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Introduction
In the recent past, it has been observed that the research in the field 

of vibration is unceasingly accruing immense importance in the modern 
science, due to the significant role in every field of applied sciences. 
As fundamental structural elements, plates of various geometries are 
widely used in various engineering fields such as, aerospace technology, 
missile technology, naval ship design and telephone industry etc. Due 
to the appropriate variation of plate thickness, these plates provide the 
advantage of reduction in weight and size, and also have significantly 
greater efficiency for vibrations as compared to the plate of uniform 
thickness. Thus the vibration characteristics of plates having variable 
thickness have attracted the interest of researchers. An extensive survey 
of literature up to 1985 on linear vibration of isotropic/anisotropic plates 
of various geometries has been given by Leissa in his monograph and 
in a series of review articles [1]. Later on the studies of rectangular plate 
with uniform/non-uniform thickness has been carried out by many 
researchers. As space technology is growing rapidly, the importance 
of study of vibration is increasing; Gupta and Lal [2] have studied the 
transverse vibrations of a rectangular plate of exponentially varying 
thickness resting on an elastic foundation by using quintic spline 
technique. In reality all the vibrations are damped vibration, as free 
vibrations are ideal and can’t be practically possible, so no vibration can 
be thought of being in existence without damping. In a series of papers, 
recently DJO’Boy [3] have analyzed the damping of flexural vibration 
and Alisjahbana and Wangsadinata [4] discussed the realistic vibrational 
problem incorporating dynamic analysis of rigid roadway pavement 
under moving traffic loads. In the demand of modern science, a study 
dealing with damped vibrations of homogeneous isotropic rectangular 
plate of linearly varying thickness along one direction and resting on 
elastic foundation is presented employing classical plate theory. Various 
numerical techniques such as Frobenious method [5], finite difference 
method [6], simple polynomial approximation [7], Galerkin’s method 
[8,9], Rayleigh-Ritz method [10-12], finite element method [13] 
and Chebyshev collocation method [14] etc, have been employed to 
analyzed the modes of vibration of plates with different geometries. 
The numerical methods require small interval size to obtain the results 
up to the desired accuracy due to round off and truncation errors at 
each step. Frobenious method results in the form of series and for the 
purpose of computation, series is truncated which leads incorporates 
some errors and the characteristics orthogonal polynomials requires an 

appreciable number of terms for plates of variable thickness. However 
Quintic splines interpolation technique has the capability of producing 
highly accurate results with minimum computational efforts for initial 
and boundary value problems. Therefore in the present paper, quintic 
spline method is used to obtain modes of vibration because a chain 
of lower-order approximations yields a better accuracy than a global 
higher-order approximations and natural boundary conditions can be 
incorporated easily [15]. The frequencies and deflection corresponding 
to the first three modes of vibrations are computed for various values 
of plate parameters such as taper constants, damping parameter and 
elastic foundations.

Mathematical Formulation
The plate under consideration is a rectangular isotropic plate 

of length ‘a’, breath ‘b’, thickness ‘h’ and density ‘ρ’, with resting on a 
winkler- type elastic foundation ‘ kf ‘. The plate is referred to rectangular 
cartesian co-ordinate (x,y,z).The middle surface being z=0 and the 
origin is at one of the corners of the plate. The differential equation 
which governs the transverse vibration of such plates is given by
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Where K the damping is constant, Kf is the elastic foundation 
constant, w(x,y,t) is the transverse deflection and D is the flexural rigidity 
at any point in the middle plane of the plate. Let the two opposite edges 
y=0 and y=b of the plate be simply supported and thickness ( , )=h h x y
varies linearly along the length i.e. in the direction of x-axis. Thus, ‘h’ is 
independent of y i.e. ( )=h h x . For a harmonic solution, the deflection 
function w, satisfying the condition at y=0 and y=b, is assumed 
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increases and it decreases faster in simply supported as compared to clamped-clamped boundary conditions in case 
of damping parameter and reverses in case of taperness. 
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Where ‘p’ is the circular frequency of vibration and ‘m’ is a positive 
integer. Thus Eq.(1) becomes
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Introducing the non-dimensional variables , ,= = =
h x WH X W
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Equation (3) reduces to 
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Substituting ( )0 1 α= −H H X , where ( )0 0=
=

X
H H  and ‘α ’ is the taper 

constant due to linearly varying thickness of plate, and equating the 
coefficient of sin(pt) and cos(pt) independently to zero, following 
equation is formed
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, 

Ω , KD , fE  are frequency parameter, damping parameter and 
elastic foundation parameter respectively.

The solution of Eq.(5) together with boundary conditions at the 
edge x=0 and x=1 constitutes a two-point boundary value problem. 
As the PDE has several plate parameters, therefore it becomes quite 
difficult to find it’s exact solution. Keeping this in mind, complex 
for the purpose of computation, the quintic spline interpolation 
technique, is used. Let f(x) be a function with continuous derivatives 
in the range [0,1] and interval [0,1] be divided into ‘n’ subintervals 
by means of points iX  such that 0 1 20 ... 1.= < < < < =nX X X X  Where 

1 , ( 0,1,2,..., )∆ = = ∆ =iX X i X i nn . Let the approximating function ( )W X  
for the f(x) be a quintic spline with the following properties:

(i) ( )W X  is a quintic polynomial in each interval 1( , )+k kX X .

(ii) ( ) ( ), 0,1, 2,..., .= =kW X F X k n

(iii) 
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 are continuous.

In view of above axioms, the quintic spline takes the form
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and 0 1 2 3 4 1, , , , , −na a a a a b  are (n+5) unknown constants. Thus for the 
satisfaction at the nth knot, Eq.(6) reduced to
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For m=0(1)n, above system contains (n+1) homogeneous equation 
with (n+5) unknowns, ai, i=0(1)4, bj, j=0,1,2,…,(n-1), and can be 
represented in matrix form as [A]{B}={0}		                (8)

Where [A] is a matrix of order (n+1)×(n+5) while {B} and {0} are 
column matrices of order (n×5).

Boundary Conditions and Frequency Equation
The following two cases of boundary conditions have been 

considered:

(i) (c-ss-c-ss): clamped at both the edge X=0 and X=1.

(ii) (c-ss-ss-ss): clamped at X=0 and simply supported at X=1.

The relations that should be satisfied at clamped and simply 
supported are

0∂
= =
∂
WW
X

;  
2

2 0∂
= =
∂

WW
X

; respectively. 		                (9)

Applying the boundary conditions c-ss-c-ss to the displacement 
function by Eq. (9) one obtains a set of four homogeneous equations in 
terms of (n+5) unknown constants which can be written as

[Bcc]{B}={0}				     	              (10)

Where Bcc is a matrix of order 4×(n+5). Therefore the Eq. (7) 
together with the Eq. (10) gives a complete set of (n+5) homogeneous 
equations having (n+5) unknowns which can be written as

{ } {0}  =  cc

A B
B

  				                (11)

For a non-trival solution of Eq. (11), the characteristic determinant 
must vanish, i.e.

  0=cc

A
B 				                                  (12)

Similarly for (c-ss-ss-ss) plate the frequency determinant can be 
written as 

 0=ss

A
B

, Where Bss is a matrix of order 4×(n+5)                      (13)

Numerical Results and Discussion
In the present paper, first three frequency modes of vibration have 

been computed for the above mentioned two boundary conditions for 
different values of foundation parameter Ef=0.0(0.005)0.02, damping 
parameter Dk=0.0(0.01)0.04 and taper parameter α=0.0(0.1)0.4 for 
Poisson ratio’s ν=0.3, thickness of plate h=0.03 and aspect ratio a/
b=0.25. The numerical method provides approximate values therefore 
in order to minimize the error, there is an urgent need to determine the 
optimum size of interval length ΔX. In the present problem, a computer 
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program was developed and executed for n=10(10)150 and observed 
that no consistent improvement in results while n ≥ 140 for clarity 
(Figures 1a and 1b). Therefore the results are obtained for n=140 and 
depicted through table and graphs. It has also been observed that the 
frequencies for c-ss-c-ss plates are more than the frequencies of c-ss-
ss-ss plates for the same set of values of other parameters. Tables 1a-1c 
and Figures 2a-2c show the behavior of frequency parameter Ω with 
the increasing value of taper constant (α) for the fixed value of damping 
parameter Dk=0.0, 0.0025, and foundation parameter Ef=0.0, 0.01 for 
first three modes of vibration of c-c and c-ss plate, it is observed that 
the frequency parameter Ω decreases with the increasing values of taper 
parameter α. Tables 2a-2b and Figures 3a and 3b, provide the inference 
of damping parameter Dk on frequency parameter Ω for two values 
of and foundation parameter Ef=0.0, and 0.01 respectively, for the 
fixed value of taper parameter α=0.4. It is observed that the frequency 
parameter decreases with the increases of damping parameter Dk 

(a)                                                                                                          (b)
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Figure 1: percentage error in frequency parameter Ω: (a) c-ss-c-ss plate (b) c-ss-ss-ss plate, for a/b=0.25, α=0.0, Dk=0.0, Percentage error=[(Ωn-Ω140)/
Ω140]x100; n=10(10)140.

 h=0.03 ν=0.3 m=1 a/b=0.25 Dk=0.0 Ef=0.0
c-ss-c-ss plate c-s-ss-ss plate

taper parameter (α) mode1 mode2 mode3 mode1 mode2 mode3
0 0.6816 1.8643 3.6432 0.4766 1.515 3.1449

0.1 0.6471 1.7699 3.4587 0.4584 1.4442 2.9916
0.2 0.6117 1.6729 3.2689 0.4396 1.3715 2.8341
0.3 0.5752 1.5727 3.0729 0.42 1.2963 2.6741
0.4 0.5373 1.4686 2.8692 0.3995 1.2184 2.5025

Table 1a: Values of frequency parameter Ω for different values of taper constant α.

h=0.03 ν=0.3 m=1 a/b=0.25 Dk=0.0025 Ef=0.0
c-ss-c-ss plate c-ss-ss-ss plate

taper parameter (α) mode1 mode2 mode3 mode1 mode2 mode3
0 0.6765 1.8624 3.6422 0.4692 1.5128 3.1438

0.1 0.6411 1.7677 3.4576 0.4498 1.4416 2.9903
0.2 0.6046 1.6703 3.2676 0.4293 1.3683 2.8325
0.3 0.5666 1.5695 3.0713 0.4076 1.2924 2.6695
0.4 0.5266 1.4647 2.8671 0.3841 1.2135 2.5001

Table 1b: Values of frequency parameter Ω for different values of taper constant α.

h=0.03 ν=0.3 m=1 a/b=0.25 Dk=0.0025 Ef=0.01
c-ss-c-ss plate c-ss-ss-ss plate

taper parameter 
(α)

mode1 mode2 mode3 mode1 mode2 mode3

0 0.8894 1.9499 3.6877 0.744 1.6192 3.1964
0.1 0.853 1.8551 3.503 0.7187 1.5472 3.0427
0.2 0.8153 1.7576 3.3131 0.6922 1.4731 2.8848
0.3 0.776 1.6568 3.1168 0.6641 1.3964 2.7216
0.4 0.7348 1.552 2.9127 0.6341 1.3166 2.5521

Table 1c: Values of frequency parameter Ω for different values of taper constant α.

h=0.03 ν=0.3 m=1 a/b=0.25 α=0.4 Ef=0.0
c-ss-c-ss plate c-ss-ss-ss plate

Damping 
parameter 
(Dk)

mode1 mode2 mode3 mode1 mode2 mode3

0 0.5373 1.4686 2.8692 0.3995 1.2184 2.5025
0.001 0.5356 1.468 2.8688 0.397 1.2176 2.5021
0.002 0.5305 1.4661 2.8679 0.3896 1.2152 2.501
0.003 0.5218 1.4629 2.8662 0.377 1.2113 2.4991
0.004 0.5094 1.4585 2.8639 0.3585 1.2058 2.4964

Table 2a: Values of frequency parameter Ω for different values of damping 
parameter Dk.

h=0.03 ν=0.3 m=1 a/b=0.25 α=0.4 Ef=0.01
c-ss-c-ss plate c-ss-ss-ss plate

Damping 
parameter 
(Dk)

mode1 mode2 mode3 mode1 mode2 mode3

0 0.7425 1.5557 2.1947 0.6436 1.3211 2.5544
0.001 0.7412 1.5551 2.9144 0.6421 1.3204 2.554
0.002 0.7375 1.5533 2.9135 0.6375 1.3182 2.5529
0.003 0.7313 1.5504 2.9119 0.6298 1.3146 2.551
0.004 0.7225 1.5462 2.9096 0.6189 1.3095 2.5484

Table 2b: Values of frequency parameter Ω for different values of damping 
parameter Dk.
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Figure 2: Frequency parameter for clamped, simply supported plates: (a) modes for Dk=0.0, Ef=0.0; (b) modes for Dk=0.0025, Ef=0.0; (c) modes for  Dk=0.0025, 
Ef=0.01.
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Figure 3: Frequency parameter for clamped, simply supported plates: (a) modes for α=0.0, Ef=0.0; (b) modes for α=0.4, Ef=0.01.

h=0.03 ν=0.3 m=1 a/b=0.25 α=0.4 Dk=0.0
c-ss-c-ss plate c-ss-ss-ss plate

Foundation 
parameter 
(Ef)

mode1 mode2 mode3 mode1 mode2 mode3

0 0.5373 1.4686 2.8692 0.3995 1.2184 2.5025
0.005 0.6481 1.5128 2.892 0.5357 1.2707 2.5286
0.01 0.7425 1.5557 2.9147 0.6436 1.3211 2.5544

0.015 0.8261 1.5975 2.9373 0.7357 1.3696 2.5799
0.02 0.9019 1.6383 2.9596 0.8175 1.4165 2.6052

Table 3a: Values of frequency parameter Ω for different values of foundation 
parameter Ef.

h=0.03 ν=0.3 m=1 a/b=0.25 α=0.4 Dk=0.0025
c-ss-c-ss plate                                                c-ss-ss-ss plate

Foundation 
parameter 
(Ef)

mode1 mode2 mode3 mode1 mode2 mode3

0 0.5266 1.4647 2.8671 0.384 1.2135 2.5011
0.005 0.6392 1.5089 2.89 0.5242 1.2661 2.5262
0.01 0.7348 1.552 2.9127 0.6341 1.3166 2.5521

0.015 0.8191 1.5939 2.9353 0.7274 1.3653 2.5776
0.02 0.8955 1.6347 2.9577 0.8099 1.4123 2.603

Table 3b: Values of frequency parameter Ω for different values of foundation 
parameter Ef.



Citation: Robin, Rana US (2013) Damped Vibrations of Rectangular Plate of Variable Thickness Resting on Elastic Foundation: A Spline 
Technique. J Appl Computat Math 2: 130. doi:10.4172/2168-9679.1000130

Page 5 of 6

Volume 2 • Issue 3 • 1000130
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

and the rate of decreases with the increases in the value of damping 
parameter Dk for c-ss plates is higher than that for c-c plate keeping 
all other plate parameter fixed. Tables 3a and 3b and Figures 4a and 
4b show the increase in frequency parameter Ω verses foundation 
parameter Ef for two different value of damping parameter Dk=0.0, 
0.0025, for the fixed value of taper parameter α=0.4. It is noticed that 
the frequency parameter Ω increases continuously with the increasing 
value of foundation parameter Ef for c-ss-c-ss and c-ss-ss-ss plates, 
whatever be the value of other plate parameters. It is found that the 
rate of increases of frequency parameter Ω for c-ss-ss-ss plate is higher 
than c-ss-c-ss plate for three modes. The normalized displacements for 
the two boundary conditions c-ss-c-ss and c-ss-ss-ss, considered in 
this paper are shown in Figure 5. The plate thickness varies linearly in 
X-direction and the plate is considered resting on elastic foundations. 
Figure 5 Shows the transverse displacements for the first three modes. 
The nodal lines are seen to shift towards the edge, i.e. X=1 as the 
boundary conditions change from c-ss-c-ss to c-ss-ss-ss for all the three 
transverse modes. The slope of the normalized displacement curves on 
both edges for c-ss-c-ss condition, are nearly zero which indicates the 
correctness of the solution. 

Conclusion 
In the present study results are computed using MATLAB within 

the permissible range of parameters up to the desired accuracy 
(10-8), which validates the actual phenomenon of vibrational problem. 
Variation in thickness, elastic foundation and damping parameter are 
of great interest since it provides reasonable approximation to linear 
vibrations. Thus the present study may be useful for design engineers 
especially in rigid roadway pavement under moving traffic loads.
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