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Introduction
Denote by Ψ the family of non-decreasing functions ψ: [0, +∞) → 

[0, +∞) such that ( )1
 ψ+∞

=
< +∞∑ n

n
t  for all t > 0. It is well known that ψ(t) 

< t for all t > 0.

Definition 1.1: Let (X, d) be a metric space and α: X × X → [0, ∞) 
be a map. We say that X satisfies condition (Cα), if for any sequence {xn} 
in X, that xn → x and α (xn, xn+1) ≥ 1 for all n, then α (xn, x) ≥ 1 for all n.  
Also, we say that the selfmap T on X is α-admissible whenever α(x, y) ≥ 
1 implies α (T x, T y) ≥ 1.

Definition 1.2: Let X is an arbitrary space and α: X2 × X2 → [0, +∞) 
a map.  A mapping F: X2 → X is said to be α-admissible whenever α ((x, 
y), (u, v)) ≥ 1 implies 

   α((F(x, y), F (y, x)), (F (u, v), F (v, u)))  ≥ 1.

Definition 1.3: Let (X, d) be a metric space and α: X2 × X2 → [0, ∞). 
We say that X satisfies condition 

*( )
αC if for any two sequences {xn} and

{yn} in X, that xn → x, yn → y and

α((xn, yn), (xn+1, yn+1)) ≥ 1, α((yn+1, xn+1), (yn, xn)) ≥ 1

For all n, then we have

α((xn, yn), (x, y)) ≥ 1, α((y, x), (yn, xn)) ≥ 1

for all n.

Definition 1.4: Let X is an arbitrary space and F: X 2 → X is a 
mapping. We say that (x∗, y∗) ∈ X2 is a coupled fixed point of F, if we 
have F (x∗, y∗)=x∗ and F (y∗, x∗)=y∗.

In 2011, Samet, Vetro and Vetro have proved the following 
theorem [1].

Theorem 1.1: Let (X, d) be complete a metric space, α: X2 × X2 → [0, 
∞) a function, ψ ∈ Ψ and F: X2 →X an α-admissible mapping such that

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1,  ,  ,   ,  ,   ,    ,    ,  
2

α ψ≤ +x y u v d F x y F u v d x u d y v .

for all (x, y), (u, v) ∈ X2 . Assume that the following assertions hold. 
(i) There exists (x0, y0) ∈ X2 such that

α((x0, y0), (F (x0, y0), F (y0, x0))) ≥ 1,

α((F (y0, x0), F (x0, y0)), (y0, x0)) ≥ 1.

(ii) Either F is continuous or X satisfies condition *( )
αC . Then F has 

a coupled fixed point in X2 .

Let (X, d) be a metric space. Define the metric δ on X2 by δ((x, y), 
(u, v))=d(x, u) + d(y, v), for all (x, y), (u, v) ∈ X2. Also if F: X2 →X then 
put [2].

m((x, y), (u, v))=max{δ((x, y), (u, v)), δ((x, y), (F (x, y), F (y, x))), 
δ((u, v), (F (u, v), F (v, u)))

( ) ( )( ) ( ) ( ), , , ,1 [ ( , , , , , ,( ) ) ( ( ( )))]}
2

,δ δ+x y F u v F v u u v F x y F y x

for all (x, y), (u, v) ∈ X2 . It is easy to see that m((x, y), (u, v))=m((v, u), 
(y, x)). Recently Rezapour and H. Asl have extended theorem 1.1 to 
quasi-contractions as follow [3].

Theorem 1.2: Let (X, d) be a complete metric space, α: X2 × X2 → 
[0, +∞) a function, ψ ∈ Ψ and F: X2 →X an α-admissible mapping such 
that [4]

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )1,  , ,   ,  ,   ,    ,  ,  ,  .
2

α ψ≤x y u v d F x y F u v m x y u v

for all (x, y), (u, v) ∈ X2 . Assume that the following assertions hold. (i) 
There exists (x0, y0)∈X2 such that

α((x0, y0),  (F (x0, y0), F (y0, x0))) ≥ 1,

α((F (y0, x0), F (x0, y0)), (y0, x0)) ≥ 1.

(ii) Either F is continuous or ψ is right upper semi continuous and
X satisfies condition *( )

αC .

 Then F has a coupled fixed point in X2.

Definition 1.5: Let (X, d) be a metric space and F: X2 →X. We say 
that F is orbitally continuous if for any two sequences {xn} and {yn} in X, 
that xn → x, yn → y and xn+1=F (xn,yn), yn+1=F (yn, xn), then F (xn, yn)→F (x, y).

Obviously theorem 1.2 is true if F be orbitally continuous instead of 
continuity. Now we give the following example to show that theorem 
1.2 is a real generalization of theorem 1.1, which is there exist mappings 
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that we can use theorem 1.2, but we can’t use theorem 1.1 for them [5].

Example 1.6: 

Let 1  :  0,  1,  3,  { 9,  ...= =
mM m
n

 and n=3k + 1 (k ≥ 0)}, 

2  :   1,  3,  9,  27, ..{  .= =
mM m
n

and n= 3k + 2 (k ≥ 0)}. Set M=M1 ∪ M2, 

d(x, y)=|x − y| and define F: M2 → M by

( ) 1

2

3 /13   ,  ,
/8         ,  ,

0             
, ∈ ≥

∈ ≥


= 


x x y M x y
x x y M x y

otherwise
F x y                                                      (1)

and α : M2 × M2  → [0, +∞) by

( ) ( ) ( ){ 2 2
1 21  , , ,    , ,

0  .(( ) ), , ,α ∈ ∪ ≥ ≥= x y u v M M x y u v
otherwisex y u v                     (2)                

If (x, y) ∈ M1
2, x ≥ y and (u, v) ∈ M2

2, u ≥ v, then

( ) ( )( ) 3 3 13, , ,
13 8 13 24

= − = −
x u ud F x y F u v x

.

Now we consider two cases. If 13
24

>x u , then we have

3 13 3 13 3 1 12 ( , ( , ))( ) ( ) ( )
13 24 13 24 13 8 2 13 8

− = − ≤ − =
u u u d x F u vx x x .

1 12 ( , y, ( , ), ( , ))) 1 12( ) ( ) m(x, y), (u, v))
2 13 2 2 13

δ
≤ ≤

x F u v F u v .

Hence
1 12( (x, y), ( , )) ( ) m(x, y), (u, v))
2 13

≤d F F u v .

If 13
24

<x u , then

3 13 3 13 3( ) ( )
13 24 13 24 13

− = − ≤ −
u ux x u x

1 6 1 12( ) ( , y), ( , )) ( ) m(x, y), (u, v))
2 13 2 13

δ≤ ≤x u v .

Hence
1 12( (x, y), ( , )) ( ) m(x, y), (u, v))
2 13

≤d F F u v .

If ( ) ( ) 2
1,  , ,  ∈x y u v M , x ≥ y, u ≥ v, then

3 3 3 1 12( (x, y), ( , )) d( , ) ( ) m(x, y), (u, v))
13 13 13 2 13

= − = ≤
x ud F F u v x u .

If ( ) ( ) 2
2,  , ,  ∈x y u v M , then

1 1 12( (x, y), ( , )) d( , ) ( ) m(x, y), (u, v))
8 8 8 2 13

= − = ≤
x ud F F u v x u .

Now put ( ) 12  
13

ψ =
tt , for all t ≥ 0, and then we see that

( ) ( ) ( )( )(( ) ) ( (( ) (1, , , , , ,  , ), , ,))
2

α ψ≤x y u v d F x y F u v m x y u v

for all (x, y), (u, v) ∈ M2 . Also

α((1, 1), (F (1, 1), F (1, 1)))=α((1, 1), (3/13, 3/13))=1, 

α((F (1, 1), F (1, 1)), (1, 1))=α((3/13, 3/13), (1, 1))=1.

To show that F is α-admissible, assume α((x, y), (u, v))  ≥ 1. Then 
( ) ( ) 2 2

1 2,  , ,   ,   ,    x y u v M M x y u v∈ ∪ ≥ ≥ .  Hence either x > y and F (y, 
x)=0 or x=y and F (x, y) F (y, x). However F (x, y) ≥ F (y, x). Similarly 
F (u, v) ≥ F (v, u). On the other hand F (x, y), F (y, x), F (u, v), F (v, u) 
∈ M1.  Hence

α((F (x, y), F (y, x)), (F (u, v), F (v, u)))  ≥ 1.

It is easy to check that F is orbitally continuous. Now by theorem 
1.2 we can say that F has a coupled fixed point in X2.  In fact (0, 0) is a 
coupled fixed point of F [6].

Now, we show that we cannot apply theorem 1.1 in this example. 
To see this put [7]

243 2439,  ,
26 29

= = = =x y u v .  Then

( ) ( ) ( )( ) 27 243 189, , , , , , 0.9
13 26

)
0

(
8

)
2 8

(α = − = =
×

x y u v d F x y F u v .

On the other hand

( ) ( ) ( )( )1 1 1 , , ,( (( ) )) , , ,   
2 2

(| |
2

)ψ δ δ≤ = − + −x y u v x y u v x u y v

1 243 243 7299  9 ) 0.48
2 26 26 1508

− + − = = .

Hence

( ) ( ) ( )( ) 1, , , , , , , , ,(( ) ) ( (( ) ( ) .
2

))α ψ δ>x y u v d F x y F u v x y u v

Let (X, d) be a metric space and C B(X) is the set of all nonempty 
closed bounded subsets  of X, α : X × X →  [0, ∞)  a mapping  and  T : 
X → C B(X) a multifunction. We say that T is α-admissible whenever 
for each x ∈ X and y ∈ T x with α(x, y) ≥ 1 we have α(y, z) ≥ 1 for all 
z∈ Ty ([4]). Recall that T is continuous whenever H (Txn,Tx) → 0 for 
all sequence {xn} in X with xn → x, where H is the  Hausdorff metric on 
CB(X) defined by H (A, B)=max{supx∈A d(x, B), supy∈B d(y, A)}, for all 
A, B ∈ C B(X). Also we say that T is orbitally continuous whenever H 
(Txn, Tx) →0 for all  sequence {xn} in X with xn+1 ∈ Txn  for all n and xn 
→ x. Recently Mohammadi, Rezapour and Shahzad have proved the 
following lemma [8].

Lemma 1.3: ([4]  Let (X, d) be a complete  metric  space, α : X × X →  
[0, ∞)  a function, ψ ∈ Ψ a strictly  increasing  map  and  T : X → C B(X)  
an  α-admissible multifunction such  that  α(x, y)H (Tx, Ty) ≤ ψ(d(x, 
y))  for  all x, y ∈ X and  there exist x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) ≥ 
1.  If T is continuous or X satisfies the condition (Cα), then T has a fixed 
point. Note that if T be orbitally continuous instead of continuity, then 
the lemma1.3 is also true [2].

Main Results
Now, we are ready to state and prove our main results.

Definition 2.1:  Let X is an arbitrary space and α: X2 × X2 → [0, 
+∞) a map. A  multifunction F : X2 → C B(X) is said to be α-admissible 
whenever  if (x, y)  ∈ X2,(u, v) ∈ F(x, y) × F (y, x) and α((x, y), (u, v))  ≥ 
1, α((v, u), (y, x)) ≥  1,  then α((u, v), (w, z)) ≥ 1, α((z, w), (v, u)) ≥ 1, for 
all (w, z) ∈ F(u, v) × F (v, u).

Definition 2.2:  Let (X, d) be a metric space and F: X2 → CB(X) is a 
multifunction. We say that (x∗, y∗) ∈ X2 is a coupled fixed point of F if 
we have x∗∈ F (x∗, y∗∗) and y∗ ∈ F (y∗, x∗).

Theorem 2.1:  Let (X, d) be a complete metric space, α: X2 ×X2 → [0, 
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+∞) a function, ψ ∈ Ψ a strictly increasing map and F: X2 → CB(X) an 
α-admissible multifunction such that [7]

( ) ( ) ( )( ) ( )1, , , , , ,(  , ,
2

( ) ) ( ( ))α ψ≤ +x y u v H F x y F u v d x u d y v .

for all (x, y), (u, v) ∈ X2 . Assume that the following assertions hold.

(i) There exists (x0, y0) ∈ X2 and (x1, y1) ∈ F (x0, y0) × F (y0, x0) such 
that 

( )0 0 1 1 1 1 0 0  , ,  , 1,  ,(( ) ( )) (( ) ) , , 1α α ≥≥x y x y y x y x .

(ii)  Either F is continuous or X satisfies condition (C∗). Then F has 
a coupled fixed point in X2.

Proof Define β: X2 × X2 → [0, +∞)   by

β((ξ1, ξ2), (η1, η2))=min{α((ξ1, ξ2), (η1, η2)), α((η1, η2), (ξ1, ξ2))}               (3)

for all

ξ=(ξ1, ξ2) ∈ X2, η=(η1, η2) ∈ X2. 

Also suppose T: X2 → C B(X2) is defined by T (x, y)=F (x, y) × F 
(y, x). Obviously the metric space (X2, δ) is complete. Now since F is 
α-admissible, it is easy to see that T is β-admissible. Also by assumption

( ) ( ) ( )( ) ( )1, , , , , ,(  , ,
2

( ) ) ( ( ))α ψ≤ +x y u v H F x y F u v d x u d y v ,

( ) ( ) ( )( ) ( )1, y, x , y, x v, y , x .
2

((v, u) ) v,u ( (u ))α ψ≤ +H F F d d

for all (x, y), (u, v) ∈ X2. By adding the above two relations we obtain.

β((x, y), (u, v))[H (F (x, y), F (u, v)) + H (F (v, u), F (y, x))] ≤ ψ(δ((x, 
y), (u, v))).                                (4) 

Assume that Hδ is the Hausdorff metric on (X2, δ). We should show 
that

Hδ(T (x, y), T (u, v)) ≤ H (F (x, y), F (u, v)) + H (F (v, u), F (y, x)).    (5)

For this we have

Hδ (T (x, y), T (u, v))=Hδ (F (x, y) × F (y, x), F (u, v) × F (v, u))

( )
( ) ( )

( )
( ) ( )

1 2

1 2

( ) ( )

( ) ( )

1 2
, , ,

1 2
, , ,

{ ( ( )),  , , , ,

,  , , , .( ( ))}

ξ ξ

η η

δ ξ ξ

δ η η

∈ ×

∈ ×

= ×

×

F x y F y x

F u v F v u

max F u v F v u

F x y F y x

sup

sup

Let (ξ1, ξ2) ∈ F (x, y) × F (y, x). Then

( ) ( ) ( )( )
( )

( ) ( )

( )

( )

( )

1 2

1 2

2

1 2 1 2 1 2
 

, ) , ,  
 

1 1 2 2
 

, ) , ,  
 

1 1 2 2
  

1 ,   ,  
 

( ( )

( ( )

( ) (
 

)

(,  , , , ,  , ,  ,

, ,  .

)

[ ( )

, ,  

]

( )

η η

η η

η η

δ ξ ξ δ ξ ξ η η

ξ η ξ η

ξ η ξ η

∈ ×

∈ ×

∈ ∈

× =

+

=

=

+

F u v F v u

F u v F v u

F u v F v u

F u v F v u

d d

d d

inf

inf

inf inf

( ) ( ) ( ) ( )( )1 2, , , , , , , , , ,( ( ( ( ) ( )).ξ ξ= + ≤ +d F u v d F v u H F x y F u v H F y x F v u

Similarly for (η1, η2) ∈ F (u, v) × F (v, u) we have

δ((η1, η2), F (x, y) × F (y, x)) ≤ H (F (x, y), F (u, v)) + H (F (y, x), F 
(v, u)).

Hence (5) holds. By (4) and (5) we have

β((x, y), (u, v))Hδ (T (x, y), T (u, v)) ≤ ψ(δ((x, y), (u, v))).              (6)

Hence for any ξ=(ξ1, ξ2) ∈X 2, η=(η1, η2) ∈X 2  we have

β(ξ, η)Hδ (Tξ, Tη) ≤ ψ(δ(ξ, η)).

So T: X 2 → C B(X 2) is a β-ψ-contractive multifunction. Put P0=(x0, 
y0), P1=(x1, y1). Then P1 ∈ T P0, β(P0, P1) ≥1. Now let F be continuous. 
We show that T is continuous. To  see  this  let {(xn, yn)} be  a  sequence  
in  X 2 such  that δ((xn, yn), (x, y)) → 0. Then d(xn, x)+d(yn, y) →0 and 
hence d(xn, x) →0, d(yn, y) →0. Now since F is continuous, hence

H (F ( xn, yn), F (x, y)) → 0, H (F (yn, xn), F (y, x)) → 0.

Therefore

Hδ (T (xn, yn), T (x, y)) ≤ H (F (xn, yn), F (x, y)) + H (F (yn, xn), F (y, 
x)) →0.

This shows that T: X 2 →C(X 2) is continuous.

Also if X has *( )
αC condition, it is easy to see that X2 has condition 

Cβ.  Now all of the conditions of lemma 1.3 hold. Hence by the lemma 
there exists (x∗, y∗) ∈ X2 such that (x∗, y∗) ∈ T (x∗, y∗)=F (x∗, y∗) × F (y∗, 
x∗), hence x∗∈F (x∗, y∗), y∗∈ F (y∗, x∗). That is (x∗, y∗) is a coupled fixed 
point of F in X2. Now by using the following simple definitions we want 
to prove another version of theorem 2.1. 

Definition 2.3: Let (X, d) is a metric space and α: X2 × X2 → [0, 
+∞) is a map. A multifunction F: X2 → C B(X) is said to be modified  
α-admissible  whenever  if (x, y) ∈ X2,(u, v) ∈ F (x, y) × F (y, x) and α((x, 
y), (u, v)) ≥ 1, then α((u, v), (w, z)) ≥1, for all (w, z) ∈ F (u, v) × F (v, u).

Definition 2.4: Let (X, d) be a metric space and α: X 2 × X 2 → [0, 
∞). We say that  X satisfies condition ( )*

αB  if for any  two sequences{xn}
and {yn }in X, that xn→  x, yn →  y and α((xn, yn), (xn+1, yn+1)) ≥1  for  all n, 
then we have α((xn, yn), (x, y)) ≥ 1 for all n.

Theorem 2.2: Let (X, d) be a complete metric space, α: X2 × X2 → [0, 
+∞) a function, ψ ∈ Ψ a strictly increasing map and F: X 2 → C B(X) a 
modified  α- admissible multifunction such that

( ) ( ) ( )( ) ( )1, , , , , ,  , , .
2

(( ) ) ( ( ))α ψ≤ +x y u v H F x y F u v d x u d y v

For all (x, y), (u, v) ∈ X 2. Assume that the following assertions hold.

(i) There exist (x0, y0) ∈ X 2 and (x1, y1) ∈ F (x0, y0) × F (y0, x0) such 
that

Α((x0, y0), (x1, y1)) ≥ 1,  α((y0, x0), (y1, x1)) ≥ 1.

(ii) Either F is continuous or X satisfies condition ( )*

αB .

Then F has a coupled fixed point in X 2.

Proof Define β: X2 × X2 → [0, +∞) by

β((ξ1, ξ2), (η1, η2))=min{α((ξ1, ξ2), (η1, η2)), α((ξ2, ξ1), (η2, η1))}  (7)

for all

( ) ( )2 2
1 2 1 2,  , ,   ξ ξ ξ η η η= ∈ = ∈X X  

The remain of proof is completely similar to proof of theorem 2.1

Example 2.5: Let X be the space of real numbers with the usual 
metric d(x, y)=|x − y| and define F: X 2 → C B(X) by 

( )
0,

3
{0},

−  ≥  
<

= 


x y x y

x yF x y                                            (8)

Also define α: X2 × X2 → [0, +∞) by 
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( ) {1 ,
0, , ,(( ) )α ≥ ≥= x y u v

otherwisex y u v                                  (9)

If (x, y), (u, v) ∈ X 2 and x ≥ y, u ≥ v, then

( ) ( )( ), , , ([0, ], [0, ])
3 3
− −

=
x y u vH F x y F u v H

( )1 1 2 ( )| | )(d(x,u) + d(y,v
3

)
3 2

)= − − − ≤x y u v .

Now put ( ) 2  
3

ψ =
tt . We see that

( ) ( ) ( )( ) ( )1, , , , , ,  , , .
2

(( ) ) ( ( ))α ψ≤ +x y u v H F x y F u v d x u d y v

Also for (x0, y0)=(1, 1), (x1, y1)=(0, 0) we have 

F (x0, y0)=F (y0, x0)={0}, (x1, y1)=(0, 0) ∈ {(0, 0)}=F (x0, y0) × F(y0, x0),

α((x0, y0), (x1, y1))=α((1, 1), (0, 0))=1,

α((y0, x0), (y1, x1))=α((1, 1), (0, 0))=1.

Now let (x, y) ∈ X 2, (u, v) ∈ F (x, y) × F (y, x) and α((x, y), (u, v))  
≥ 1. Then x ≥ y, u ≥ v. Hence F(v, u)={0}. Now if (w, z) ∈ F (u, v)×  F 
(v, u), then w ≥ 0=z. Therefore α((u, v), (w, z)) ≥ 1.This  shows that F is 
modified α-admissible. It is easy to see that F is continuous. Hence by 
theorem 2.2, F has a coupled fixed point in X 2. For example (0,0) is a 
coupled fixed point  of F .

Example 2.6: Let X be the space of real numbers with the usual 
metric d(x, y)=|x − y| and define F: X 2 → C B(X) by F (x, y)=[0, 2|x − y|] 
for all x, y ∈ X . Also define α: X 2× X 2 →[0, ∞)  by

( )
( ) ( )

x = y = u = v 

1 , , , 0,0,0,0
8

1 = 0(( ), ), ,α
≠= 



x y u v
x y u v

Now put ( )  
2

ψ =
tt . We see that

( ) ( ) ( )( ) ( )1, , , , , ,  , , .
2

(( ) ) ( ( ))α ψ≤ +x y u v H F x y F u v d x u d y v

Also for (x0, y0)=(x1, y1)=(0, 0) we have

F (x0, y0)=F (y0, x0)={0}, (x1, y1)=(0, 0) ∈ {(0, 0)}=F (x0, y0) × F (y0, 

x0), α((x0, y0), (x1, y1))=α((0, 0), (0, 0))=1,

α((y0, x0), (y1, x1))=α((0, 0), (0, 0))=1.

It is easy to see that F is modified α-admissible. Obviously F is 
continuous. Hence by theorem 2.2, F has a coupled fixed point in X 2. 
For example (0,0) is a coupled fixed point of F. Note that coupled fixed 
point of F is not unique for example (2, 1) is a coupled fixed point  of 
F  too. In fact for any x, y ≥ 0 that x ≥ 2y or y ≥ 2x,(x, y) is a coupled 
fixed point of F.

Corollary 2.3: Let (X, d) be a complete metric space and ⪯ be an 
order on X 2. Suppose ψ  ∈  Ψ a strictly  increasing  map  and  F : X 2 → 
C B(X)  a multifunction such  that 

( ) ( )( ) ( ) ( )( )1, , ,   , , , 
2
ψ≤ +H F x y F u v d x u d y v

for all comparable elements (x, y), (u, v) ∈ X2 . Assume that the 
following assertions hold.

(i) If (x, y) ∈ X 2,(u, v)  ∈  F (x, y) × F (y, x) and  (x, y), (u, v) are 
comparable, then (u, v), (w, z) are comparable,  for all (w, z) ∈ F (u, v) 
× F (v, u).

(ii) There exist (x0, y0) ∈ X 2  and (x1, y1) ∈ F (x0, y0)×F (y0, x0) such 

that (x0, y0), (x1, y1) are comparable and (y0, x0), (y1, x1) are comparable.

(iii)  Either F is continuous or for any two sequences {xn} and {yn} in 
X, that xn→x, yn → y and (xn, yn), (xn+1, yn+1) are comparable for all n, then 
(xn, yn), (x, y) are  comparable for all n.

Then F has a coupled fixed point in X2.

Proof Define α: X2 × X2 → [0, +∞) by α((x, y), (u, v))=1 if (x, y), (u, v) 
are com- parable and α((x,y), (u, v))=0 otherwise  and apply  theorem  2.2

Corollary 2.4: Let (X, d) be a complete metric space and 
⪯ be an order on X2. Fix (x∗, y∗) ∈ X2.  Suppose ψ ∈ Ψ a strictly 
increasing map and F: X2→C B(X) a multifunction such that 

( ) ( )( ) ( ) ( )( )1, , , , , ,
2
ψ≤ +H F x y F u v d x u d y v  for all comparable elements (x, 

y), (u, v)∈ X2 with (x, y). Assume that the following assertions hold.

(i)  If (x, y) ∈ X2,(u, v) ∈ F (x, y) × F (y, x) and  (x, y), (u, v)  are  
comparable  with (x∗, y∗), then (u, v), (w, z) are  comparable with (x∗, y∗),  
for all (w, z) ∈ F (u, v) ×F (v, u).

(ii) There exist (x0, y0) ∈ X2  and (x1, y1) ∈ F (x0, y0)×F (y0, x0) such 
that (x0, y0), (x1, y1) are comparable with (x∗, y∗) and (y0, x0), (y1, x1) are 
comparable with (x∗, y∗).

(iii) Either F is continuous or for any two sequences {xn } and {yn}in  
X, that xn→x, yn→y and (xn, yn), (xn+1, yn+1) are comparable with (x∗, y∗) for 
all n, then (xn, yn), (x, y) are comparable with (x∗, y∗) for all n.Then F has 
a coupled fixed point in X2.

Proof Define α: X2 × X2 → [0, +∞) by α((x, y), (u, v))=1 if (x, y), (u, 
v) are comparable  with (x∗,y∗) and α((x, y), (u, v))=0 otherwise  and 
apply  theorem  2.2.

Corollary 2.5: Let (X, ⪯, d) be a partial ordered complete metric 
space. Suppose ψ∈ Ψ a strictly increasing map and F: X 2 →C B(X) a 
multifunction such that

 ( ) ( )( ) ( ) ( )( )1, , ,  , ,
2
ψ≤ +H F x y F u v d x u d y v , 

for all elements (x, y), (u, v) ∈ X2 that x ≥ u or y ≥ v. 

Assume that the following assertions hold.

(i) If (x, y) ∈ X2,(u, v) ∈ F (x, y) × F (y, x) and x ≥ u or y ≥ v, then u 
≥ w or v ≥ z, for all (w, z) ∈ F (u, v) × F (v, u).

(ii) There exist (x0, y0) ∈ X 2 and (x1, y1) ∈ F (x0, y0) × F (y0, x0) such 
that x0 ≥ x1 or y0  ≥ y1.

(iii) Either F is continuous or for any two sequences {xn } and {yn}
in  X, that xn→x, yn→y and xn ≥ xn+1 or yn ≥ yn+1 for all n, then xn ≥ x or 
yn ≥ y for all n.

Then F has a coupled fixed point in X2.

Proof Define α: X2 × X2 → [0, +∞)  by α((x, y), (u, v))=1 if x ≥ u 
or y ≥ v are comparable  and α((x, y), (u, v))=0 otherwise  and apply  
theorem  2.2.
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