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Introduction
Wound healing involves integrated phases including haemostasis, 

inflammation and proliferation and remodelling. It should progress in 
a coordinated manner and requires the presence of various biological 
mediators and growth factors [1-7]. Disruption of this coordination 
results in abnormal healing; persistence inflammatory phase causes 
chronic wound [8] and persistence of remodelling phase causes 
excessive scarring [9]. Moreover, sustained release of cytokines results 
in continued cell proliferation and tissue remodelling [10] leading to 
keloid formation, one of the major abnormity of wound healing [11,12].

Keloid research showed significant progress in the last few years [13-
16] but there is still deficit in the literature regarding the mechanisms
behind keloid development, recurrence and limited effective therapy.
The available research data are mostly from in vitro studies and this
often fails to represent in vivo pathophysiology. There is discrepancy
in keloid research data, this is attributed to the fact that cells in vitro
behave differently. In vitro studies demonstrate that keloid fibroblasts
have the ability to express the alpha smooth muscle actin characteristic 
of myofibroblast [17], even though they do not express it in vivo and it
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Abstract
Keloid disease is a benign but progressive form of abnormal wound healing associated with skin fibrosis and 

can cause a major functional disability and morbidity. TGF beta (TGFβ) and Nitric Oxide (NO) are active biomarkers 
known to regulate phases of wound healing and have been implicated in pathogenesis of fibrotic disease. There 
are three isoforms of TGFβ (1, 2 and 3) TGFβ1 and 3 have a crucial role in fibrosis, with TGFβ1 profibrotic and 
TGFβ3 antifibrotic. NO is produced by Nitric Oxide Synthase (NOS) which exist in three isoforms, inducible NOS 
(iNOS), endothelial NOS (ecNOS) and neuronal NOS (nNOS). TGFβ isoforms and NO were found to be associated 
with fibrotic disorders affecting the skin. We hypothesis that the interaction between TGFβ and NO in keloid could 
promote the excessive collagen deposition associated with this disorder.

Using immunohistochemistry, we investigated the profile of TGFβ isoforms (TGFβ1, 3) and NOS isoforms 
(iNOS and ecNOS) in keloid tissues and normal human skin. The cellular distribution of all the isoforms were 
studied and the protein levels were assessed by using H-Scoring and Image J Scoring systems.

TGFβ1 showed wide cellular distribution in keloid both in the epidermal and dermal cells. There was significant 
upregulation (P<0.0001) by comparison to normal skin. TGFβ3 showed limited expression in keloid and there was 
significant downregulation (P<0.03). iNOS and ecNOS showed significant upregulation in keloid by comparison 
to normal skin (P<0.01 and P<0.02) respectively. Interestingly, iNOS was expressed in the basal epidermal layer 
and in dermal connective tissue cells while ecNOS was solely expressed in vascular endothelial lining. Although 
it is documented that TGFβ has a negative feedback effect on iNOS, we have shown co-upregulation of TGFβ1 
and iNOS in keloids. Thus, in keloid NO is as important as the profibrotic growth factor TGFβ1 and both could be 
working in coordination. Moreover, the lack of effective therapy for keloid could be because most of the therapeutic 
regimen target one factor whiles the other still in action. In conclusion, understanding the actions of TGFβ and NOS 
in keloid disease could lead to the development of clinically useful combined anti-fibrotic agents.

has been suggested that this suppression is due to local factors found 
in vivo [17]. Moreover, keloid fibroblasts have been shown to produce 
the same amount of TGFβ as normal fibroblasts [18] although in vivo 
studies showed upregulation of TGFβ in keloid [19]. Interestingly, 
it has been found that keloid tissue does not survive transplantation 
[20] supporting the notion that keloids are a local phenomenon under
control of several interacting bioactive molecules of which TGFβ and
NO are crucial.

TGFβ and NOS isoforms are known biomarkers implicated in 
pathogenesis of scarring and are of therapeutic importance in fibrotic 
conditions [21,22]. TGFβ1 and 3 have different biological activities 
in wound healing. TGFβ1 promotes fibrosis and scar formation [23-
26] whereas TGFβ3 has been shown to be either scar inducing [27] or
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reducing [28] depending on the study. Due to its profibrotic activity, 
TGFβ1 was proposed to have a major role in pathogenesis of keloid. 
TGFβ isoform expression was studied in keloids and showed increased 
TGFβ1 with no changes in TGFβ3 expression, relative to normal 
[23,24].

NO is generated by nitric oxide synthase [NOS] [29]. NOS present 
in three isoforms; inducible NOS, [iNOS] and endothelial [ecNOS] and 
neuronal NOS [nNOS] [18]. NO plays important role in wound healing 
[17] through enhancing collagen synthesis [30] and epithelialization 
[31] and could affect the fate of wound healing causing abnormal 
healing. Our previous research showed upregulation of NO during 
the inflammatory stage of normal wound healing but not remodelling 
stage [32] and showed persistence upregulation in chronic wound [8].

The relative balance of iNOS and its control by TGFβ are critically 
important in wound healing. TGFβ has been shown to suppress iNOS 
expression [33-35] and anti-TGFβ antibody has been shown to block 
the suppression of iNOS in the vasculature [36]. Moreover, in an 
endotoxin model of septic shock, TGFβ1 treatment markedly reduced 
iNOS mRNA in several organs and blocked the lipopolysaccharide-
induced hypotension [37]. TGFβ and NOS isoforms have been 
extensively studied in wound healing. But, to the best of our knowledge 
the interrelation between these mediators was overlooked in keloid due 
to lack of the keloid animal model and the difficulty getting human 
keloid samples.

Materials and Methods
Specimens

Keloid specimens (14 samples) were retrieved from the archives of 
Histopathology Lab from Department of Histology and Department 
of Pathology, Minia Faculty of Medicine. They were obtained from 
randomly selected patients who underwent surgical excision of keloids 
in the department of surgery, Minia Faculty of Medicine during the 
period from 2006-2011. Normal human skin specimens (9 samples) 
were obtained during routine surgery when excision of skin was 
required in the surgical procedure or from the edge of the surgical 
incision.

Immunohistochemical staining

Immunohistochemical staining was performed according to 
a previously published protocol [8]. Sections were deparaffinized, 
hydrated then washed in 0.1 M phosphate buffer saline (PBS). 
Sections were then treated with trypsin 0.01% for 10 minutes at 37°C 
then washed with PBS for 5 minutes. Endogenous peroxidases were 
quenched by treatment with 0.5% H2O2 in methanol and non-specific 
binding was blocked in normal goat serum diluted 1:50 in 0.1 M PBS. 
Sections were incubated in the diluted primary antibody of interest 
overnight at 4°C. Sections were washed and incubated in biotinylated 
goat anti-rabbit secondary antibody (Vector laboratory1:2000) for 
30 minutes. The substrate, diaminobenzidine tetrahydrochloride 
in distilled water (Sigma, Poole, UK), was added for the appropriate 
period (5-10 min). Positive cells were labelled brown. For the negative 
control, primary antiserum was replaced with normal serum of the 
host species of the secondary antibody. Specimens were viewed using 
a Leica DRRB microscope and images were captured using a Spot RT 
Slider digital camera (Image Solutions) using Spot RT software run 
on a PC. The antibodies used were: Monoclonal mouse anti-human 
ecNOS ([1:400, Transduction laboratories], polyclonal rabbit anti-
human iNOS (1:1000 Transduction laboratories), polyclonal rabbit 

anti-TGFβ1 (1:500 ABCAM) and polyclonal rabbit anti-TGFβ3 (1:200 
ABCAM).

Double immunofluorescence

Immunohistochemical staining was performed according to 
a previously published protocol [38]. Sections were prepared and 
incubated with antibody to iNOS (1:1000) for 1 hour at room 
temperature. Then, they were washed and incubated for a further 30 
minutes with TRITC a conjugated goat anti-rabbit secondary antibody 
diluted 1:200 in TBS. Sections were incubated with an antibody to 
ecNOS (1:400) for 1 hour at room temperature. Then, they were washed 
and incubated with FITC conjugated goat anti-mouse secondary 
antibody 1:100 in TBS for 30 minutes at room temperature. Sections 
were then mounted in polyvinyl alcohol. Viewed using the Leica 
DMRB microscope operating in fluorescence mode with appropriate 
filter sets and images were captured as above.

TGFβ1 and 3 assessment using H-Score

H Score is a semi-quantitative method used for assessing 
immunoreactivity on immunoperoxidase stained sections. It assesses 
both the density of the staining and the surface is covered by the 
staining. Sections were scored in the field of a 20x objective using bright 
field microscopy. TGFβ1 and 3 immunoreactivities were assessed in 10 
adjacent areas from each section. In each case 6 sections were scored 
and the distance between sections were 150 µ. Staining intensity was 
assessed as; strong [3], medium (2), weak (1) and none (0) over the 
percentage area of each staining intensity. H scores were calculated by 
multiplying the percentage area by the intensity grade (H score range 
0-300). Each section was assessed by two histologist scorers and a 
consensus agreed. Dr. Abd El-Aleem was trained on using H scoring 
by DR Abed M Zaitoun a consultant pathologist at the University of 
Nottingham, Department of Cellular Pathology.

iNOS and ecNOS assessment using Image J software

Image J software (developed at US National Institutes of Health 
and available on the Internet at http://rsb.info.nih.gov/nih-image/) was 
used to assess the immunoreactivity on immunofluorescence stained 
slides. iNOS and ecNOS were assessed by measuring the surface area 
covered by the positive staining. Assessment was done in 10 adjacent 
areas from each section. In each case 6 sections were scored and the 
distance between sections were 150 µ. The analysis is automated and 
was performed by the software. Before starting the analysis, the setting 
was adjusted on a test image and the same setting parameters were 
used throughout the whole experiment on all images from normal 
and keloid tissues. Figure 1 demonstrates the method of assessing 
and scoring the staining. Briefly, image (Original) was imported to 
image J and then converted to adjust the colour threshold to pick 
only the immunostaining and exclude any other staining. The selected 
structures were outlined, counted and the total surface area of the 
immunoreactivity was calculated. The result from the assessed images 
showing the measurements of the immunoreactivity were exported to 
an excel sheet to be processed for statistical analysis.

Statistics
Statistical analyses were performed using IBM SPSS statistical 

package. Results were expressed as the mean+SEM. The Mann-
Whitney U-test was used, with P<0.05 being considered as statistically 
significant.

https://www.researchgate.net/profile/Abed_Zaitoun
https://www.researchgate.net/institution/University_of_Nottingham
https://www.researchgate.net/institution/University_of_Nottingham
http://rsb.info.nih.gov/nih-image/
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Results
Upregulation of TGFβ1 in keloid tissues by comparison to 
normal human skin

TGFβ1 was expressed in the normal human skin (Figure 2A) and in 
keloid tissues (Figure 2B) both in the dermis and epidermis. In normal 
human skin immunoreactivity density was mild to moderate and was 
in few dermal connective tissue cells, perivascular cells and vascular 
endothelial lining (Figure 2A-2C). In keloid tissues, immunoreactivity 
was dense and widely distributed in the dermis (Figure 2D-2F). The 
main cellular source was keratinocytes (Figure 2D) in the epidermis. 
In the dermis, TGFβ1 was expressed in various dermal structures 
including sebaceous glands (Figure 2D), inflammatory cell infiltrate 
(Figure 2E), blood cells and vascular endothelial lining (Figure 2F). 
TGFβ1 was expressed both in the cytoplasm and nuclei. H scoring 
showed significant (P<0.0001) upregulation of TGFβ1 in keloid tissues 
by comparison to normal human skin (Figure 3).

Downregulation of TGFβ3 keloid tissues by comparison to 
normal human skin

TGFβ3 was expressed in normal human skin (Figure 4A) and 
keloid tissues (Figure 4C); the immunoreactivity was almost the same 
density. In normal human skin (Figure 4A and 4B) and keloid (Figure 
4C-4E), immunoreactivity was seen in the epidermis, dermal blood 
vessels and dermal connective tissue cells. Interestingly, in keloid, 
connective tissue cells showed characteristic cellular localisation 
limited to the submembranal cytoplasmic compartment with depletion 
from the perinuclear cytoplasmic compartment (Figure 4E). H scoring 
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Figure 1: Photomicrograph demonstrating image J analysis of 
immunofluorescence staining: 1) iNOS in normal human skin. 2) iNOS in keloid 
tissues. 3) ecNOS in keloid tissues. A-C) Original images before processing 
D-F) Converted images, immunoreactive structures were converted to a distinct 
colour (white) that the software can score with exclusion of other staining. (G–I) 
Showing the software scored the specific staining (immunoreactivity=outlined 
structures) only with exclusion of any other staining.
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Figure 2: Immunoperoxidase showing expression of TGF-beta 1 in normal 
human skin (A-C) and keloid (D-F): A) Weak TGF-beta 1 immunoreactivity is 
seen both in the epidermis and dermis of normal skin. B) Higher magnification 
showing weak TGF-beta 1 in few dermal cells (arrows). C) Dermal blood 
vessels showing weak TGF-beta 1 immunoreactivity in endothelial lining and few 
perivascular cells. D) Keloid tissues showing dense TGF-beta 1 immunoreactivity 
in the epidermis and dermis in sebaceous glands (arrows). E) Higher magnification 
showing dense TGF-beta 1 immunoreactivity in the infiltrating inflammatory cells in 
the dermis. F) Keloid dermal blood vessels showing dense immunoreactivity in the 
vascular endothelial lining and in blood monocytes. Scale bars: A=200 µm, B=100 
µm, C=50 µm, D=400 µm, E=50 µm, F=20 µm.
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Figure 3: Graphs showing  H-Scoring of TGF-beta1 in normal human skin and 
keloid tissues. There is significant (P<0.0001) upregulation of TGF-beta1 in 
keloid tissues by comparison to normal human skin.
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showed significant (P<0.03) downregulation of TGFβ3 in keloid tissues 
by comparison to normal human skin (Figure 5).

Upregulation of iNOS and ecNOS in keloid by comparison to 
normal skin

iNOS was expressed in normal human skin and keloid tissues (Figure 
6). In normal human skin, the expression was mainly in the dermal 
connective tissue cells (Figure 6A and 6B). In keloid, the expression 
was in the dermal connective tissue cells and in the basal epidermal 
layer (Figure 6C and 6D). By running double immunofluorescence to 
colocalise iNOS and ecNOS, we have shown that in normal skin iNOS 
is expressed mainly in the dermis, in connective tissue cells and blood 
cells most probably blood monocytes and that ecNOS is expressed solely 
in vascular endothelial lining (Figure 6C). However, in keloid iNOS 
was expressed both in the epidermis and in the dermis (Figure 7A-7C). 
Double immunofluorescent showed that most of the connective tissue 
cells which express iNOS are macrophages (Figure 7D-7F). Assessment 
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Figure 4: Immunostaining showing expression of TGF-beta 3 in normal skin 
(A, B) and keloid (C-E): A) Normal skin showing TGF-beta 3 expression in the 
dermis, mainly in vascular endothelial cells. B) TGF-beta 3 is seen in dermal 
cells. C) Keloid showing TGF-beta 3 in epidermis and dermis. E-G) Higher 
magnification showing TGF-beta 3 depletion from dermal cells. E) A composite 
image showing the depletion of TGF-beta3 immunoreactivity in keloid. TGF-
beta3 immunoreactivity is seen in keloid dermal connective tissue cells. 
Immunoreactivity is seen mainly in macrophage and fibroblast like cells and it is 
limited to the submembranal cytoplasmic compartment. Scale bars: A=200 µm, 
B, D=100 µm, C=200 µm, F=20 µm.
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Figure 5: Graphs showing H-Scoring of TGF-beta3 in normal human skin and 
keloid tissues. There is significant (P<0.03) downregulation of TGF-beta1 in 
keloid tissues by comparison to normal human skin.
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Figure 6A-6D: Immunofluorescence staining showing colocalization of iNOS 
(red) and ecNOS (green) in normal human skin: A) iNOS immunoreactivity is 
seen in few connective tissue cells in the dermis (arrows). B) Merged iNOS 
and ecNOS images showing ecNOS (green) in few dermal blood vessels 
(double arrows) and iNOS immunoreactive cells are located within or nearby 
blood vessels (arrows). Nuclei are counterstained with DAPI (blue). C) 
Immunofluorescence staining of keloid showing iNOS expression in the basal 
layer of the epidermis and in few connective tissue cells in the dermis. D) 
Immunoperoxidase showing dense iNOS immunoreactivity in the basal layer of 
the epidermis and in connective tissue cells in the dermis. Scale bars: A, B=400 
µm, C=100 µm, D=200 µm.
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of immunoreactivity showed significant upregulation of iNOS and 
ecNOS (P<0.01 and P<0.02 respectively) in keloid by comparison to 
normal human skin (Figure 8).

Discussion
Keloid is an abnormal tissue repair following trauma to the skin. 

This disorder is unique to humans and there are no animal models. 
Keloid is characterised by several lesional features including excessive 
collagen deposition [39-41], lack of fibroblast-myofibroblast transition, 
thickening of the epidermis and high vascularity. In this study, we 
demonstrated upregulation of TGFβ-1 and NO producing enzymes 
[iNOS and ecNOS] in keloid by comparison to normal human skin. 
Here we introduce biological interpretation of these features in relation 
to our results:

TGFβ upregulation and its role in excessive collagen 
deposition in keloid

We demonstrated high levels of TGFβ1 but low levels of TGFβ3 
in keloid tissues, this upregulation could account for the excessive 
collagen deposition in keloid. It is well documented that TGFβ isoforms 
regulate collagen synthesises and turnover [42-45] and they have been 
postulated in pathogenesis of fibrotic disorders [46]. TGFβ1 has a 

profibrotic activity and TGFβ3 has antifibrotic effect [28]. Our result is in 
line with this, as we have shown upregulation of the profibrotic TGFβ1 and 
downregulation of the antifibrotic TGFβ3. The profibrotic activity of TGFβ 
1 could be due to its ability to induce matrix deposition and production of 
protease inhibitors, which inhibit the enzymatic breakdown of collagen 
[47]. We have shown expression of TGFβ1 in endothelial cells, this in turn 
could activate the adjacent fibroblasts to produce high levels of TGFβ1 and 
collagen [42]. Therefore, it was suggested that the way for treatment of 
fibrotic conditions is either by blocking the effects of the profibrotic 
TGFβ1 or administration of the antifibrotic TGFβ3 [28]. Our in vivo 
results in this study support this suggestion.

NO upregulation and its role in excess collagen deposition in 
keloid

We demonstrated upregulation of iNOS and ecNOS in keloid 
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Figure 7A-7F: Double immunofluorescent showing iNOS (A) ecNOS (B) and 
merged image iNOS/ecNOS (C) in keloid tissues: A) iNOS (red) is seen in the 
basal layer of the epidermis and in few connective tissue cells in the dermis. 
B) ecNOS (green) is seen in blood vessels in the dermis. C) Merged image 
of image A and B showing iNOS (red) and ecNOS (green) colocalization, 
with nuclei counterstained with DAPI (blue) showing iNOS in epidermis and 
ecNOS in dermal blood vessels. D-E) Double immunofluorescent of iNOS (D), 
CD68 macrophage marker (E) and merged image iNOS/CD68 (F) in keloid 
tissues. A) iNOS (red) is seen in inflammatory cells infiltrating keloid. E) On the 
same section, macrophages are seen labelled with CD68 (Green). F) Merged 
image showing that most of the connective tissue cells expression iNOS are 
macrophages (orange). Scale bars: A-C=400 µm, D-F=20 µm.
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Figure 8: Graphs showing Image J scoring of iNOS and ecNOS in normal 
human skin and keloid tissues. There is significant upregulation of iNOS and 
ecNOS (P<0.01 and P<0.02 respectively) in keloid tissues by comparison to 
normal human skin.
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tissues by comparison to the normal human skin; both enzymes are 
contributing to the high NO production in keloids. High NO levels could 
be contributing to excessive collagen deposition. There are enormous 
evidences that NO is an important factor in collagen metabolism 
[48-50] and remodelling phase of wound healing [51]. Moreover, 
exposure of keloid fibroblast to NO increased collagen expression [52]. 
The primary source of NO in healing wounds is iNOS activity [53], 
however in our study we show that ecNOS could be contributing to 
NO production in keloid. It was shown that human dermal fibroblasts 
express both ecNOS and iNOS, thus both are important in remodelling 
phase of wound healing [50,54]. These evidences highlight a potentially 
important role for NO in excess collagen synthesis and keloid 
pathogenesis. We conclude that, in keloids high levels of TGFβ1 and 
NO could be contributing to excessive collagen deposition.

TGFβ and NO effect on fibroblast-myofibroblast transition in 
keloid

In normal wound healing, there is transition of fibroblasts to 
contractile fibroblasts [myofibroblasts], however, this phenomenon is 
supressed and there is absence of myofibroblasts in keloid [53,55-58]. 
Transition of fibroblast to myofibroblasts is inhibited by NO [53] and is 
enhanced by TGFβ. Therefore, high NO production in keloid account 
for the absence of myofibroblasts and the inhibiting effect of NO on 
fibroblast transition overcome the stimulating effect of TGFβ.

NO up regulation and its role in epidermal thickening in 
keloid

Keloid is associated with a thickened epidermis and increase 
keratinocyte population [17,59]. This could be attributed to the 
proliferative effect of NO on keratinocytes [60]. In this study, we have 
shown upregulation of iNOS in the basal epidermal layer, this could 
be explained by cause-effect relation between NO and melanocytes. 
In wound region melanocytes are destroyed and do not re-generate 
causing reduction of melanin in wound region [61], however 
keratinocytes regenerate and continue to produce NO [62]. Melanin 
absence from the wound space implies that there is additional UVB 
stimulation of keratinocytes to produce more NO [62]. NO activates 
tyrosinase, one of the main enzymes responsible for the biosynthesis 
of melanin [63], therefore, excessive NO production by keratinocytes 
could be a compensatory mechanism to enhance melanin synthesis in 
wound space. This facts about NO role in melanin synthesis, suggests 
that we would expect to observe higher levels of NO associated with 
darker skin pigmentation, to account for the extra melanin observed. 
Interestingly, majority of keloids are found to occur in deeply 
pigmented skin [64]. Therefore, high NO in dark skin could be a 
predisposing factor to keloid formation.

NO upregulation and its role in high vascularity in keloid

Keloid exhibits a high vascularity but microvessels are partially 
or fully occluded [17,59] and this was attributed to 0endothelial cell 
proliferation [65-67] NO promotes endothelial cell proliferation [68-
72]. We demonstrated upregulation of ecNOS that contribute to NO 
production [69]. Also, NO was found to be linked with the growth- 
promoting effects of vascular endothelial growth factor [VEGF] [70]. 
This strongly suggests that high NO levels in keloid could account for 
the endothelial cell proliferation and blood vessel occlusion via growth 
factor upregulation.

NO and the therapeutic effect of steroids in keloid

To date there is no entirely effective treatment for keloid. One of 

the existing therapies involves excision combined with intralesional 
administration of corticosteroids. This has a high response rate, but 
recurrence is still common [73]. Corticosteroids are known to suppress 
iNOS but not ecNOS [74]. Thus, they could be blocking NO produced 
by iNOS but not NO produced by ecNOS and this could account for 
their partial effectiveness in treatment of keloid. This support our 
hypothesis, that ecNOS is as important as iNOS in keloid pathogenesis. 
Therefore, administration of NO inhibitor such as L- NG-Monomethyl-
L-arginine, monoacetate salt (NMMA)  would be more effective [75].

TGFβ down regulate NO but this may be different in keloid because 
of the transient nature of this cytokine and the fact that NO production 
in wound continue until healing is complete [53]. Moreover, TGFβ 
downregulate NO production through feedback inhibition of iNOS 
[58] but it may not affect NO production from ecNOS. Also, it is model 
dependant and cell type dependent.

Conclusion
Our results support Campane et al., 2006 hypothesise that 

upregulation of TGFβ1 expression may be necessary but is not 
sufficient for excessive scarring. Therefore, balance between TGFβ and 
NO could have much importance. We conclude that, TGFβ and NO 
could be affecting keloid cells through autocrine and paracrine effects 
and could jointly play a role in pathogenesis of keloid.
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