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Most bioactive molecules (like anticancers, antitumors, antibiotics, 
immunosuppressants, insecticidals, antivirals, herbicidals, antifungals) 
with valuable industrial and market value are naturally produced by 
actinomycetes [1-4], Gram-positive filamentous bacteria widespread in 
both terrestrial and aquatic environments [5,6]. Out of thousands of 
bioactive molecules, also known as secondary metabolites since they are 
not essential for actinomycete growth in standard laboratory condition 
at least, more than 50% are synthesised by strains of Streptomyces genus 
[4]. Despite the cellular and ecological role of secondary metabolites 
is still debated [3,7], microbial fermentation is widely exploited to 
produce these compounds at industrial level. Although they have many 
different activities and range within a vast chemical complexity and 
diversity, there are two main common issues which could be addressed 
for the establishment of a cost-effective microbial fermentation process:

1) bioactive production is strictly coordinated with a complex
physiological differentiation program, as it has been extensively 
demonstrated in Streptomyces coelicolor, the model strain of this group 
of bacteria [8,9].

2) under typical laboratory conditions bioactive molecule yield is
usually low-level or null at all in some cases.

Thus, the development of a robust and economically feasible 
production process for secondary metabolites implies the study of strain 
physiology combined with a detailed knowledge of the production 
process and its scalability to industrial level. Anyhow, each actinomycete 
species requires its own optimised fermentation conditions to obtain 
high production titre of any specific secondary metabolite. Therefore, 
there are few general strategies and basic guidelines which could 
lead to yield improvement. At the industrial level most efforts for the 
development of an efficient fermentation process have been principally 
done in medium composition optimization by using time-consuming 
empirical trials. Effective computational and statistical approaches were 
recently used as predictive methods which could replace traditional 
one-factor-at-a-time technique used for optimizing actinomycete 
growth conditions [10,11]. Anyhow, these approaches could take 
further advantages from a more comprehensive understanding of 
strain physiology. On the other hand, generations of high yielding 
strains through, i) combination of random chemical mutagenesis and 
recombination [12-14], ii) expression of secondary metabolite genes in 
heterologous hosts [15,16] and iii) spontaneous mutations and antibiotic 
resistance selection [17-19] are well documented too. However, with 
the advent of “omics” technologies a change in strategy happens, since 
the chance of managing huge amount of molecular insights on strain 
physiology, gene expression and biochemical capabilities introduced 
new perspectives as never before [20].

In particular, although proteomics is characterized by expensive 
and multi-step labour-intensive techniques it is actually the most 
powerful “omics” tool (Table 1), since it can give answers to more 
than one biological question [21,22], such as: gene expression (which 
and how much gene product is present and presumably works); 
protein regulation and turn-over (covalent modification occurrence 
and degradation); interacting partners (multi protein complexes); 

topological distribution (cytoplasm, membrane localization). Besides 
that, the functional clusterization of proteins (according to metabolic 
pathway databases) can give a clear picture of which biochemical 
pathways and cellular processes happen or are necessary as cellular 
response during a particular condition, growth stage or perturbation. 
In other words, proteomics can give an account of which molecular 
strategy can be performed by organisms, cells or tissues during a 
specific physiological need. Thus the study at the proteome level 
of changes occurring in actinomycetes between unproductive 
growth stages (or growth conditions) and those in which secondary 
metabolism production is switched on can reveal [23-25]: molecular 
event(s) or metabolic signal(s) triggering or stopping bioactive 
molecule production; relationships between primary metabolite supply 
and bioactive molecule biosynthesis; hierarchical cascade of regulatory 
effectors controlling secondary metabolism biosynthetic genes 
(including resistance mechanisms in the case of antibiotic production). 
Knowledge gained from proteomics can be then used as background 
to drive rational approaches for growth condition modifications (i. e. 
changes in medium composition, oxygen supply and pH) and/or strain 
improvement (engineering of targeted regulatory, metabolic, stress 
response and biosynthetic genes) 

Due to the vast range of scientific aspects that could arise especially 
when working on rare actinomycetes, a multidisciplinary approach is 
often required to have good chances of success in getting significant 
results in terms of improved production at the industrial level. The 
establishment of “omics” (genome sequencing is necessary and 
metabolomics is complimentary to proteomics) and also classical 
molecular genetic tools (i.e. transformation protocols), cultivation 
protocols (mycelium storage, growth parameters, medium recipes), end-
product recovery and process scaling-up are all examples of the variety 
and complexity of matters that have to be managed and integrated. 
Thus, scientific consortia, made by companies, like Small or Medium 
Enterprise (SME) and academic research laboratories, can successfully 
address many of these scientific problems. As an example, the LAPTOP 
scientific project (http://www.jic.ac.uk/laptop/), financed by EU from 
July 2010 to June 2013, combined the experiences and expertises from 
SMEs and academy research laboratories with the aim to develop 
a production process for the lantibiotic NAI-107, a new promising 
antibiotic with the potential to treat life-threatening infections caused 
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by multi-drug resistant Gram-positive pathogens [26,27]. NAI-107 is 
produced by fermentation of the actinomycete Microbispora sp. Since 
no lantibiotics are industrially produced as drugs for human use and 
there are no examples of industrial use of Microbispora genus, delivering 
a high quantity of high quality compound is extremely challenging. By 
means of proteomics many basic physiological aspects of Microbispora 
sp. growth and NAI-107 production were elucidated and, in just 
three years, this collaborative project produced enough knowledge 
and genetic tools that can lead to an efficient production process by 
generating and utilizing high producing strains, improved production 
media coupled with an efficient recovery process.

Thus, such similar combined and cooperative strategies may 
become standard models for industrial development based on modern 
molecular genetic tools and classical actinomycete fermentation 
techniques.
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“omics” tool Advantages Disadvantages

Genomics Qualitative. Relatively cheap; in silico predictive models may be generated 
concerning strain biochemistry and metabolic pathways. No information about gene expression and regulation thereof.

Transcriptomics
Quantitative and qualitative. Relatively cheap. Number of genes to be 

analysed  may include all the predicted ORFs or  just a restricted number 
of them.

Genome sequence must be available. Abundance levels may be 
misinterpreted due to post-transcriptional regulatory events.

Proteomics Quantitative and qualitative information. Analysis of post-translational 
regulatory event(s). Topological distribution insights. Interaction study.

Genome sequence must be available. Labour-intensive. Expensive. 
Not the whole protein complement can be analysed. Set-up and 

optimization of procedures are often required.

Metabolomics Quantitative and qualitative information. Detection of end-products of 
cellular processes.

Labour-intensive. Expensive. Not the whole metabolite complement 
can be analysed.

Table 1: Comparison between different “omics”.
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