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Abstract
Optimization of makespan in scheduling is a highly desirable research topic, deadlock detection and prevention 

is one of the fundamental issues. Supported by what learned from this class, a reinforcement learning approach is 
developed to unravel this optimization difficulty. By evaluating this RL model on forty classical non-buffer benchmarks 
and compare with other alternative algorithms, we presented a near-optimal result.
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Introduction
Due to buffer-less setting, deadlock (DL) occurs frequently in 

resource sharing environment and concurrent computing systems. 
A deadlock is a state in which each member of a group of actions is 
waiting for some other member to release a lock. [1] Once this DL state 
occurred, workflow would stack in a fixed loop and never discharged.

Figure 1 present a typical scheduling problem: 3 jobs need to be 
operated on 3 different machines following different sequences, each 
machine can only operate one job each time. How to schedule jobs 
in specific sequence to minimize total makespan aka processing time 
without deadlock is a typical optimization problem. Due to limitation 
of resources, deadlock happened frequently, other than a feasible 
solution, to find the global optimal deadlock free solution is difficult.

There are certain methods to solving deadlock problems: 1. Do 
nothing, 2. Kill the workflow, 3. Preempt and rollback. Other than kill 
the workflow, deadlock detection algorithms are more efficient in most 
cases and additionally, deadlock free scheduler would enable the real-
time control for engineering system. Preventing or avoiding deadlock 
helping maintain system performance aka makespan stay at positive 
level.

A simple head-tail scheduling example is present in Figure 2. The 
rectangle stands for resource Ri, symbol Pi stands for jobs, if rectangle 
is empty them means no job is operating on that resource. Arrow 
stands for the action of each job. Second level DL has been addressed 
in the previous articles. Here on Figure 3, a deck lock is presented. Job 
P3 is moving to resource 3 then resource 1, but once it moved it will 

be a deadlock because P1 and P2 will be non-moveable. If P2 move to 
resource 3 first, then P2 and P3 will be a deadlock as they heading to 
other’s occupation while there is no buffer.

In this paper we present a new reinforcement learning approach 
solving this scheduling optimization problem. We will test our 
algorithm’s on the classical buffer-less benchmark and compare with 
the optimal solution.

Related Work
Local and global deadlock-detection in component-based systems 

are NP-hard [2]. Wysk et al. [3] developed a deadlock detection via 
integer programming in finding the optimum makespan. Specifically, 
they added constraints to ensure agents not release resource unless being 
assigned the next resource. However, integer programming method can 
only be used on small size problem as it would take very long time to 
run. Their integer programming formulation is shown below.

XiK: Completion time of last operation of job i(term K);

Xikj: Completion time of job i operation k on machine j;

Tikj: processing time of job i operation k on machine j;

Yprqaj: {o,1}: 1 if job p operation r follows job q operations on 
machine j; 0 if otherwise.
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Figure 1: 3 machine 3 job scheduling problem.
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Figure 2: Deadlock I level.
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H: big positive number,

E: small positive number,

I: set of all jobs {1,2,3..N},

J: set of all machines {1,2,3..M}.

Formulation:

1=
= ∑

N

iK
i

Min Z X

Xikj-Tikj≥ Xi(k-1)l

Xqrj-Xqrj +H(1-Yprqaj) ≥ Tqrj [∀j∈J; ∀(p,q)∈I]

Xqaj-Xqrj+HYprqaj ≥ Tqaj [∀j∈J; ∀(p,q)∈I]

Xp(r-1)1-Xqaj+H(1-Yprqaj) ≥ E [∀j∈J; ∀(p,q)∈I, l∈J]

Xq(r-1)-Xqrj+HYprqaj ≥ E [∀j∈J; ∀(p,q)∈I, w∈J].

In view of the modeling frameworks in the existing literature, three 
strategies for processing DL and corresponding research work are as 
follows:

•	 Deadlock Prevention, which organizes resource usage by 
each process to ensure that at least one process is always able to get 
all the resources it needs [4]. Mixed integer programming [5] and 
region theory [6] are used to solve elementary siphon [7-9] to avoid 
deadlock. Edsger et al., Gen and Cheng [6,10] developed Banker’s 
algorithm in 2006. However, these algorithms have many limitations: 
need fixed processing numbers; no further processing can be started 
when executing, and also need fixed resources amount.

•	 Deadlock Avoidance based on the current system state and 
agents’ future resource request, by restricting the resource allocation to 
avoid the deadlock. Petri Net model [3,11-14] are complete developed 
in this area. Di-graph model and Auto-mata model [6,9,12,15,16] were 
also built to handle avoidance problems. However, current avoidance 
algorithms are not able to handle high level DL.

•	 Deadlock Detection and Recovery is more focusing on 
quickly deadlock issue once detected. This can be completing in a 
couple ways [6,14], such as aborting certain action or add additional 
buffer. Still, detect deadlock and schedule a deadlock free path may be 
more convenient.

Lots of artificial intelligence and operation research effort has 
been applied to in scheduling problems. Zhang and Dietterich [17] 
were the first who applied reinforcement learning here. Mahadevan 
et al. [18] proposed a reinforcement learning algorithm combines 
different scheduling problem for the optimization of transfer-lines in 
manufacturing systems. Another maintenance-based approach based 
on simplified reinforcement learning is suggested by Zeng and Sycara [19].

Research Methodology
First let’s give definition of deadlock on different levels. The first 

level of a DL is a set of agents that each request collects the resources 
held by another agent. The second-level DL is a set of agents any action 
will result in a first-level DL. The high level DL is a set of agents moving 
any action will result in a second-level DL. Figure 4 deliver a graph of 
how a high level DL happens.

We would like to use ranking matrix formulate this action system: 
S=[sij]M×N stand for the state matrix of the system with i∈l={1,2,…, M} 
and j∈j={1,2,…, N}

Proposition 1

For agents/ jobs A={ai, i=1,…, MA} in the detection system, we have that,

For i=1 then no existence of b∈l, x∈J where 0
ia xs = , sbx=1

For 1<i<MA, then y∈J where 0
ia ys = , 

1
1

ia ys
−

=

For i=MA, then z∈J and 1
kj zs = , 0hz

h I

s
∀ ∈

≠∏  (Figure 5).

a1 defined as the Last agent of  ∀ai∈A and denoted by TJ(ai)=a1, AMa  
defined as the First agent where  ∀ai∈A, denoted by ( )

Ai MHJ a a= , z 

defined as the head resource of  ∀ai∈A, denoted by HR(ai)=z. After 
Pk changing every state, a new matrix will be derivative: if i ≠ k then 

[ ]ijS s=  as ij ijs s= , or 1ij ijs s= −  while i=k. using set R={r R={rj, 
j∈J={1,2,…, M}} stand for M resources, using set P={pi, i∈l={1,2,…, 
N}} stand for N agents/jobs, all agents follows the predefined working 
procedure S=[sij]M×N stand for the system state at certain point. sij stand 
for the position when agent/job pi being processed on resource ri. 
(Figure 6.1).

If sij>0 means ri not being occupied by agent/job pi yet; if sij=0 then 
job pi is occupying resource ri ; if sij>0 then job pi finished tasks on ri. 
Hence, the ranking matrix of state changed from S1 to state S2 while 
agent/job p1 transferring position from r2 to r4,
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Proposition 2

The second level deadlock exist under necessary and sufficient 
condition as ls⊆l where;

p1: r1 → r2
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p2
p2: r2 → r3 p2: r3 → r4

p3: r5 → r4

p4: r3 → r1

r1

r2 r3 r4
p3

p4

p2: r4 → r5

r5

r6

p3: r4 → r6p4: r6 → r3

Figure 4: Deadlock III level.
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(a)	 k∈J as for  ∀a∈ls, HR(a)=k.

(b)	  ∀b∈ls as HJ(b)=b there exist cls, ∈J that sb=2, sc=0, and HJ(c) 
≠b (Figure 6.2).

If apply Proposition 2 to the previous example in ranking matrix. 
The state matrix will be:

0 1
0 1 2

2 1 0

X X
S X

X

 
 =  
  

Proposition 3

The high level deadlock exist under exist necessary and sufficient 
condition as lT⊆l which:

(a) x,y∈J for

(i) for   ∀alT, [HR(a)-x].[ HR(a)-y]=0

(ii) [ ( ) ] [ ( ) ] 0
T Ta I a I

HR a x HR a y
∀ ∈ ∀ ∈

− ⋅ − ≠∑ ∑ .

(b) ∀b∈lT as HJ(b)=b

(i) k∈J as sbk=2;

(ii) if c∈lT as sck=0, then HJ(c) ≠b; o.w., (k-x) (k-y)=0, as d∈lT and 
∈J by sb=3, sd=0, HR(d) ≠ HR(b) (Figure 7).

If apply Proposition 3 to the previous example in ranking matrix. 
The state matrix will be:

0 1
0 1 2 3

1 0 2
2 1 0

X X X X
X X

S
X X X

X X X

 
 
 =
 
 
 

1.	 HR(1)=HR(2)=HR(4)=3. HR(3)=HR(5)=4 so condition (a) 
satisfied.

2.	 HJ(2)=2, HJ(3)=3, HJ(4)=4 and s24=s36=s41=2 so condition 
[b(i)] satisfied.

3.	 Resource 4 will be required by Agent 2 in two steps and available; 
also have s25=3, s25=0 and HR(2)=3≠HR(3)=4. Condition [b(ii)] 
satisfied as s36=2.

3.1	 s36=2, s46=0, and HJ(3)=3≠HJ(4)=4.

3.2	 s41=2, s11=0, and HJ(4)=4≠HJ(1)=2.

As mentioned above, we consider all collaborative action teams 
seeking to optimize global rewards, and we assume that we can use our 
reinforcement learning approach to model the corresponding multi-
action stochastic systems and provide a search algorithm. Therefore, 
there is at least one action sequence that maximizes the expected return 
of all movements [20-26].

Definition 1

Set Si⊆S be the system state of i, where si={A (π1), A (π2)…A (πi)}, 
{Ai} denote actions will be executed, πI denotes the policies of action. 
The action Ai at state I and the reward value R (i), represent by:

, 1
( )

( )

n

i k
i k

MAX

J M
R

C
=

+
=
∑



Cmax denotes the makespan,
, 1

( )
i

i k
i k

J M
=

+∑  represent the summary 

of jobs and machines been involved. Here P (π) represents the 
performance of policy π, and R () represents the local action reward 
parameter.

Definition 2

Under the set So⊆S, the policy:

0 0 0
1 1

1( ) [ | , ] [ ( ( )) | ] lim ( )
n n

i

ni i
P E R s S E R i R

n
π π γ π

→∞
= =

= ∈ = =∑ ∑ 

 is 

defined as the expected local reward R() and set discount factor  γ to 1.

Evaluation
There are 40 classical scheduling benchmark problems for testing. 

The design of these problems adopts complex structure to increase 
difficulty. Additionally, if these systems are buffer-less, find scheduling 
will harder. Gantt chart can be drawn based on a DL-free timesheet 
obtained by each scheduling benchmark [27-31].

As shown in Figures 8 and 9, they present benchmark LA08 (15 
× 5) and benchmark LA16 (10 × 10). We test the performance of our 
algorithm in this 40 benchmarks with backtracking counting’s, we also 
compare the running time between with and without DL detection. 
Algorithms is written in Matlab, and the workflow of our RL algorithm 
is shown in Figure 10.

The results of 40 benchmark testing with our algorithm are given in 
Table 1. From the results, we found that:
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(1) All 40 benchmarks can be solved via algorithm within acceptable 
time frame.

(2) Our results are very close to the optimal solution. These shows 
our policy-based RL approach is effective in reducing time and cost.

(3) Due to the system difficulty, once the system becomes larger, 
the number of backtracking increases. Backtracking numbers are 0 for 
first 15 benchmark, and the number increases as the states increases. 
However, for all benchmark problems, our number of backtracking 
used is kept at a low level.

(4) Once a DL event occurs, our scheduling algorithm can 
rearrange and generate a new DL-free timesheet within 1 seconds. 
Therefore, we can assuming that our DL-free algorithm would be 
applied to other similar structure systems. Additionally, under more 
power computation system this algorithms making itself a qualified 
tool for real-time operation system (Table 1).

Conclusion
Based on the ranking matrix, graph model and reinforcement 

learning, a new corresponding DL detection algorithm is proposed by 
us, and using that the author analyzed the general pattern of high-level 
DL detection problem based on discrete system, using the classical 

Figure 8: Optimal schedule of LA08.

Figure 9: Optimal schedule of LA16.
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Figure 10: DL detection algorithm via RL.
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Problem (size) 2LD 3LD Makespan Optimal Makespan
Time Backtrack Time Backtrack

FT 06 <1 sec. 0 <1 sec. 0 512 512
LA 01 (10 × 5) <1 sec. 0 <1 sec. 0 1096 1073
LA 02 (10 × 5) <1 sec. 0 <1 sec. 0 1025 1025
LA 03 (10 × 5) <1 sec. 0 <1 sec. 0 857 817
LA 04 (10 × 5) <1 sec. 0 <1 sec. 0 933 827
LA 05 (10 × 5) <1 sec. 0 <1 sec. 0 879 879
LA 06 (15 × 5) <1 sec. 0 <1 sec. 7 1390 N/A in 48 hours
LA 07 (15 × 5) <1 sec. 0 <1 sec. 13 1337 N/A in 48 hours
LA 08 (15 × 5) <1 sec. 0 <1 sec. 19 1314 N/A in 48 hours
LA 09 (15 × 5) <1 sec. 0 <1 sec. 0 1609 N/A in 48 hours
LA 10 (15 × 5) <1 sec. 0 <1 sec. 8 1525 N/A in 48 hours
LA 11 (20 × 5) <1 sec. 0 <1 sec. 3 1873 N/A in 48 hours
LA 12 (20 × 5) <1 sec. 0 <1 sec. 17 1726 N/A in 48 hours
LA 0 13 (20 × 5) <1 sec. 0 <1 sec. 14 1895 N/A in 48 hours
LA 14 (20 × 5) <1 sec. 0 <1 sec. 0 1901 N/A in 48 hours
LA 15 (20 × 5) <1 sec. 0 <1 sec. 0 2015 N/A in 48 hours
LA 16 (10 × 10) <1 sec. 1 <1 sec. 16 1498 N/A in 48 hours
LA 17 (10 × 10) <1 sec. 0 <1 sec. 113 1187 N/A in 48 hours
LA 18 (10 × 10) <1 sec. 0 <1 sec. 12 1478 N/A in 48 hours
LA 19 (10 × 10) <1 sec. 6 <1 sec. 31 1412 N/A in 48 hours
LA 20 (10 × 10) <1 sec. 0 <1 sec. 0 1514 N/A in 48 hours
LA 21 (15x10) <1 sec. 21 <1 sec. 409 2051 N/A in 48 hours
LA 22 (15 × 10) <1 sec. 29 3 sec. 12053 1811 N/A in 48 hours
LA 23 (15 × 10) <1 sec. 143 <1 sec. 1339 2032 N/A in 48 hours
LA 24 (15 × 10) <1 sec. 22 <1 sec. 888 1934 N/A in 48 hours
LA 25 (15 × 10) <1 sec. 108 <1 sec. 12430 1983 N/A in 48 hours
LA 26 (20 × 10) <1 sec. 38 45 sec. 624349 2666 N/A in 48 hours
LA 27 (20 × 10) <1 sec. 36 <1 sec. 221 2730 N/A in 48 hours
LA 28 (20 × 10) <1 sec. 6 <1 sec. 799 2600 N/A in 48 hours
LA 29 (20 × 10) <1 sec. 196 <1 sec. 8683 2621 N/A in 48 hours
LA 30 (20 × 10) <1 sec. 23 <1 sec. 591 2774 N/A in 48 hours
LA 31 (30 × 10) <1 sec. 33 <1 sec. 3174 3701 N/A in 48 hours
LA 32 (30 × 10) <1 sec. 73 47 sec. 295725 3997 N/A in 48 hours
LA 33 (30 × 10) <1 sec. 71 4 sec. 46982 3791 N/A in 48 hours
LA 34 (30 × 10) <1 sec. 94 4 sec. 26426 3929 N/A in 48 hours
LA 35 (30 × 10) <1 sec. 68 <1 sec. 9705 4076 N/A in 48 hours
LA 36 (15 × 15) <1 sec. 69 Not available in 3hrs 2543 N/A in 48 hours
LA 37 (15 × 15) <1 sec. 239 <1 sec. 1765 2800 N/A in 48 hours
LA 38 (15 × 15) <1 sec. 339 8 min. 2301 N/A in 48 hours
LA 39 (15 × 15) <1 sec. 35 <1 sec. 1922 2386 N/A in 48 hours
LA 40 (15 × 15) <1 sec. 415 15 min. 8518357 2578 N/A in 48 hours

Table 1: Evaluation table.

forty benchmark problems. However due to the heavy computation, 
some work might took very long term, but this can be solved in time 
while the computation speed is exponential increasing.

This algorithm is developed under the buffer less environmental 
which is much more difficulty compare to real world. Therefore, it 
is worth believing that our algorithm should be extended to other 
resource sharing systems.

Based on this DL detection algorithms, relax some certain constrains 
new limited buffer DL detection algorithms can be developed and can 
be widely applied in the mechanical system, parallel computing system, 
and the future is quite bright.
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