable elements $(x, y),(u, v) \in X^{2}$. Assume that the following assertions hold.
(i) If $(x, y) \in X^{2},(u, v) \in F(x, y) \times F(y, x)$ and $(x, y),(u, v)$ are comparable, then $(u, v),(w, z)$ are comparable, for all $(w, z) \in F(u, v)$ $\times F(v, u)$.
(ii) There exist $\left(x_{o^{\prime}} y_{0}\right) \in X^{2}$ and $\left(x_{1}, y_{1}\right) \in F\left(x_{0}, y_{0}\right) \times F\left(y_{0^{\prime}}, x_{0}\right)$ such
that $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right),\left(\mathrm{x} 1, \mathrm{y}_{1}\right)$ are comparable and $\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right),\left(\mathrm{y}_{1}, \mathrm{x}_{1}\right)$ are comparable.
(iii) Either F is continuous or for any two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X, that $x_{n} \rightarrow x, y_{n} \rightarrow y$ and $\left(x_{n}, y_{n}\right),\left(x_{n+1}, y_{n+1)}\right.$ are comparable for all n, then $\left(x_{n} y_{n}\right),(x, y)$ are comparable for all n.

Then F has a coupled fixed point in X^{2}.
Proof Define α : $X^{2} \times X^{2} \rightarrow[0,+\infty)$ by $\alpha((x, y),(u, v))=1$ if $(x, y),(u, v)$ are com- parable and $\alpha((x, y),(u, v))=0$ otherwise and apply theorem 2.2

Corollary 2.4: Let (X, d) be a complete metric space and \leq be an order on X^{2}. Fix $\left(x^{*}, y^{*}\right) \in X^{2}$. Suppose $\psi \in \Psi$ a strictly increasing map and $F: X^{2} \rightarrow C \quad B(X)$ a multifunction such that $H(F(x, y), F(u, v)) \leq \frac{1}{2} \psi(d(x, u)+d(y, v))$, for all comparable elements $(x$, $y),(u, v) \in X^{2}$ with (x, y). Assume that the following assertions hold.
(i) If $(x, y) \in X^{2},(u, v) \in F(x, y) \times F(y, x)$ and $(x, y),(u, v)$ are comparable with $\left(x^{*}, y^{*}\right)$, then $(u, v),(w, z)$ are comparable with $\left(x^{*}, y^{*}\right)$, for all $(w, z) \in F(u, v) \times F(v, u)$.
(ii) There exist $\left(x_{0^{\prime}}, y_{0}\right) \in X^{2}$ and $\left(x_{1}, y_{1}\right) \in F\left(x_{0,} y_{0}\right) \times F\left(y_{0}, x_{0}\right)$ such that $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$ are comparable with $\left(x^{*}, y^{*}\right)$ and $\left(y_{0}, x_{0}\right),\left(y_{i}, x_{1}\right)$ are comparable with (x^{*}, y^{*}).
(iii) Either F is continuous or for any two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X, that $x_{n} \rightarrow x, y_{n} \rightarrow y$ and $\left(x_{n}, y_{n}\right),\left(x_{n+1}, y_{n+1}\right.$ are comparable with $\left(x^{*}, y^{*}\right)$ for all n , then $\left(x_{n}, y_{n}\right),(x, y)$ are comparable with $\left(x^{*}, y^{*}\right)$ for all n . Then F has a coupled fixed point in X^{2}.

Proof Define α : $X^{2} \times X^{2} \rightarrow[0,+\infty)$ by $\alpha((x, y),(u, v))=1$ if $(x, y),(u$, v) are comparable with $\left(x^{*}, y^{*}\right)$ and $\alpha((x, y),(u, v))=0$ otherwise and apply theorem 2.2.

Corollary 2.5: Let (X, \leq, d) be a partial ordered complete metric space. Suppose $\psi \in \Psi$ a strictly increasing map and $F: X^{2} \rightarrow C B(X)$ a multifunction such that

$$
H(F(x, y), F(u, v)) \leq \frac{1}{2} \psi(d(x, u)+d(y, v)),
$$

for all elements (x, y), ($\mathrm{u}, \mathrm{v}) \in X^{2}$ that $x \geq u$ or $y \geq v$.
Assume that the following assertions hold.
(i) If $(x, y) \in X^{2}(u, v) \in F(x, y) \times F(y, x)$ and $x \geq u$ or $y \geq v$, then u $\geq w$ or $v \geq z$, for all $(w, z) \in F(u, v) \times F(v, u)$.
(ii) There exist $\left(x_{0}, y_{0)} \in X^{2}\right.$ and $\left(x_{1}, y_{1}\right) \in F\left(x_{0,} y_{0}\right) \times F\left(y_{0}, x_{0}\right)$ such that $x_{0} \geq x_{1}$ or $y_{0} \geq y_{1}$.
(iii) Either F is continuous or for any two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X, that $x_{n} \rightarrow x, y_{n} \rightarrow y$ and $x_{n} \geq x_{n+1}$ or $y_{n} \geq y_{n+1}$ for all n, then $x_{n} \geq x$ or $y_{n} \geq y$ for all n.

Then F has a coupled fixed point in X^{2}.
Proof Define $\alpha: X^{2} \times X^{2} \rightarrow[0,+\infty)$ by $\alpha((x, y),(u, v))=1$ if $x \geq u$ or $y \geq v$ are comparable and $\alpha((x, y),(u, v))=0$ otherwise and apply theorem 2.2.

References

1. Alikhani H, Rezapour SH, Shahzad N (2013) Fixed points of a new type contractive mappings and multi functions. To appear in Filomat 27: 1315-1319.
2. Ciric LB (1974) A generalization of Banachs contraction principle. Proc Amer Math Soc 45: 267-273.
3. Jachymski J (2011) Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Analysis 74: 768-774.

Citation: Mohammadi B, Alizade E (2015) Coupled Fixed Points of $\alpha-\Psi$-Contractive Type Multi Functions. J Appl Computat Math 4: 215. doi:10.4172/2168-9679.1000215
4. Mohammadi B, Rezapour SH, Shahzad N (2013) Some results on fixed points of $\alpha-\psi$-Ciric generalized multi functions. Fixed Point Theory Appl 2013:24.
5. Mohammadi B, Dinu S, Rezapour SH (2013) Fixed points of Suzuki type quasicontractions. U.P.B Sci Bull Series A 75: 3-12.
6. Rezapour SH, AsI HJ (2013) A simple method for obtaining coupled fixed points of $\alpha-\psi$-contractive type mappings. Internat J Analysis.
7. Salimi P, Latif A, Hussain $N(2013)$ Modified $\alpha-\Psi$-contractive mappings with applications. Fixed Point Theory Appl 2013:151.
8. Samet B, Vetro C, Vetro P (2012) Fixed point theorems for $\alpha-\psi$-contractive type mappings. Nonlinear Analysis 75: 2154-2165.

[^0]: *Corresponding author: Mohammadi B, Department of Mathematics, Marand Branch, Islamic Azad University, Tehran, Iran, Tel: 9821479111; E-mail: bmohammadi@marandiau.ac.ir

 Received February 18, 2014; Accepted April 25, 2015; Published May 15, 2015
 Citation: Mohammadi B, Alizade E (2015) Coupled Fixed Points of $\alpha-\Psi$ Contractive Type Multi Functions. J Appl Computat Math 4: 215. doi:10.4172/21689679.1000215

 Copyright: © 2015 Mohammadi B, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

