Daily Variations in Protein and Energy Metabolism During the Day in Hair Sheep in the Ecuadorian Amazon Region

Moyano JC, López JC, Galván Doria C, Marini PR, and Fischman ML

1Center for Research, Amazon State University, Ecuador
2Faculty of Veterinary Medicine and Zootecchnics, University of Córdoba, Colombia
3Faculty of Veterinary Sciences, National University of Rosario, Argentina
4Faculty of Veterinary Sciences, Laboratory of Spermatic Quality and Cryopreservation of Gametes, University of Buenos Aires, Buenos Aires, Argentina
5Faculty of Veterinary Sciences, Institute of Research and Technology in Animal Reproduction (INITRA), University of Buenos Aires, Buenos Aires, Argentina

Corresponding author: Moyano JC, Postgraduate and Amazon Conservation, Center for Research, Amazon State University, Ecuador, Tel: +593984182598; E-mail: juancamt@hotmail.com

Rec date: March 23, 2018; Acc date: March 30, 2018; Pub date: March 31, 2018

Abstract

The objective of this study was to determine and evaluate the protein and energy metabolism at different times of the day in Blackbelly x Pelibuey hair sheep during the rearing stage. The animals were under free grazing conditions in the Ecuadorian Amazon Region. We studied 9 ewes belonging to the flock for Research, Postgraduate Studies and Conservation of Amazonian Biodiversity. They were reared under the same environmental, nutritional and management conditions. Serial samples were taken over 3 consecutive days at different times. A significant difference (p ≤ 0.5) was observed between the sampling days for glucose, urea and total proteins. In the sampling schedule, significant differences were found (p ≤ 0.5) for glucose. It can be concluded that both the day and the time of sampling affect the concentrations of protein and energy metabolites in Blackbelly x Pelibuey ewes reared under free grazing conditions in the Ecuadorian Amazon Region.

Keywords: Sheep; Rearing; Protein; Energy; Metabolic profile

Introduction

The growing demand for food in today's world and the need to achieve sustainability in livestock production leads to the need for an adequate animal production system. The main criterion is the type of available food, with the aim of achieving greater food efficiency by employing a maximum use of existing local resources. Likewise, it is essential that producers dominate and apply new technologies and innovations to production systems according to the needs of each system, thus achieving greater productivity and efficiency [1].

Metabolic profiles were designed in order for one to study the imbalances that may occur between input, bio-transformation and output of elements into the organism [2]. This helps one find out about and diagnose the nature of metabolic disorders and thus allows one to avoid or correct adverse situations that can generate large productive losses in a herd [3].

One way to specify the planning of food management on a sheep farm is through nutritional monitoring of the herd, which is partly based on the use of metabolic profiles around critical nutritional periods. The values obtained in the biochemical parameters measured through this monitoring could give an approximation of nutritional balance, leading one to be able to take corrective measures in a timely manner [4]. Energy level is represented by blood glucose levels. Amongst the blood metabolites that best represent protein metabolism are total proteins, urea and albumin [5], given that blood proteins are synthesised mainly in the liver and that their rate of synthesis is directly related to the nutritional status of the animal.

In the Ecuadorian Amazon Region, the use of metabolic profiles in sheep during the rearing stage is rare, both in the productive and research sectors, which means that there is little or no information about said profiles. The objective of this study was to determine and evaluate the protein and energy metabolism at different times of the day in Blackbelly x Pelibuey (F1) ewes during the rearing stage and under free grazing conditions in the Ecuadorian Amazon Region.

Materials and Methods

We studied 9 Blackbelly x Pelibuey (F1) ewes with an average age of 5 months, an average weight of 15 kg and managed under extensive grazing. The sheep belong to the flock for Research, Postgraduate Studies and Conservation of Amazonian Biodiversity (CIPCA), which is located in the Arosemena Tola canton of the province of Napo (Ecuador), 44 km along the road between Puyo and Tena (coordinates: S 01° 14.325'; W077° 53.134'). The climate of the area is tropical with an average annual rainfall of 4000 mm, an average relative humidity of 80%, temperatures that range between 15 and 25°C and an altitude that varies between 580 and 990 metres above sea level. Its topography is characterised by slightly undulating relief, without steep slopes, distributed amongst river plates of great extension. Although the soils have a very heterogeneous composition, most originate in fluvial sediments from the Andean region of the country [6].

The sheep remained in pasture from 7:00 am to 4:00 pm and in a barn during the night with a constant supply of water. The predominant grasses include Brachiaria grass (Brachiaria decumbens) (17.585 kg DM/ha/year, Protein: 10.6%, Phosphorus: 0.18%, DIV: 44.4%); Brizantha (Brachiaria brizantha) (26,970 kg DM/ha/year, 21.78%); Brachiaria (Brachiaria brizantha) (26,970 kg DM/ha/year, 21.78%)...
The blood glucose concentration found in the analysed ewes was 52.9 ± 5.1 mg/dl, which is below the reported concentrations [11], in pregnant ewes (62.2 ± 11.8 mg/dl), in non-pregnant hair sheep (75.6 ± 27.5 mg/dl) [12], in the Creole sheep breed Serrana Lanada (83.9 ± 37.6 mg/dl) and in non-pregnant Tsigai ewes [14] (69.6 ± 5.8 mg/dl) and higher than those reported by Tabeleão et al. [15] in young sheep supplemented with the Ille and Corriedale breeds (31.5 mg/dl). These low blood glucose levels may indicate a low energy intake in the ingested forages, what would result in the females not gaining weight on a daily basis which is necessary in order to be put to service for the first time (Table 1).

Table 1: Blood glucose values in sheep according to day and time of sampling (mg/dl).

<table>
<thead>
<tr>
<th>Day</th>
<th>Mean ± SE</th>
<th>Time</th>
<th>Mean ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57.4 ± 2.3 a</td>
<td>07:30</td>
<td>59.2 ± 2.6 a</td>
</tr>
<tr>
<td>2</td>
<td>54.1 ± 1.8 a</td>
<td>09:30</td>
<td>53.0 ± 2.3 ab</td>
</tr>
<tr>
<td>3</td>
<td>47.4 ± 1.2 b</td>
<td>11:30</td>
<td>49.7 ± 2.0 b</td>
</tr>
<tr>
<td></td>
<td>13:30</td>
<td></td>
<td>49.8 ± 1.2 b</td>
</tr>
</tbody>
</table>

Note: Different letters in each column indicate significant differences p ≤ 0.05.

Table 2: Total protein values in sheep according to day and time of sampling (g/dl).

<table>
<thead>
<tr>
<th>Day</th>
<th>Mean ± SE</th>
<th>Time</th>
<th>Mean ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37.4 ± 1.5 a</td>
<td>07:30</td>
<td>35.0 ± 2.0 a</td>
</tr>
<tr>
<td>2</td>
<td>31.2 ± 0.9 b</td>
<td>09:30</td>
<td>31.4 ± 1.4 a</td>
</tr>
</tbody>
</table>

Results and Discussion

Glucose

The mean per day and per sampling hour are within the normal range, however, they are close to the lower limit of 44-81.2 mg/dl [10]. The blood glucose concentration found in the analysed ewes was 52.9 ± 5.1 mg/dl, which is below the reported concentrations [11], in pregnant ewes (62.2 ± 11.8 mg/dl), in non-pregnant hair sheep (75.6 ± 27.5 mg/dl) [12], in the Creole sheep breed Serrana Lanada (83.9 ± 37.6 mg/dl) and in non-pregnant Tsigai ewes [14] (69.6 ± 5.8 mg/dl) and higher than those reported by Tabeleão et al. [15] in young sheep supplemented with the Ille and Corriedale breeds (31.5 mg/dl). These low blood glucose levels may indicate a low energy intake in the ingested forages, what would result in the females not gaining weight on a daily basis which is necessary in order to be put to service for the first time (Table 1).
Table 3: Values of blood urea in sheep according to day and time of sampling (mg/dl).

Table 4: Serum creatinine values in sheep according to day and time of sampling (mg/dl).

Conclusion

Of the metabolites studied, the greatest variations occurred in glucose according to day and time of sampling. The total proteins and urea, although they presented significant differences between days, were not affected by time of sampling. Creatinine did not present significant differences between days or between sampling times, thus was the most stable parameter.

This research provides some reference values, which are so far non-existent to the best of our knowledge. These values could be used to compare the productivity and adaptation of small ruminants in the Amazonian environment, allowing one in turn to take corrective measures if necessary.

References

6. Torres V (2016) Diversity, structure and concentration of carbon in an evergreen piedmont forest from 800 to 900 meters above sea level, in the Ecuadorian Amazon. Research project prior to obtaining the Master’s Degree in Forest Management and Use.
20. Castañeda A (2010) Importance of metabolites such as: glucose, total proteins, triglycerides, urea and creatinine in two treatments T1: pregnant sheep and T2: calving.