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Abstract
The flow behavior in nano-darcy shales neighbored by high conductivity induced natural fractures violates the 

assumptions behind Arps’ decline models that have been successfully used in conventional reservoirs for decades. 
Current decline curve analysis models such as Logistic Growth Analyses, Power Law Exponential and Duong’s 
model attempt to overcome the limitations of Arps’ model. This study compares the capability of these models to 
match the past production of hundred shale oil wells from the Eagle Ford and investigate how the choice of residual 
function affects the estimate of model parameters and subsequently the well life, pressure depletion and ultimate 
recovery. Using the proposed residual functions increased the tendency of deterministic models to have bounded 
estimates of reserves. Results regarding well performance, EUR, drainage area and pressure depletion are obtained 
quickly and show realistic distributions supported by production hindcasts and commercial reservoir simulators. 
Overall, the PLE and Arps’ hyperbolic models predicted the lowest/pessimistic and highest/optimistic remaining 
life/reserves respectively. The newly proposed residual functions were thereafter used with the Arps’ hyperbolic 
and LGA models. We found that the use of rate-time residual functions increased the likelihood of the value of 
hyperbolic exponent being less than 1 by 87.5%. The proposed residual functions can be used to provide optimistic 
and conservative estimations of remaining reserves and remaining life using any of the above decline models for 
economic analysis. The key results provided by the modified DCA models help in long-term planning of operations 
necessary for optimal well completions and field development, accomplished in a fraction of the time currently 
required by other complex software and workflows.
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Abbreviations: q: Production rate, volume/time; t: Time; b: Decline 
exponent 0 ≤ b ≤ 1; q(t): Production rate at time t, volume/time; qi: 
Initial production rate, volume/time; Di: Initial decline constant, 1/
time; Q (t): Cumulative production, volume; K: Carrying capacity, 
STB;  an: Constant of tn, time; n: Exponential parameter; a: Intercept 
constant, 1/time; m: Slope; q1: Oil rate at day 1; qα: Oil rate at infinite 
time; t (a,m): Time function; iD̂ :Rate at t=0, volume/time; D1: Decline 
constant after at time =1, 1/time; Dα: Decline constant at infinite time, 
1/time; iD̂ : Decline constant = D1 / n, 1/time; n′: Time exponent; q(t)
i: Production rate of month i, STB/day; ti: Number of days in month i, 
days; x: The month number when rate is 2 STB/day

Introduction
Decline curve analysis (DCA) is a technique where production 

data from a well or reservoir is used to predict the well/reservoir future 
production. Two important goals of DCA are to estimate the remaining 
reserves and the remaining life down to a specified economic limit, 
both of which are important for determining the economic viability 
of a shale resource play. The behavior of fluid flow in extremely tight 
porous media neighbored by high conductivity induced and/or natural 
fractures creates challenges in forecasting the performance of shale 
oil wells/reservoirs. Transient and fracture-dominated flow regimes 
demand new well performance evaluation techniques. Evaluating Arps’ 
model assumptions for decline curve analysis highlights its limitations 
when applied to shale reservoirs and the need for better models for 
these unconventional reservoirs. 

Wells producing from shale reservoirs are all hydraulically 
fractured. Production commences with 100% water and the water 
cut decreases over the life of the well. It takes few weeks to few 
months for oil/gas production rate to reach its maximum followed 
by a steep decline in production. This is partially due to production 
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being dominated by the stimulated reservoir volume (SRV) with little 
contribution from the reservoir matrix [1]. This and other complexities 
of shale reservoirs cause the Arps’ model to overestimate reserves, often 
yielding mathematically infinite reserves estimates, b>1. To address this 
problem, different decline curve analysis models have been proposed 
for tight and shale reservoirs such as Power Law Exponential (PLE), 
Duong’s method and Logistic Growth Analyses (LGA). 

The objective of the first part of this study is to find out which of these 
four decline models reliably forecasts production from hydraulically 
fractured horizontal shale oil wells. Production data from 100 oil wells 
from eight counties in the Eagle Ford Shale play of southeast Texas 
were analyzed as part of this work. Using a regression co-efficient 
cut-off of 95%, we see that the LGA model fits the production data 
(both rate and cumulative) from 81 of the 100 wells analyzed. The 
Arps’ hyperbolic and the LGA equation provided the most optimistic/
pessimistic reserves estimates respectively. The second part of this work 
investigated how the choice of residual function affects the estimate of 
model parameters and subsequently remaining well life and reserves. 
For this, the objective was to develop a methodology that maximizes 
the likelihood of satisfactorily fitting the data with a b-value <1 without 
developing complicated routines. We explored the use of different 
residual functions and we found out that using logarithmic rate 



Citation: Paryani M, Ahmadi M, Awoleke O, Hanks C (2018) Decline Curve Analysis: A Comparative Study of Proposed Models Using Improved 
Residual Functions. J Pet Environ Biotechnol 9: 362. doi: 10.4172/2157-7463.1000362

Page 2 of 8

Volume 9 • Issue 1 • 1000362
J Pet Environ Biotechnol, an open access journal
ISSN: 2157-7463

residuals maximized this likelihood. We saw that approximately 75% 
of the well histories that were fitted using the logarithmic rate residual 
have hyperbolic b-values <1 as opposed to 40% using the least squares 
error function-A 87.5% increase.

Methodology
Eagle ford shale overview

The Eagle Ford Shale play is located in the Maverick Basin of 
Southeast Texas and is approximately 400 miles long and 50 miles wide 
(Figure 1) [1]. In this study, production data of a hundred oil wells in 
Eagle Ford Shale play was obtained from Texas Rail Road Commission 
(TRRC) website. The hundred wells covered eight counties namely, 
Burleson, Zavala, Gonzales, Karnes, La Salle, Live Oak, Dimmit and De 
Witt (Figure 1). Some, but not all, of the wells reported the horizontal 
length and number of fracture stages. 

The main objective behind analyzing this data is to check the 
applicability of the existing decline curve models on Eagle Ford Shale 
wells. The general procedure is to tune the existing decline models 
by matching the production rate and/or cumulative data of each 
well. A model is said to fit ‘fairly well’ when the regression coefficient 
between the model output and the actual production date is greater 
than or equal to 95%. Each tuned model is then used to predict future 
production rates, remaining reserves and remaining time to reach the 
abandonment rate of 2 STB/day for each well. The length of production 
history varies for different wells from 15 to 48 months.

Decline curve analysis and application to eagle ford 
production data

Arps’ decline curve model: Arps’ observed that the ratio of 
production rate to change in production rate played a crucial role 
in determining the type of decline a well would undergo. The major 
underlying assumptions for using Arps’ equations are (1) constant 
bottom hole pressure (2) boundary dominated flow (3) constant 
drainage area and (4) constant skin factor [2,3].

The exponential form (b=0) typically applies to conventional 
reservoirs with reasonably high permeability in which a short transient 
phase is usually followed by boundary dominated flow. However in 
case of shale reservoirs where matrix permeability is extremely low, 
it is uncertain and probably unlikely that flow will become boundary 
dominated during a typical well’s producing life.

The hyperbolic form of Arps’ work (0<b<1) is typically a concave 
up curve on a semi log plot of rate versus time. This model is 

frequently used for conventional reservoirs. However, in cases where 
boundary dominated flow has been reached, it can also be used for 
low permeability reservoirs. As stated previously, shale reservoirs 
have extremely low permeability in the range of nano-darcies. The 
nano-darcy matrix permeability coupled with the high permeability 
hydraulic fracture is the cause of long transient flow in shale reservoirs. 
As such, these wells exhibit high initial rates followed by rapid declines. 
This and other complexities of shale reservoirs can cause the b-value 
for Arps’ hyperbolic to be greater than 1 [3].

The use of Arps’ equation to analyze production data from shale 
reservoirs is not recommended because these reservoirs sometimes 
do not attain boundary dominated flow due to their low permeability. 
Moreover, the drainage area is not constant because the pressure pulse 
continues to propagate from the near wellbore/fracture to other areas 
of the stimulated reservoir volume. Under these conditions, the b-value 
obtained from regression by minimizing the least square error between 
the values predicted by the Arps’s hyperbolic model and the actual 
production data will be greater than 1. This in turn leads to erroneous 
estimates of reserves. However, despite the obvious drawbacks to using 
Arps’ equation in shale reservoirs, it is still a very popular model. We 
think that the reasons are (1) because it provides a reasonable history 
match even when b>1 and (2) it is a familiar tool. 

In any case, because we wanted to compare the impact of 
different residual functions on the b-value estimates, we used Excel’s 
multivariable solver tool to calculate the parameters from Arps’ 
equation for different error functions. We estimated the decline rate Di, 
initial production rate qi, and the decline exponent b. This was done by 
fitting the production data/history using least residual squares. We will 
discuss the improvements obtained by using different residual functions 
later in this paper. Once the parameters were obtained, the estimated 
ultimate recovery (EUR) and the remaining time to reach abandonment 
were calculated. This was repeated for 100 wells randomly selected 
from 8 different counties. Figure 2a shows an example history match 
of Cannon well in Karnes County with the Arps’ hyperbolic model. In 
general, it was observed that Arps’ hyperbolic model matched well for 
all the hundred wells regardless of whether the hyperbolic exponent 
was normal or abnormal. The significance of abnormal exponent was 
felt when predicting future performance.

Logistic Growth Analysis (LGA) Model: The LGA model [4,5] 
is proposed to estimate reserves for reservoirs with extremely low 
permeability. It was derived from the hyperbolic family of curves and 
its prediction of cumulative production takes the following form—
equation (1).

Figure 1: Map of Eagle Ford shale (after Wang and Liu, 2011).
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‘K’ is the carrying capacity or the maximum recoverable oil from 
the reservoir/well. The ‘an’ constant is tn at which half of the recoverable 
oil has been produced. ‘n’ is the hyperbolic exponent. By differentiating 
equation (1), the rate form of the LGA model is obtained and it is stated 
below—equation (2).
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One of the assumptions is that the parameter ‘K’ or the recoverable 
reserves is already known ahead of time—usually by volumetric 
calculations. However, ‘K’ can also be a fitting parameter. Another 
assumption is that a single well will be sufficient to drain the entire 
reservoir over a long period of time. The two major advantages of the 
LGA model are that (1) the parameter ‘K’ ensures the reserves estimate 
is constrained (this is in contrast to the Arps hyperbolic model) and (2) 
the production rate is eventually terminated at infinite time which also 
ensures the reserves estimate is constrained [5]. 

In our study, the parameters K, an and n were estimated using 
Excel’s multivariable solver tool. The Logistic Growth Analysis model 
fitted the hundred wells’ past production data very well. For the wells 
with abnormal hyperbolic exponent, b>1, the LGA model constrained 
the expected ultimate recovery and reported more realistic results 
compared to the highly optimistic estimates from the hyperbolic model. 
An example history match from Berry well in Karnes County is shown 
in Figure 2b. A very good match for production rate and cumulative 
production is obtained in this example. 

Duong’s model: Duong [6] observed that a log-log plot of 
production rate over cumulative production versus time was always 
a straight line for unconventional reservoirs. The parameters (slope, 

m and intercept, a) obtained from this plot are the characteristics of 
the reservoir rock and fracture stimulation completions. Instead of the 
traditional Arps’ method to evaluate rate and cumulative production 
based on boundary dominated flow, Duong suggested using the 
constraints of initial production rate and the production rate at infinity. 
Duong’s work is described primarily by equations (3) and (4).
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Typical ranges of these parameters are 1 ≤ m ≤ 2 and 0 < a ≤ 2. The 

two major limitations of this model are that when the well is shut in for 
long periods of time, proper rate initialization according to pressure is 
required to obtain correct values of parameters ‘a’ and ‘m’. Secondly, in 
case of water breakthrough, there is sudden decrease in the decline rate 
and this causes an increase in values of the ‘a’ and ‘m’ parameters [6]. 

In order to analyze Eagle Ford production data using this method, 
two diagnostic plots were generated using equations (3) and (4): log-
log plot of q(t)/Q (t) versus time and rate versus t (a,m). By plotting the 
ratio of rate to cumulative production vs. time, the parameters ‘a’ and 
‘m’ were obtained. Thereafter, by plotting rate vs. the time function we 
get parameters ‘q1’ and ‘qα’. After obtaining all the model parameters, 
equations (3) and (4) were algebraically manipulated to provide 
predictions of rate and cumulative production. Figures 3a and 3b show 
an example of diagnostic plots for Duong’s model. Figure 3a is log-log 
plot q(t)/Q (t) vs. time. Least square regression trend-line tool in Excel 
gives the values of parameters ‘a’ and ‘m’. Figure 3b is a diagnostic plot 
of rate vs. time function which is dependent on parameters ‘a’ and 

Figure 2: a) Arps’ hyperbolic fit for Cannon well (Karnes County) showing rate and cumulative production history match, b) Example of good LGA fit for the Berry well.
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a monthly basis until the abandonment rate of 2 STB/day is reached. 
We can also use the trapezoidal method to solve equation (8). If so, we 
have the following: 

1
( ) ( )

x

i i
i

Q t q t t
=

= ∑ 				                  (9)

Figure 4b shows rate versus time series data for the Muenchow 
well in Karnes County along with both hyperbolic and power law fits. 
As seen in the figure, both models fit the production data very well; 
however, the hyperbolic model fits with a ‘b’ value of 1.44 which will 
mathematically cause it to give an unreliable estimate of remaining 
reserves. The power law fit overcomes this shortcoming as it will 
terminate at a reasonable time to give more conservative results [9,10]. 

Summary of DCA models: This above analysis highlights some 
of the pitfalls associated with using DCA techniques developed for 
conventional reservoirs in shale well production prediction and 
reserves estimation with 60% of the obtained b values being above 
1. Using the Arps’ hyperbolic equation consistently provided high 
estimates and may be said to be the optimistic approach for generating 
future production predictions due to the unusually high Arps’ decline 
exponent. As stated elsewhere in the technical literature, forecasting 
transient production using an Arps’ hyperbolic equation with b>1 can 
lead to a severe overestimation of EUR, and for that matter, remaining 
reserves. 

Overall, the LGA model fits 81% of the wells' past production rate 
and cumulative production. The lack of a good history match with 
the remaining wells may be due to paucity of production history data. 
The LGA model gives finite EUR estimates when compared to Arps’ 
models. 

The Duong’s model fits the production rate and cumulative 
production data for about 51% wells. The Duong’s model performed 
well when the production history was at least 20-24 months with 
minimal noise. However, for some cases, even when the data was 

‘m’. The least square regression trend-line gives the values of ‘q1’ and 
‘qα’. Note that when trend-line passes through origin, the value of q 
becomes zero as it is the intercept of the trend-line (Figure 4a).

Power law exponential (PLE) model: Ilk developed this model [7] 
and applied to field examples by McNeil [8]. It approximates the rate 
decline seen in the production from shale gas wells with a power law 
decline. In a sense, this model replaces the ‘b’ and ‘Di’ values from Arps’ 
equation with the new parameters ‘D1’, ‘Dα’and ‘n′’ and its rate time 
takes the following form—equation (7).
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The major advantages of this model are: (1) the extra variables enable 
the model to account for both transient and boundary dominated flow 
whenever necessary; and (2) the equation for production rate looks 
similar to Arps’ exponential form which gives the model a familiar feel. 

Based on our results, the power law model gives good estimates for 
reserves even when ample data is not available. The power law model 
was applied to 100 wells in the Eagle Ford shale play. The least square 
regression between the PLE rate and actual rate is minimized using 
Excel’s multivariable solver tool. The time to reach abandonment was 
computed by equating production rate to 2 STB/day. The EUR can be 
estimated by integrating the rate equation (8) with respect to time,

( )
0
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t

n
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However, the solution to this integral is not a trivial process. 
Alternatively, a good approximation for computing the EUR is 
accomplished numerically by summing up incremental production on 
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B

Figure 5: a) Bar chart showing percent fitted based on a regression coefficient of 95% by investigated models, b) Bar chart comparing performance of investigated 
models.
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smoothed, Duong’s model did not match the production history well. 
It also occasionally resulted in extremely high reserves estimates like 
Arps’ hyperbolic model or extremely low reserves estimates like Arps’ 
exponential model, with no clear cause.

As PLE comes from exponential family of curves, it is similar to 
Arps’ exponential model. For other cases, the PLE consistently gave the 
lowest forecasts for all the models. It is therefore the most conservative 
method for production forecasting and reserves estimation. Based 
on R2 ≥ 0.95, PLE fits 67% of the wells past production rate. The 
comparison in terms of percentage fitted by each model and remaining 
reserve/remaining life for each model is shown in Figure 5. As seen 
in Figure 5a, LGA, which also reports conservative results, remains 
the most successful technique to model the wells past production 
performance. Thus it can be inferred that LGA, PLE and the Duong’s 
models do overcome the limitations of Arps’ models up to a certain 
extent when applied to shale reservoirs. However there is still scope of a 
better model in terms of consistency in fitting the wells past production 
[11,12].

Using different residual functions to improve forecasting: 
Numerous efforts have been made to correct the shortcomings 
associated with using the Arps’ equation in unconventional reservoirs. 
The three models reviewed in the above section overcome the limitations 
of Arps’ models to varying degrees. Clearly, the deterministic models 
in literature provide a range of estimates indicating the challenges 
involved in making accurate production forecasts. However, despite 
all the above, the Arps’ model is still widely used for the evaluation of 
EUR of shale oil/gas wells. This is probably because of its simplicity. 
Therefore, to improve the applicability of the Arps’ model, this study 

investigates how the choice of residual function affects the estimate of 
model parameters and subsequently remaining well life and reserves.

In the above study, monthly oil production data is deterministically 
fitted for each well by constraining the parameters using least 
residual squares. The residual used for that work is the least square 
error computed using the fit from the above models and actual rate/
cumulative data. We hereafter call this the base error function. When 
this error form is used, earlier data points are more heavily weighted. 
This affects the resulting model parameters and the subsequent 
forecasts. 

To address this problem, two and four different residual functions 
were defined and are used for the cumulative-time and rate-time forms, 
respectively (Table 1). The objective of the proposed residuals is to 
weight the most recent production data more heavily. This will ensure 
that the fitted parameters will reflect the current flow regime in the 
drainage area of the wells. The LGA and Arps’ models were applied to 
the data using the new residual functions. This process was integrated 
in an Excel-VBA spreadsheet software [13,14].

Example case study

Figure 6 shows the various fits using data from Oliver B well in 
the De Witt County and the different residual functions. Table 2 
summarizes the performance of Arps’ and LGA models using different 
error functions with the same data. The base case residual function fits 
the trend hyperbolically with a b value of 0.76, whereas the normalized 
rates, inverse normalized rates and logarithmic residuals fit with b 
values of 0.41, 0.43, and 0.25 respectively. The cumulative residual 
function follows harmonic decline with a b value of 1 and normalized 
cumulative residual fits with a b value 0.91. Because of the reduction in 
b-values for both the normalized rates and logarithmic residuals, the 
predicted remaining life and remaining reserves substantially drops. 
This results in conservative forecasts comparable with LGA model 
results. 

Figure 7 shows the various fits using data from Haug-Kieschnick 
Unit 33 in the La Salle County and the different residual functions. 
Table 3 summarizes the performance of Arps’ and LGA models using 
different error functions with the same data. Base case fits the trend 
hyperbolically with b value of 1.49, whereas the normalized rates, 
inverse normalized rates and logarithmic residuals fit with b values of 
0.67, 0.29, and 0.66 respectively. Again in this case, using these different 
residual functions leads to lower b-value estimates. This also results in 
conservative estimates. The cumulative residual follows hyperbolic 
decline with a b value of 1.36 and normalized cumulative residual fits 
with a b value 1.84. (Note: Since b>1 gives unreasonable forecasts, the b 
value is restricted to 1 for the base case for illustration purposes).
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Table 1: Error functions used for analysis.
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Model T-remained, days Np-Remained, STB Error Function Fitting q or Q vs time b value
Hyperbolic 47127 659763 Base Case q 0.76
Hyperbolic 12317 278718 Normalized Rate q 0.41
Hyperbolic 13396 296967 Inverse Normalized Rate q 0.43
Harmonic 132227 1234697 Cumulative Q 1.00

Hyperbolic 85402 902057 Normalized Cumulative Q 0.91
Hyperbolic 6910 210552 Logarithmic Rate q 0.25

LGA 21350 388802 Base Case Q
LGA 16778 299729 Normalized Q

Table 2: Results summary for proposed residuals applied to Oliver B well.
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Figure 7: Influence of error function on parameter b for Haug Kieschnick Unit 33 well.

Model T-remained, days Np-Remained, STB Error Function Fitting q or Q vs time b value
Harmonic 12487 87236 Base Case q 1.00

Hyperbolic 5376 45767 Normalized Rate q 0.67
Hyperbolic 1866 29434 Inverse Normalized Rate q 0.29
Harmonic 13417 82538 Cumulative Q 1.00
Harmonic 11500 66720 Normalized Cumulative Q 1.00

Hyperbolic 5554 50389 Logarithmic Rate q 0.66
LGA 5880 46613 Base Case Q
LGA 6000 44937 Normalized Q

Table 3: Results Summary for proposed residuals applied to Haug Kieschnick Unit 33 well.

Statistical analysis of parameters: Residual function analysis
The box and whisker plots in Figures 8a-8c summarize the center, 

spread and overall range of the Arps’ hyperbolic parameters ‘b’, ‘Di’ and 
‘qi’ after matching the model to 100 wells in the Eagle Ford shale. Each 
of the four parts of the boxplots represents 25% of the data set. The 
‘Di’ boxplots for different error functions are typically skewed towards 
the bottom implying they usually follow log-normal distributions. The 
range of data values for normalized rates and logarithmic residuals 
is narrow as compared to the spread of other cases. Unlike Di values, 
the ‘b’ boxplots are typically normal distributed and not skewed. 
Considering the hyperbolic decline, for the base and cumulative cases, 
the majority of the values fall above the cut off value of 1 with mean of 
1.2 and standard deviation of 0.7. However, the normalized rates and 
logarithmic residuals limit the b-values to varying degrees. 

This observation is strengthened in Figure 8d which shows the 
cumulative distribution functions (CDF) of the b values. The base case 
CDF shows that approximately 40% of the b values obtained are below 
1. The normalized and logarithmic CDF shows that approximately 
60% and 75% of the b values obtained using these residuals are below 
1 respectively. It is interesting to note that almost 90% of the b values 
obtained fall below 1.5 with the normalized-rate and logarithmic-rate 
error functions.

Influence of residual function on remaining reserve and 
remaining life 

The statistical analysis of remaining reserves and remaining life 
to an abandonment rate of 2 bbls/day was done on one hundred oil 
wells from Eagle Ford Shale County. Figures 9a and 9b show that using 
the normalized and logarithmic rate-time residual forms increased the 
tendency of Arps’ model to have bounded estimates of reserves. Figures 
9c, 9d, 9e and 9f show the distributions of remaining reserves obtained 
from the Arps’ using the base case residual fuction, normalized residual 
fuction, logarithmic residuals and LGA model. All four distributions 
are log-normally distributed as the high productivity wells do not occur 
frequently. The Arps’ base case forecasts a minimum of 50 MSTB and 
maximum of 900 MSTB for remaining reserves. The Arps’ normalized 
and Arps’ logarithmic residuals forecasts a range of 15-500 MSTB 
and 50-500 MSTB respectively while the LGA range is 50-450 MSTB 
for the remaining reserves. This clearly shows that even though the b 
values are constrained to less than equal to 1 for the base case, the Arps’ 
model will consistently provide optimistic results. On the other hand 
the newly proposed residuals provide more realistic results similar to 
that of LGA.
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Figure 8: a) Box and Whisker plot showing spread of b values for proposed residual functions, b) Box and Whisker plot showing spread of Di values for proposed residual 
functions, c) Box and Whisker plot showing spread of qi values for proposed residual functions, d) Cumulative distribution function for parameter b for proposed residual 
functions.
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Figure 9: a) Box and Whisker plot showing spread of remaining reserves for proposed residual functions, b) Box and Whisker plot showing spread of remaining time for 
proposed residual functions, c) Distribution of remaining reserves with base case in Eagle Ford Shale, d) Distribution of remaining reserves with normalized residual, e) 
Distribution of remaining reserves with logarithmic residual, f) Distribution of remaining reserves with LGA.
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Results and Discussion
Results of this study suggest that applying Arps’ hyperbolic model 

to shale oil wells will consistently provide high, overly optimistic 
estimates of reserves and long remaining life of shale wells. The LGA, 
PLE and the Duong’s models overcome the limitations of Arps’ models 
to varying degrees. PLE fits the wells' past production rate 67% of the 
time. PLE consistently predicted the lowest forecasts of all the models 
with the most conservative production forecasting and reserves 
estimation. Duong’s model fits the production rate and cumulative 
production data of about 51% wells and performed best when longer 
and less noisy production history was available. However, erratic 
expected ultimate recover (EUR) prediction indicates that Duong's 
model needs further improvements. 

Conclusion
The LGA model fits 81% of the wells' past production rate and 

cumulative production and gives reasonable EUR estimates as 
compared to Arps’ model. Overall, the LGA model appears to be the 
most effective at history matching past production and predicting finite 
reasonable EUR. Even though the normalized cumulative-time residual 
function gave a good history match, it results in unrealistic values. The 
Arps’ normalized and Arps’ logarithmic residual functions reduce 
the fitting parameters qi, Di and b for the Arps’ Hyperbolic model by 
ranges of 15-79%, 31-86%, 20-35% respectively. Using the logarithmic 
and normalized rate-time residuals increases the tendency of Arps’ 
model to have bounded estimates of well’s remaining reserves and life 
by approximately 87.5% and 50% respectively. Thus using normalized 
and logarithmic rate-time residuals overcomes the limitations, and 
improves the accuracy, of Arps’ model in cases of unconventional 
reservoirs. The proposed residual functions can be used to provide 
multiple estimations of remaining reserves and/or remaining life using 
any of the above decline models. They also allow for the most recent 
production data to be weighted more heavily, thereby ensuring that the 
fitted parameters reflect the current flow regime in the drainage area 
of the wells.
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