
Research Article Open Access

Industrial Engineering & Management
Ind

us
tri

al
En

gineering &Managem
ent

ISSN: 2169-0316

Chen and Rabelo, Ind Eng Manage 2017, 6:3
DOI: 10.4172/2169-0316.1000215

Volume 6 • Issue 3 • 1000215Ind Eng Manage, an open access journal
ISSN: 2169-0316

Deadlock-Detection via Reinforcement Learning
Chen M* and Rabelo L
Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, USA

Abstract
Optimization of makespan in scheduling is a highly desirable research topic, deadlock detection and prevention

is one of the fundamental issues. Supported by what learned from this class, a reinforcement learning approach is
developed to unravel this optimization difficulty. By evaluating this RL model on forty classical non-buffer benchmarks
and compare with other alternative algorithms, we presented a near-optimal result.

*Corresponding author: Mengmeng Chen, Department of Industrial Engineering
and Management Systems, University of Central Florida, Orlando, USA, Tel: 407
823-2204 ; E-mail: CHENMM@Knights.ucf.edu

Received May 02, 2017; Accepted June 01, 2017; Published June 16, 2017

Citation: Chen M, Rabelo L (2017) Deadlock-Detection via Reinforcement
Learning. Ind Eng Manage 6: 215. doi:10.4172/2169-0316.1000215

Copyright: © 2017 Chen M, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: Reinforcement learning; Optimization makespan; DL
detection

Introduction
Due to buffer-less setting, deadlock (DL) occurs frequently in

resource sharing environment and concurrent computing systems.
A deadlock is a state in which each member of a group of actions is
waiting for some other member to release a lock. [1] Once this DL state
occurred, workflow would stack in a fixed loop and never discharged.

Figure 1 present a typical scheduling problem: 3 jobs need to be
operated on 3 different machines following different sequences, each
machine can only operate one job each time. How to schedule jobs
in specific sequence to minimize total makespan aka processing time
without deadlock is a typical optimization problem. Due to limitation
of resources, deadlock happened frequently, other than a feasible
solution, to find the global optimal deadlock free solution is difficult.

There are certain methods to solving deadlock problems: 1. Do
nothing, 2. Kill the workflow, 3. Preempt and rollback. Other than kill
the workflow, deadlock detection algorithms are more efficient in most
cases and additionally, deadlock free scheduler would enable the real-
time control for engineering system. Preventing or avoiding deadlock
helping maintain system performance aka makespan stay at positive
level.

A simple head-tail scheduling example is present in Figure 2. The
rectangle stands for resource Ri, symbol Pi stands for jobs, if rectangle
is empty them means no job is operating on that resource. Arrow
stands for the action of each job. Second level DL has been addressed
in the previous articles. Here on Figure 3, a deck lock is presented. Job
P3 is moving to resource 3 then resource 1, but once it moved it will

be a deadlock because P1 and P2 will be non-moveable. If P2 move to
resource 3 first, then P2 and P3 will be a deadlock as they heading to
other’s occupation while there is no buffer.

In this paper we present a new reinforcement learning approach
solving this scheduling optimization problem. We will test our
algorithm’s on the classical buffer-less benchmark and compare with
the optimal solution.

Related Work
Local and global deadlock-detection in component-based systems

are NP-hard [2]. Wysk et al. [3] developed a deadlock detection via
integer programming in finding the optimum makespan. Specifically,
they added constraints to ensure agents not release resource unless being
assigned the next resource. However, integer programming method can
only be used on small size problem as it would take very long time to
run. Their integer programming formulation is shown below.

XiK: Completion time of last operation of job i(term K);

Xikj: Completion time of job i operation k on machine j;

Tikj: processing time of job i operation k on machine j;

Yprqaj: {o,1}: 1 if job p operation r follows job q operations on
machine j; 0 if otherwise.

machine 0

machine 1

machine 2

job 0

job 1

job 2
2 4 6 8 10 12

Figure 1: 3 machine 3 job scheduling problem.

p1: r1 → r2 p3: r3 → r4
r4

p1

r1
p2

r2
p3

r3p2: r2 → r3

Tail daeHboJ Job Head Resource

Figure 2: Deadlock I level.

p1: r1 → r2 p1

p2 p3
p2: r2 → r3

p2: r3 → r4

p3: r4 → r3

p3: r3 → r1

r1

r2 r3 r4

Figure 3: Deadlock II level.

Citation: Chen M, Rabelo L (2017) Deadlock-Detection via Reinforcement Learning. Ind Eng Manage 6: 215. doi:10.4172/2169-0316.1000215

Page 2 of 6

Volume 6 • Issue 3 • 1000215Ind Eng Manage, an open access journal
ISSN: 2169-0316

H: big positive number,

E: small positive number,

I: set of all jobs {1,2,3..N},

J: set of all machines {1,2,3..M}.

Formulation:

1=
= ∑

N

iK
i

Min Z X

Xikj-Tikj≥ Xi(k-1)l

Xqrj-Xqrj +H(1-Yprqaj) ≥ Tqrj [∀j∈J; ∀(p,q)∈I]

Xqaj-Xqrj+HYprqaj ≥ Tqaj [∀j∈J; ∀(p,q)∈I]

Xp(r-1)1-Xqaj+H(1-Yprqaj) ≥ E [∀j∈J; ∀(p,q)∈I, l∈J]

Xq(r-1)-Xqrj+HYprqaj ≥ E [∀j∈J; ∀(p,q)∈I, w∈J].

In view of the modeling frameworks in the existing literature, three
strategies for processing DL and corresponding research work are as
follows:

•	 Deadlock Prevention, which organizes resource usage by
each process to ensure that at least one process is always able to get
all the resources it needs [4]. Mixed integer programming [5] and
region theory [6] are used to solve elementary siphon [7-9] to avoid
deadlock. Edsger et al., Gen and Cheng [6,10] developed Banker’s
algorithm in 2006. However, these algorithms have many limitations:
need fixed processing numbers; no further processing can be started
when executing, and also need fixed resources amount.

•	 Deadlock Avoidance based on the current system state and
agents’ future resource request, by restricting the resource allocation to
avoid the deadlock. Petri Net model [3,11-14] are complete developed
in this area. Di-graph model and Auto-mata model [6,9,12,15,16] were
also built to handle avoidance problems. However, current avoidance
algorithms are not able to handle high level DL.

•	 Deadlock Detection and Recovery is more focusing on
quickly deadlock issue once detected. This can be completing in a
couple ways [6,14], such as aborting certain action or add additional
buffer. Still, detect deadlock and schedule a deadlock free path may be
more convenient.

Lots of artificial intelligence and operation research effort has
been applied to in scheduling problems. Zhang and Dietterich [17]
were the first who applied reinforcement learning here. Mahadevan
et al. [18] proposed a reinforcement learning algorithm combines
different scheduling problem for the optimization of transfer-lines in
manufacturing systems. Another maintenance-based approach based
on simplified reinforcement learning is suggested by Zeng and Sycara [19].

Research Methodology
First let’s give definition of deadlock on different levels. The first

level of a DL is a set of agents that each request collects the resources
held by another agent. The second-level DL is a set of agents any action
will result in a first-level DL. The high level DL is a set of agents moving
any action will result in a second-level DL. Figure 4 deliver a graph of
how a high level DL happens.

We would like to use ranking matrix formulate this action system:
S=[sij]M×N stand for the state matrix of the system with i∈l={1,2,…, M}
and j∈j={1,2,…, N}

Proposition 1

For agents/ jobs A={ai, i=1,…, MA} in the detection system, we have that,

For i=1 then no existence of b∈l, x∈J where 0
ia xs = , sbx=1

For 1<i<MA, then y∈J where 0
ia ys = ,

1
1

ia ys
−

=

For i=MA, then z∈J and 1
kj zs = , 0hz

h I

s
∀ ∈

≠∏ (Figure 5).

a1 defined as the Last agent of ∀ai∈A and denoted by TJ(ai)=a1, AMa
defined as the First agent where ∀ai∈A, denoted by ()

Ai MHJ a a= , z

defined as the head resource of ∀ai∈A, denoted by HR(ai)=z. After
Pk changing every state, a new matrix will be derivative: if i ≠ k then

[]ijS s= as ij ijs s= , or 1ij ijs s= − while i=k. using set R={r R={rj,
j∈J={1,2,…, M}} stand for M resources, using set P={pi, i∈l={1,2,…,
N}} stand for N agents/jobs, all agents follows the predefined working
procedure S=[sij]M×N stand for the system state at certain point. sij stand
for the position when agent/job pi being processed on resource ri.
(Figure 6.1).

If sij>0 means ri not being occupied by agent/job pi yet; if sij=0 then
job pi is occupying resource ri ; if sij>0 then job pi finished tasks on ri.
Hence, the ranking matrix of state changed from S1 to state S2 while
agent/job p1 transferring position from r2 to r4,
















−

−
= →
















−= →

1234
2110
0112

1234
2110
1203

2
 :

1
421 SS rrp

Proposition 2

The second level deadlock exist under necessary and sufficient
condition as ls⊆l where;

p1: r1 → r2

p1

p2
p2: r2 → r3 p2: r3 → r4

p3: r5 → r4

p4: r3 → r1

r1

r2 r3 r4
p3

p4

p2: r4 → r5

r5

r6

p3: r4 → r6p4: r6 → r3

Figure 4: Deadlock III level.

Start & End
Product

pE pSp p1 p2 pn-1 pn

(c)(a) (b)

Figure 5: Simple system.

p1

p2 p3

w32

w12

p0 p1
w12

w02

(a) (b)

p5

p4

w13

w42

PSLD PDC

w03

w13

PSLD PDC

RC

RC

Figure 6.1: System with 2nd level deadlock.

Citation: Chen M, Rabelo L (2017) Deadlock-Detection via Reinforcement Learning. Ind Eng Manage 6: 215. doi:10.4172/2169-0316.1000215

Page 3 of 6

Volume 6 • Issue 3 • 1000215Ind Eng Manage, an open access journal
ISSN: 2169-0316

(a)	 k∈J as for ∀a∈ls, HR(a)=k.

(b)	 ∀b∈ls as HJ(b)=b there exist cls, ∈J that sb=2, sc=0, and HJ(c)
≠b (Figure 6.2).

If apply Proposition 2 to the previous example in ranking matrix.
The state matrix will be:

0 1
0 1 2

2 1 0

X X
S X

X

 
 =  
  

Proposition 3

The high level deadlock exist under exist necessary and sufficient
condition as lT⊆l which:

(a) x,y∈J for

(i) for ∀alT, [HR(a)-x].[HR(a)-y]=0

(ii) [()] [()] 0
T Ta I a I

HR a x HR a y
∀ ∈ ∀ ∈

− ⋅ − ≠∑ ∑ .

(b) ∀b∈lT as HJ(b)=b

(i) k∈J as sbk=2;

(ii) if c∈lT as sck=0, then HJ(c) ≠b; o.w., (k-x) (k-y)=0, as d∈lT and
∈J by sb=3, sd=0, HR(d) ≠ HR(b) (Figure 7).

If apply Proposition 3 to the previous example in ranking matrix.
The state matrix will be:

0 1
0 1 2 3

1 0 2
2 1 0

X X X X
X X

S
X X X

X X X

 
 
 =
 
 
 

1.	 HR(1)=HR(2)=HR(4)=3. HR(3)=HR(5)=4 so condition (a)
satisfied.

2.	 HJ(2)=2, HJ(3)=3, HJ(4)=4 and s24=s36=s41=2 so condition
[b(i)] satisfied.

3.	 Resource 4 will be required by Agent 2 in two steps and available;
also have s25=3, s25=0 and HR(2)=3≠HR(3)=4. Condition [b(ii)]
satisfied as s36=2.

3.1	 s36=2, s46=0, and HJ(3)=3≠HJ(4)=4.

3.2	 s41=2, s11=0, and HJ(4)=4≠HJ(1)=2.

As mentioned above, we consider all collaborative action teams
seeking to optimize global rewards, and we assume that we can use our
reinforcement learning approach to model the corresponding multi-
action stochastic systems and provide a search algorithm. Therefore,
there is at least one action sequence that maximizes the expected return
of all movements [20-26].

Definition 1

Set Si⊆S be the system state of i, where si={A (π1), A (π2)…A (πi)},
{Ai} denote actions will be executed, πI denotes the policies of action.
The action Ai at state I and the reward value R (i), represent by:

, 1
()

()

n

i k
i k

MAX

J M
R

C
=

+
=
∑



Cmax denotes the makespan,
, 1

()
i

i k
i k

J M
=

+∑ represent the summary

of jobs and machines been involved. Here P (π) represents the
performance of policy π, and R () represents the local action reward
parameter.

Definition 2

Under the set So⊆S, the policy:

0 0 0
1 1

1() [| ,] [(()) |] lim ()
n n

i

ni i
P E R s S E R i R

n
π π γ π

→∞
= =

= ∈ = =∑ ∑ 

 is

defined as the expected local reward R() and set discount factor γ to 1.

Evaluation
There are 40 classical scheduling benchmark problems for testing.

The design of these problems adopts complex structure to increase
difficulty. Additionally, if these systems are buffer-less, find scheduling
will harder. Gantt chart can be drawn based on a DL-free timesheet
obtained by each scheduling benchmark [27-31].

As shown in Figures 8 and 9, they present benchmark LA08 (15
× 5) and benchmark LA16 (10 × 10). We test the performance of our
algorithm in this 40 benchmarks with backtracking counting’s, we also
compare the running time between with and without DL detection.
Algorithms is written in Matlab, and the workflow of our RL algorithm
is shown in Figure 10.

The results of 40 benchmark testing with our algorithm are given in
Table 1. From the results, we found that:

Cn

C1

pEn pSn

pE1

pS1

wE02
pE0

pS0 wEn2

C0

C2

Cn-1

Figure 6.2: System with 2nd level deadlock.

Cn

C1

pEn

pSn

pE1

pS1

wE02pE0

pS0

Former C0

wEn2pi-1

pi+1

Cn

C1

Third Level Deadlock

w(i-1)2

pE0pi+1

pi-1 pS0

wEn2

pSi

pEi

pSj

pEj

pEn

pSn

pE1

pS1

wEj2

wE02

Potential Second Level Deadlock

Ci

Cj

Figure 7: System with 3rd level deadlock.

Citation: Chen M, Rabelo L (2017) Deadlock-Detection via Reinforcement Learning. Ind Eng Manage 6: 215. doi:10.4172/2169-0316.1000215

Page 4 of 6

Volume 6 • Issue 3 • 1000215Ind Eng Manage, an open access journal
ISSN: 2169-0316

(1) All 40 benchmarks can be solved via algorithm within acceptable
time frame.

(2) Our results are very close to the optimal solution. These shows
our policy-based RL approach is effective in reducing time and cost.

(3) Due to the system difficulty, once the system becomes larger,
the number of backtracking increases. Backtracking numbers are 0 for
first 15 benchmark, and the number increases as the states increases.
However, for all benchmark problems, our number of backtracking
used is kept at a low level.

(4) Once a DL event occurs, our scheduling algorithm can
rearrange and generate a new DL-free timesheet within 1 seconds.
Therefore, we can assuming that our DL-free algorithm would be
applied to other similar structure systems. Additionally, under more
power computation system this algorithms making itself a qualified
tool for real-time operation system (Table 1).

Conclusion
Based on the ranking matrix, graph model and reinforcement

learning, a new corresponding DL detection algorithm is proposed by
us, and using that the author analyzed the general pattern of high-level
DL detection problem based on discrete system, using the classical

Figure 8: Optimal schedule of LA08.

Figure 9: Optimal schedule of LA16.

No

No

Yes

Backtrack Number B = 0
Step Number S = 0

Check the system state matrix to filter
the DL-free transitions

NO DL-free Transition?

Select the Highest Priority Job to move by
Reinforcement Learning Approach

Fire this Transition, Update the System
State, and set S = S + 1

S = Last Step ? Obtain DL-free Schedule

S = S– 1
B = B + 1

Backtrack

Figure 10: DL detection algorithm via RL.

Citation: Chen M, Rabelo L (2017) Deadlock-Detection via Reinforcement Learning. Ind Eng Manage 6: 215. doi:10.4172/2169-0316.1000215

Page 5 of 6

Volume 6 • Issue 3 • 1000215Ind Eng Manage, an open access journal
ISSN: 2169-0316

Problem (size) 2LD 3LD Makespan Optimal Makespan
Time Backtrack Time Backtrack

FT 06 <1 sec. 0 <1 sec. 0 512 512
LA 01 (10 × 5) <1 sec. 0 <1 sec. 0 1096 1073
LA 02 (10 × 5) <1 sec. 0 <1 sec. 0 1025 1025
LA 03 (10 × 5) <1 sec. 0 <1 sec. 0 857 817
LA 04 (10 × 5) <1 sec. 0 <1 sec. 0 933 827
LA 05 (10 × 5) <1 sec. 0 <1 sec. 0 879 879
LA 06 (15 × 5) <1 sec. 0 <1 sec. 7 1390 N/A in 48 hours
LA 07 (15 × 5) <1 sec. 0 <1 sec. 13 1337 N/A in 48 hours
LA 08 (15 × 5) <1 sec. 0 <1 sec. 19 1314 N/A in 48 hours
LA 09 (15 × 5) <1 sec. 0 <1 sec. 0 1609 N/A in 48 hours
LA 10 (15 × 5) <1 sec. 0 <1 sec. 8 1525 N/A in 48 hours
LA 11 (20 × 5) <1 sec. 0 <1 sec. 3 1873 N/A in 48 hours
LA 12 (20 × 5) <1 sec. 0 <1 sec. 17 1726 N/A in 48 hours
LA 0 13 (20 × 5) <1 sec. 0 <1 sec. 14 1895 N/A in 48 hours
LA 14 (20 × 5) <1 sec. 0 <1 sec. 0 1901 N/A in 48 hours
LA 15 (20 × 5) <1 sec. 0 <1 sec. 0 2015 N/A in 48 hours
LA 16 (10 × 10) <1 sec. 1 <1 sec. 16 1498 N/A in 48 hours
LA 17 (10 × 10) <1 sec. 0 <1 sec. 113 1187 N/A in 48 hours
LA 18 (10 × 10) <1 sec. 0 <1 sec. 12 1478 N/A in 48 hours
LA 19 (10 × 10) <1 sec. 6 <1 sec. 31 1412 N/A in 48 hours
LA 20 (10 × 10) <1 sec. 0 <1 sec. 0 1514 N/A in 48 hours
LA 21 (15x10) <1 sec. 21 <1 sec. 409 2051 N/A in 48 hours
LA 22 (15 × 10) <1 sec. 29 3 sec. 12053 1811 N/A in 48 hours
LA 23 (15 × 10) <1 sec. 143 <1 sec. 1339 2032 N/A in 48 hours
LA 24 (15 × 10) <1 sec. 22 <1 sec. 888 1934 N/A in 48 hours
LA 25 (15 × 10) <1 sec. 108 <1 sec. 12430 1983 N/A in 48 hours
LA 26 (20 × 10) <1 sec. 38 45 sec. 624349 2666 N/A in 48 hours
LA 27 (20 × 10) <1 sec. 36 <1 sec. 221 2730 N/A in 48 hours
LA 28 (20 × 10) <1 sec. 6 <1 sec. 799 2600 N/A in 48 hours
LA 29 (20 × 10) <1 sec. 196 <1 sec. 8683 2621 N/A in 48 hours
LA 30 (20 × 10) <1 sec. 23 <1 sec. 591 2774 N/A in 48 hours
LA 31 (30 × 10) <1 sec. 33 <1 sec. 3174 3701 N/A in 48 hours
LA 32 (30 × 10) <1 sec. 73 47 sec. 295725 3997 N/A in 48 hours
LA 33 (30 × 10) <1 sec. 71 4 sec. 46982 3791 N/A in 48 hours
LA 34 (30 × 10) <1 sec. 94 4 sec. 26426 3929 N/A in 48 hours
LA 35 (30 × 10) <1 sec. 68 <1 sec. 9705 4076 N/A in 48 hours
LA 36 (15 × 15) <1 sec. 69 Not available in 3hrs 2543 N/A in 48 hours
LA 37 (15 × 15) <1 sec. 239 <1 sec. 1765 2800 N/A in 48 hours
LA 38 (15 × 15) <1 sec. 339 8 min. 2301 N/A in 48 hours
LA 39 (15 × 15) <1 sec. 35 <1 sec. 1922 2386 N/A in 48 hours
LA 40 (15 × 15) <1 sec. 415 15 min. 8518357 2578 N/A in 48 hours

Table 1: Evaluation table.

forty benchmark problems. However due to the heavy computation,
some work might took very long term, but this can be solved in time
while the computation speed is exponential increasing.

This algorithm is developed under the buffer less environmental
which is much more difficulty compare to real world. Therefore, it
is worth believing that our algorithm should be extended to other
resource sharing systems.

Based on this DL detection algorithms, relax some certain constrains
new limited buffer DL detection algorithms can be developed and can
be widely applied in the mechanical system, parallel computing system,
and the future is quite bright.

References

1.	 Coulouris GF, Dollimore J, Kindberg T (2005) Distributed systems: concepts
and design. Pearson education, Chicago.

2.	 Minnameier C (2007) Local and global deadlock-detection in component-based
systems are NP-hard. Information Processing Letters, Chicago 103: 105-111.

3.	 Wysk RA, Yang NS, Joshi S (1991) Detection of deadlocks in flexible
manufacturing cells. IEEE Transactions on Robotics and Automation 7: 853-859.

4.	 Dijkstra EW (2006) Een algorithme ter voorkoming van de dodelijke omarming.
Chicago.

5.	 Chu F, Xie X (1997) Deadlock analysis of Petri nets using siphons and
mathematical programming. IEEE Trans Robot Automat 13: 793-804.

6.	 Ezpeleta J, Colom JM, Martinez J (1995) A Petri net based deadlock prevention
policy for flexible manufacturing system. IEEE Trans Robotics Automat 11:
173-184.

7.	 Fanti MP, Maione B, Mascolo S, Turchiano B (1997b) Low-Cost deadlock
avoidance policies for flexible production systems. Int J Model Simulation 17:
310-316.

8.	 Fanti MP, Zhou MC (2004) Deadlock control methods in automated
manufacturing systems. IEEE Trans on Systems, Man and Cybernetics - Part
A: Systems and Humans 34: 5-22.

https://www.pearson.com/us/higher-education/product/Dollimore-Distributed-Systems-Concepts-and-Design-4th-Edition/9780321263544.html
https://www.pearson.com/us/higher-education/product/Dollimore-Distributed-Systems-Concepts-and-Design-4th-Edition/9780321263544.html
https://doi.org/10.1016/j.ipl.2007.02.016
https://doi.org/10.1016/j.ipl.2007.02.016
https://doi.org/10.1109/70.105378
https://doi.org/10.1109/70.105378
http://www.citeulike.org/user/jff/article/872301
http://www.citeulike.org/user/jff/article/872301
https://doi.org/10.1109/70.650158
https://doi.org/10.1109/70.650158
E:\Journals\IEM\IEM Volume 6\IEM 6.3\IEM 6.3_W\IEM-17-452 [215]\10.1109\70.370500
E:\Journals\IEM\IEM Volume 6\IEM 6.3\IEM 6.3_W\IEM-17-452 [215]\10.1109\70.370500
E:\Journals\IEM\IEM Volume 6\IEM 6.3\IEM 6.3_W\IEM-17-452 [215]\10.1109\70.370500
http://www.tandfonline.com/action/showCitFormats?doi=10.1080%2F02286203.1997.11760346
http://www.tandfonline.com/action/showCitFormats?doi=10.1080%2F02286203.1997.11760346
http://www.tandfonline.com/action/showCitFormats?doi=10.1080%2F02286203.1997.11760346
https://doi.org/10.1109/TSMCA.2003.820590
https://doi.org/10.1109/TSMCA.2003.820590
https://doi.org/10.1109/TSMCA.2003.820590

Citation: Chen M, Rabelo L (2017) Deadlock-Detection via Reinforcement Learning. Ind Eng Manage 6: 215. doi:10.4172/2169-0316.1000215

Page 6 of 6

Volume 6 • Issue 3 • 1000215Ind Eng Manage, an open access journal
ISSN: 2169-0316

9. Gebraeel NZ, Lawley MA (2001) Deadlock detection, prevention and avoidance
for automated tool shared systems. IEEE Trans on Robotics and Automation
17: 342-356.

10.	Gen M, Cheng R (2000) Genetic Algorithms and Engineering Optimization.
John Wiley & Sons.

11. Hsieh F, Chang S (1994) Dispatching-driven deadlock avoidance controller
synthesis for flexible manufacturing systems. IEEE Trans on Robotics and
Automation 10: 196-209.

12.	Wu NQ (1999) Necessary and sufficient conditions for deadlock-free operation
in flexible manufacturing systems using a colored Petri net model. IEEE Trans
Syst Man Cyber Part C 29: 192-204.

13.	Lawley MA, Reveliotis SA, Ferreira P (1998) The application and evaluation
of Banker’s algorithm for deadlock freebuffer space allocation in flexible
manufacturing systems. International Journal of Flexible Manufacturing
Systems 10: 73-100.

14.	Taubin A, Kondratyev A, Kinshinevsky M (1998) Deadlock prevention using
Petri nets and their unfoldings. Int J Manufact Technol 14: 750-759.

15.	Reveliotis SA, Ferreira PM (1996) Deadlock avoidance policies for automated
manufacturing cells. IEEE Transactions on Robotics and Automation 12: 845-857.

16.	Viswanadham N, Narahari Y, Johnson TL (1990) Deadlock prevention and
deadlock avoidance in flexible manufacturing system using Petri net models.
IEEE Trans on Robotics and Automation 6: 713-723.

17.	Yalcin A, Boucher TO (2000) Deadlock avoidance in flexible manufacturing
systems using finite automata. IEEE Trans on Robot Auto 16: 424-429.

18.	Xu G, Wu ZM (2004) Deadlock free scheduling strategy for automated
production cell. IEEE Trans Systems Man and Cybernetics part A 34: 113-122.

19.	Ramirez SA, Benhabib B (2000) Supervisory control of multiworkcell
manufacturing systems with shared resources. IEEE Trans Syst Man Cybern
part B 30: 668-683.

20.	Reingold EM, Nievergelt J, Deo N (1997) Combinatorial.

21.	Gold EM (1978) Deadlock prediction: easy and difficult cases. SIAM J Com 7:
320-336.

22.	Kolonko M (1999) Some new results on simulated annealing applied to the
job shop scheduling problem. European Journal of Operation Research 113:
123-136.

23.	Kumaran TK, Chang W, Cho H, Wysk RA (1994) A structured approach to
deadlock detection, avoidance and resolution in flexible manufacturing
systems. Int J Prod Res 32: 2361-2379.

24.	Li Z, Zhou MC (2004) Elementary siphons of Petri nets and their application to
deadlock prevention in flexible manufacturing systems IEEE Trans on System
Man and Cybernetics Part A: Systems and Humans 34: 38-51.

25.	Shi XQ, Wu ZM (2005) Deadlock free scheduling method for FMSs using beam
search. IEEE Inter. Conf. on System Man and Cybernetics 2: 1188-1193.

26.	Xie X, Jeng M (1999) ERCN-merged nets and their analysis using siphons.
IEEE Trans on Robotics and Automation 15: 692-703.

27.	Sutton R, Barto A (1998) Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, USA 3: 321-360.

28.	Mahadevan S, Marchalleck N, Das T, Gosavi A (1997) Self-improving factory
simulation using continuous-time average-reward reinforcement learning.
Proceedings of the 14th International Conference on Machine Learning,
Nashville, USA, pp: 202-210.

29.	Zeng D, Sycara K (1997) Using case-based reasoning as a reinforcement
learning framework for optimization with changing criteria. Proceedings of the
7th International Conference on Tools with Artificial Intelligence, pp: 56-62.

30.	Schneider J, Wong W, Moore A, Riedmiller M (1999) Distributed value
functions. Proceedings of 16th International Conference on Machine Learning,
Beld, Slovenia, pp: 371-378

31.	Chen M (2013) Job shop scheduling with high level deadlock detection
(dissertation, Iowa State University).

https://doi.org/10.1109/70.938390
https://doi.org/10.1109/70.938390
https://doi.org/10.1109/70.938390
https://books.google.co.in/books/about/Genetic_Algorithms_and_Engineering_Optim.html?id=U7MuV1q6P1oC
https://books.google.co.in/books/about/Genetic_Algorithms_and_Engineering_Optim.html?id=U7MuV1q6P1oC
https://doi.org/10.1109/70.282544
https://doi.org/10.1109/70.282544
https://doi.org/10.1109/70.282544
https://doi.org/10.1109/5326.760564
https://doi.org/10.1109/5326.760564
https://doi.org/10.1109/5326.760564
https://doi.org/10.1023/A:1007969601583
https://doi.org/10.1023/A:1007969601583
https://doi.org/10.1023/A:1007969601583
https://doi.org/10.1023/A:1007969601583
https://doi.org/10.1007/BF01438227
https://doi.org/10.1007/BF01438227
https://doi.org/10.1109/70.544768
https://doi.org/10.1109/70.544768
https://doi.org/10.1109/70.63257
https://doi.org/10.1109/70.63257
https://doi.org/10.1109/70.63257
https://doi.org/10.1109/70.864237
https://doi.org/10.1109/70.864237
E:\Journals\IEM\IEM Volume 6\IEM 6.3\IEM 6.3_W\IEM-17-452 [215]\10.1109\TSMCA.2003.820573
E:\Journals\IEM\IEM Volume 6\IEM 6.3\IEM 6.3_W\IEM-17-452 [215]\10.1109\TSMCA.2003.820573
https://doi.org/10.1109/3477.875444
https://doi.org/10.1109/3477.875444
https://doi.org/10.1109/3477.875444
https://doi.org/10.1137/0207027
https://doi.org/10.1137/0207027
http://econpapers.repec.org/article/eeeejores/v_3a113_3ay_3a1999_3ai_3a1_3ap_3a123-136.htm
http://econpapers.repec.org/article/eeeejores/v_3a113_3ay_3a1999_3ai_3a1_3ap_3a123-136.htm
http://econpapers.repec.org/article/eeeejores/v_3a113_3ay_3a1999_3ai_3a1_3ap_3a123-136.htm
http://dx.doi.org/10.1080/00207549408957073
http://dx.doi.org/10.1080/00207549408957073
http://dx.doi.org/10.1080/00207549408957073
E:\Journals\IEM\IEM Volume 6\IEM 6.3\IEM 6.3_W\IEM-17-452 [215]\10.1109\TSMCA.2003.820576
E:\Journals\IEM\IEM Volume 6\IEM 6.3\IEM 6.3_W\IEM-17-452 [215]\10.1109\TSMCA.2003.820576
E:\Journals\IEM\IEM Volume 6\IEM 6.3\IEM 6.3_W\IEM-17-452 [215]\10.1109\TSMCA.2003.820576
https://doi.org/10.1109/ICSMC.2005.1571307
https://doi.org/10.1109/ICSMC.2005.1571307
https://doi.org/10.1109/70.781975
https://doi.org/10.1109/70.781975
http://dx.doi.org/10.1016/S1364-6613(99)01331-5
http://dx.doi.org/10.1016/S1364-6613(99)01331-5
https://www.researchgate.net/publication/2799271_Self-Improving_Factory_Simulation_using_Continuous-time_Average-Reward_Reinforcement_Learning
https://www.researchgate.net/publication/2799271_Self-Improving_Factory_Simulation_using_Continuous-time_Average-Reward_Reinforcement_Learning
https://www.researchgate.net/publication/2799271_Self-Improving_Factory_Simulation_using_Continuous-time_Average-Reward_Reinforcement_Learning
https://www.researchgate.net/publication/2799271_Self-Improving_Factory_Simulation_using_Continuous-time_Average-Reward_Reinforcement_Learning
https://doi.org/10.1109/TAI.1995.479378
https://doi.org/10.1109/TAI.1995.479378
https://doi.org/10.1109/TAI.1995.479378

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Related Work
	Research Methodology
	Proposition 1
	Proposition 2
	Proposition 3
	Definition 1
	Definition 2

	Evaluation
	Conclusion
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6.1
	Figure 6.2
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	References

