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Abstract

We consider a pair of linearly coupled harmonic oscillators to explore the decoherence phenomenon induces by
interaction of a quantum system with a classical environment using Feynman path’s integral method. We determine the
DCHO propagator afterwards thermodynamics parameters associated to the system. We show numerically that one
can reduce decoherence of a system by coupling this one to a driven harmonic oscillator or by carrying this system to

the resonance.

Keywords: Decoherence; Propagator; Coupled oscillator

Introduction

The study of the phenomenon of decoherence has attracted
increasing attention in recent years [1]. In fact, it has been
recognized that decoherence is of fundamental importance in
the comprehension of the nature of the boundary between the
quantum and classical worlds. The nature of this boundary has been
meticulously examined from both the theoretical and experimental
points of view [2,3]. Decoherence is closely related to one of the
greatest mysteries of physics which up to now remains unanswered,
that is, the quantum measurement problem. This problem was clearly
formulated by Erwin Schrodinger in 1935 in his experiment of thought
known as “Schrodinger’s cat paradox” [4-6] pointing out the interaction
problem between quantum systems where quantum effects dominate
and classical systems which operate in the classical limit. Two linearly
coupled oscillators provide an ideal test model for exploring this aspect
of the quantum-classical limit interaction [7]. In this work, we use the
Feynman path integral formalism which enables an evaluation of the
sum over all possible paths in a consistent way. This formulation which
appears to be appropriate for a correct description of the reality is exact,
equivalent to the Hilbert space formalism and leads to the same results
for the Schrédinger equation. It is an alternative formulation of the
quantum mechanics, which introduces only functions with numerical
values and does completely without operators. This paper is organized
as follows: In section 2, we present the model and determine the
coupled harmonic oscillator (CHO) propagator from which we deduce
the driven coupled harmonic oscillator(DCHO) propagator. In section
3, we derive the thermodynamic parameters associated to the system
which is entropy. In section 4, we present the numerical results and
then, end with the conclusion in section 5.

The DCHO propagator

The DCHO is a system constituted of two harmonic oscillators
coupled by a spring and whose extremities are subjected to external
driving forces represented by f,(t) and f,(t). Here, we assume that the
two oscillators have equal mass 7 and coupling constant & .

The CHO propagator

The determination of this propagator is of great interest because it
will allow us later by comparison to establish the explicit form of the
DCHO propagator. The simplest version of a pair of coupled quantum-
mechanical simple harmonic oscillators with linear coupling consists
of two identical oscillators, with equal masses, spring constants, and
frequencies, plus a connecting spring with its own spring constant.
Considering the system described above, the Hamiltonian reads:

2 2
H:p—‘+&+ma)2(xl2 —x,x, + %)= fi(0)x, = f,(0)x, (1)
2m  2m

where x, x, p, p, are respectively the displacements and momenta of

each oscillator, and w their oscillation frequency.

2
From the formula L = z p;X; — H, the Lagrangian of the system
reads i=l

1
L= meﬁ—amxzz— me’ (xF —x,x, + %)+ f;(O)x, + £,(0)x, 2

The differentials equations that govern the evolution of the system
are given by
t

jécl + a)2 (2xl‘l - xL‘Z) = m

m
oo t
Xt @ (2x, —X,,) =f1—() (3)

m

When setting f,(t)=f,(t)=0, the system of Equation(3) becomes
jécl + a)z (2xcl - ch) = O
jécZ + a)z (2xc2 - x(rl) = 0 (4)

The Lagrangian is transform to
L[ . . ] _ ﬂ -2 -2 2 2 2 (5)
Xy Xos Xy, X5 [ = 2(x1+x2)—ma) (x) —xX, +X3)

Then, the action is
S :J'Otdr{’;()'cf +X0) - me’ (x) —xx, +x22)} (6)

From the definitions [9,10], the propagator of this system over a
finite time interval will read [11]

*Corresponding author: Kenfack Sadem Christian, Faculty of Science,
Mesoscopic and Multilayer Structures Laboratory, Department of Physics,
University of Dschang, PO Box 479 Dschang, Cameroon, Tel: 00237 678 00 59 00;
E-mail: kevinsadem@yahoo.fr

Received: June 06, 2016; Accepted: September 23, 2016; Published: November
04, 2016

Citation: Kenfack SC, Nguimeya GP, Talla PK, Fotue AJ, Fobasso MFC, et al.
(2016) Decoherence of Driven Coupled Harmonic Oscillator. J Nanosci Curr Res
1: 104. doi: 10.4172/2572-0813.1000104

Copyright: © 2016 Kenfack SC, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

J Nanosci Curr Res , an open access journal
ISSN:2572-0813

Volume 1 ¢ Issue 2 « 1000104



Citation: Kenfack SC, Nguimeya GP, Talla PK, Fotue AJ, Fobasso MFC, et al. (2016) Decoherence of Driven Coupled Harmonic Oscillator. J Nanosci

Curr Res 1: 104. doi: 10.4172/2572-0813.1000104

Page 2 of 10

, , (X)5X,,t
K(Xl,Xz,t,Xl,Xz,O) = (x],%),0

) i .
)DX(t)eXp{ES(XI,XZ,XI,X”t)} (7)

by making the following change of variables,
N =X X,

c

Vo =Xy =X, (8)

the action splits into two terms
t m ., .2 2 2 2
S= IO dz’{;(xcl +X;,)—mao (Xcl =X Xe T X5, )} +

t m . .
Iodf{?(yf +¥5 =207 (y! =y, +Y§))} ©)
that is,

t
’ ’ / ’
S(x,,X,,X],X5,t) =Sc(xl,x2,x1,xz,t)+j0 dr

m . .
{E(Yf +y;—20°(y; —y,y, + YZ))}
(10)
d m . .
Where Sc’ = Jodr{z (xc2'1 + xcz'Z) - ma)z (xcz'l - xc'lxc2 + fo )} (11)

is the classical action and y, the deviation between x,(t) and theirs
classical path x, which is given by y, = x,- x ,(i = 1,2).

The propagator is thus transformed as follows:
K(xl,xz,t;xl',x;,O):F(t)exp{;Sc} (12)
Where

F(t)= ijx(t)exp{iz—“;j; dr{%('yf + 92207 (y] — vy, + yi»}} (13)

is a smooth function in the limit /i — (.

By setting

1
q, = z(yl _yz)

q lﬁ i +»,)

= 7= 14
2 > 1 2 (14)
the normalization factor F(t) of the system becomes

F()=1J ijq(t)exp{izﬁhj; dr{(@ —3@’q}) +(4; - wzqi)}} (15)

This factor can be written as the product of the normalization
factor of each oscillator as

Follows

F() = FOF(@) (16)
With

F(t)=] D, (t)exp{;—r; [ldr(a} - 3aqu>} a7
And

E(t) = j0°Dq2(t)exp {% [dr - 3a)zq§)} (18)

when expending g, and g, in Fourier series on eigens modes [9,10,12]
one gets from Fresnel’s integral (113)

Fi)= (ﬁ’”“’ j

27zihsin\f3a)T (19)
And
1
mao 2
Fi= | —— (20)
2() (Zﬂihsina)Tj

Thus, it yields that [12]

F() = [ mo j{ 3 ]; (1)

27ih ) sin @T sin 30T

Therefore, the propagator takes the form

ma)j[ V3

1
2 i
— | ———————| exps—S.(0,¢
27ih siansin\/ga)TJ p{h e )} (22)

We now focus on the classical action. Performing the integration
of Equation(11) and taking into account Equation(4), one finds [12]

K(x,,x,,t;x],x5,0) :(

Se %[(xd(r)xd () + %, ()%, (1) = (5, (0)x,(0) + %, (0)x,,(0) | (23)

To obtain the exact form of this action, we have to solve the system
of Equation(4). By setting

U=x+Xx,

V=X X, (24)
This system becomes

ii+o'u=0

i+a’v=0 (25)

of which the solutions are
u(t) = A sinat + B, cos wt

W(t) = C, sin3at + D, cos3at (26)
When returning to initials variables, one gets
X, = x,(t) = Asin ot + Bcos wt + Csin+3er + Dcos~Bor

X, =x,(t) = Asinwt + Beosat — Csin Bt —Dcos\Bor  (27)

thus, we have
X, = Awcos ot — Bosin ot + CBwcos\3wt — D\Bwsin3or

%, = Awcos wt — Bosin ot — Cy3wcos~3wt + D\3wsin3ar (28)

Therefore

x=x(0)=B+D

X, =x,(0)=B—-D (29)
and

X =% (0)=w(A4+C3)

& = %,(0) = (A — C+/3) (30)

From the system of Equation(30) we obtain

1 ! !
B=E(x1 +x;)

1 U /
D=5(x|—xz) (31)
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and by performing the computations x +x,and x -x,, we get respectively da(r) _ ih- [40()+ 5]+ L‘”Z
1 ot 2m ih
A= [0 +2) = (4] + 33 coser] o) _ ﬂ[4cz<t)+bz<t>]+m
| o LD 2R Lateypoy+ b(z)c(z)]
C=————[ (%= x%,)~( — ) cosBax | (32) iy i (39)
2sin3ot = ' [2a(t)d(t) + b(t)g(t)] —— (0
By using Equations. (27) - (33) one finds from Equation(23) that [12] G%Et) _ %[%(t)g(t) b(Dd(D)] 751‘;(;)
a};(t’) - %[a’z(t) +g7(0)+ 2a(0) + 2¢(1) |

mo
Sc = T{(xl2 +X5+x7+ x'zz)[cotwt +/3 cot\/ga)tJ +

2(x,x, + x;x'z)[cot ot —+/3 cot \/ga)t} —2(x,X] +X,X})

33
! +L +2(x,x5 + X'x,)| - R 3 )
sin\/ga)t 2T Sin ot Sll’l\/_ 3wt

substituting this result into Equation(22), we obtain the CHO
propagator which is [12]

1
2
miso-(2) )

27ih )\ sin wT sin \/ng

sin wt

exp{j1 {(x +X5+ X+ )[cota)t+ 3cotx/§a)tJ+

2(x.x, +x;x;)[cota)t— 3cotx/§a)t}—2(xlx; +X,X5) (34)
! + B +2(x,X5 +XX,) —L+ W3
sinwt  sin \/ga)t RO dinwt sin x/ga)t

Deducing of the DCHO propagator: Setting f,(t) = f,(t) = 0, the
DCHO is reducing to CHO. Since the Lagrangian is quadratic, then we
can assume the propagator for the DCHO to have the form [13]

K(x,,X,,t;X],X5,0) = exp
(a(D)x] +b(D)xx, +c(t)x] +d(D)x, + g(H)x, +h(1))

Where a(t),b(t),c(t),d(t),g(t),h(t) are the functions of time which
have to be determined.

(35)

Taking A :*lhi and P :—lﬁf the Hamiltonian of Equation(1)

0x,
takes the form
hZ 62 h2 62
H= ———2———2-!—1%602()«:12 - XX, +X,)— f,(0)x, — f,()x,(36)
2m Ox;  2m Ox;

The Hamiltonian of Equation(37) satisfies the Schrodinger
equation [14]

oK
ih— =HK (37)
ot
that is,
oK ih 0K ih 0K me® ,
—_— = T A A 3 + " X]K*
ot 2m 0x, 2mox, ih (38)
ma}zxxK-&— 2xK f(t)foif(t)xK
in in T A

From Equation(37), when using Equation (35), we get

From the two first relations of above system, we get, taking this
relation into account

db(t) _ 4ih

o b( )e(t) = (40)

When setting

N=c+—
2

~_._b
vy (41)

we have from Equation(41) the following system

N 2ih 2ih o mf()2
m 2ih
. 2
52, Mo (42)
m 2ih
When solving each equation of the system of Equation(43), one
obtains

N =——cot(wt + 6
- cot@ +6,)

- z«fma)

3= cot(x3or +6 )
(43)
From Equation(43) and using Equation (41), we get
at)=c(t) = % cot(wt +6,) + \Ecot(\/ga)t + 92)]
b(r) = % cot(t + 6,) 3 cot(x3ar + 92)] (44)

One can see that Equation (44) does not include the excitation
forces f(t) and f,(t). Thus setting f (t) = f,(t) = 0 the functions a(t) and
b(t) can be equalized with the coefficients of x > and x,” of equation (34).
The comparison between these two equations shows that 6, and 6, must
be equal to zero. And so

a(t)=c(t) = % cot(wt) + \Bcot(ﬁa)t)]
b(t) = ”;—;’ cot(ar) — /3 cot(x3er) (45)

By replacing a(t) = c() into the forth equation of system in Equation
(39) and making the following change

1
d=—(y+
2(7 x)

1
—5(}’—)() (46)
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we obtain

coswt
nowt

o3 +[;j<fl(r>+f2<t) “

sin+/ 3wt

— +(ij(f{(t)+fz(t)

Solving these two differentials equations gives

V= .1 {J:df[%j[fl(r)+f2(r)]sina)z'+A1}

sin wt

1 t i .
- sm—\/ga)t{ X dr[;j[ £(@) = £,(@)]sinwr + Az} (48)

Where A, and A, are the constants to be determine. When taking into account Equation(48), then, Equation(46) gives [12]

+

d(t)= (Zh o jj. dz’[f(r)+f (T)]Slna)r+2 A,

in wt

(Zhsm T jj de[f,(r) - £,(0)]sinBor + ——2— - th

g(t) :(2

[2hs1n\/_wtjj dz’[f(r) fvﬂsm\/_wr_Zsm«fa)t

When combining Equations (45) and (49), we find [12]

A
)I dr[f(r)+f (f)]s1na)r+2 i
(49)

o ih |, A; A,
h(t) = —m|:[\l cot wt +$C0t\/§a)t:| mj dT f (T) +f (T)]Sll’l a)(t - T) -

jo‘dr[f, () — £, (r)]sin\Bao(t — ) +

A2
2\/§ma)sin \/— 3wt

+mj dz[ dv[f(D)+£@][f) +E,()]sino(t—7)sinov +

1 t T
f, —f f, —f i —7)si -
+ 2 immersinJoon IO drjo dv[f,(0)-f,(®][f,(») 2(v)]sm\/ga)(t 7)sin/3ov

—ln(sma)t sm\/—a)t) + 9

(50)

Where 3 is a constant to be determined.

To determine the constants A, A, and 9, we make a comparison between Equations (34) and (35) for f,(t) =£,(t) = 0. From this comparison,
it comes that

ima

Al = —T(xl +x2)
AZ _ _1ma)x/§(x1, —_X;)
h
14
9=In>_"® (51)
2rih

. . 71/2
When inserting Equations (45) and (49)-(51) into Equation(35), gathering the similar terms and replacing eXp[ln (sm ot.sin \/§Wt) +0 } by
[ e J[ Na Jé we work out the DCHO propagator which reads [12]
27ih

sin wtsin~/3ot
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K(x,.x,.6;x,x},0) = (2'”“; )(‘Ejl exp{imw {[(xf 3+ xp? 4 x5 )(cot ot ++/3 cotBeon) |+
zih )| sin wt sin</3wt 4n
+2(x,x, + x]x, )(cot @t —~/3 cot3wr) — 2(x,x! + x,x, )( — sin://giwz j +2(x,x, + xl'xz)(— sinla)t + sin\\//—:;wt J +
et Z(Sm‘wj [lar[ @+ £ @]sinor + [Sn;ﬁm] [l dr[ £, £,)]sin ﬁwr} +
+ :;2) :(Si;wljj;dr[fl(rnfz (r)]sin m—(sin \l/gwtjj;dr[fi ()= f,(0)]sin \/ga’f}
+%Li;w] [ldz i@+ £(©)]sin w(t—r)+(sin %mjjgdr[m—m]sm N —r)}+ )
%:(Sinlwt)L:dr[fl(z')+fz(r)]sin w(t—T)—(ﬁMJI; dr[ fi(z) _fz(T)]Sl'n\/gw(t—T)j'_

—(%jﬂdrﬂdv[fl(r)+f2(2')][fl(v)+f2(v)]sin o(t—71)sinv —

m* @ sin wt
_[m)ﬂd‘rgdv[ﬁ(r) ~ O]/, ~ f,(»)]sinVBa(t —7)sin \/ga)v}}

Thermodynamics Parameters for the DCHO

To determine thermodynamic parameters associated to the system, the knowledge of the time-dependent wave function is necessary as well as
the wave function at initial time.

Wave function at initial time: The considered system here can be modeled as follows (Figure 1)
The potential energy U(x;,x)) of this system is:

U(x;,x;)=%k(x; ) +%k(x'2)2 +%kc(x; % (53)

Where both k and k, are the elastic constant and k_ characterize the coupling of particles at point x =0 with each other.

The kinetic energy of this system is written as:

T= lmxl’2 + lm)c;2 (54)
2 2

When introduce the coordinate of the center of mass Y and the relative coordinate X.

1 U /
X =—1(x—x3)°

V2

1 ' ’
Y=f(xl+x2), (55)
that is,
1
xfzﬁ(Y-rX)
1
- (Y- (56)
X5 \/E(Y X)

Equations (53) and (54) are transformed to
1 . )
T=—mY*+X%)
2
UXY)= %(k +2k )X + %kYz (57)
Thus, the Hamiltonian reads
1 oo, 1 -, 1 2, 1o

From the Hamilton canonical equations, we get
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RN YS!
N = ex —_—
wo (S, 1) [ Py j p 3 (67)
Figure 1: Diagram of the model. With
2 h
o ="—"F7T— (68)

X+wlX=0
Y+0’Y =0
(59)
With
k+2k.) k
o) = (k+2kc) S
c m m (60)
Then the Schrodinger equation can be written as:
n’ n’ 61
— =AW (X,Y) - AW (X, Y)+U(X,Y)=Ey (61)
2m 2m

By separation of variables i/ (X, Y) = ¢(X)@(Y) while taking E
= E, + E, this equation yields to

¢ >
—+(E, — =0
84:2 ( 11 5 )¢

62
6_;?+(E22 —uH)p=0 (62)
With
2_MOc o 2 MO 2,E=£,E :2E2 63
§—hX/1—hY "hae T he (63)

The solutions of system in Equation(62) are looking for under the
forms

#E) = A,H,(@) exp{— %}

2
o(u)=A4,H, (1) eXP{— ‘;} (64)

Where

1 12 : 12
A =|—= A, =|————
' [2"’nl!xmx/;] , [2“2nzlxozx/;] ;

1/2 12
N R (65)
o mae Yoo = mao

Then

(66)

l//"lnz (5’ ,Ll) - A"l A”Z H”1 (§)Hn2 (,Ll) eXp{_ M}

2

In the fundamental state n,=0 and, n,=0, what leads to:

2m o

When returning to the initials variables, we obtain

1\ p) A
x,x)) = expl——S(xl —x))? = (x + x0)? 69
wo(x),X5) (2”0_2) p{ 471( 1 ) 471( 1 ) } (69)
Where

A =+mk, A, =A% +2mk, (70)

Time-dependent wave function: Having the propagator and
Knowing the initial wave function, the solution of the time-dependent
Schrodinguer equation is found by performing the integral [10,13].

V/(x]er’t) = J.:r:J‘j:dxl,dx;K(xl5x25t;x]’9x;90)l//(x|,’x;50) (71)

with K(x,x,,5x,x,,0) and ¥/ (xl' ,x;,O) given by Equations. (52) and
(69) respectively.

As areminder, ¥, x;and x,, X, are the initial and final coordinates
of the oscillators respectively. In a much more compact form easy to
manipulate, the propagator in Equation(54) can be written as follows:

1
2
K(x,,xz,t;x{,x;,O):( meo j( 3 J

27ih )\ sin otsinBot

‘”‘p{%[(xf F XD +2%,50, + (3 + XD+ 2XX40, (7
+2(x,1, - X113)X; +2(x,1, - X213)X’2 +

IR TR e T
mao mao mao

2]
x|+ —4x),
mo

with
I, = cotwt + V3 cotBor 1, = cotwt — /3 cot3r
1 V3 1 V3

I =— + I, =— + (73)
* sinwt sinﬁa)t ! sin @t Sinﬁa)t
- .
= Iodr(fl(r)+fz(r))51na)r+
1 .
o J:) dz(f,(r) ~£,(2))sin\Bwr
— [[dz(£(0)+£,(0))sin ez -
27 Sinat Y0 ! ?
1 t
—— | dr(f(z) -1, (¢ sinx/ga)r
oo KU UIGRRAG)
1 .
I, = — jodr(ﬂ(r)+fz(r))s1n o(t—7)+

1

sin \/ga)t

jo‘dr(fl(r) —,(r))sinBo(t—7)
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1 t
J, = dz(f,(z)+1,(7))sinw(t—7) -
o= 4 (@ + £@)sina(t—7)
1 t
——— [(dr(f.(r)-1,(r))sinBo(t - 1)
sinx/ga)t ‘[0 ( ! : )
1 ' r
=—5———| dr| dv(f; > ) P i —7)si
Js pRCHC— L z‘L v(/i@+ L@)( /) + f,(0)sinw(t —7)sin wv
S S o[" 7)—f,(r - i —7)si
I = N ey J'Od J’de(fl( )= £,(0)(£,0) = £,(v))sin~Bao(t — 7)sinv3wv (74)
When changingIl, L1, and ] , into
I=a+b,I,=a-b,,=d"+b", [,=—a'+b (75)
Where
, 1
a=cotwt, h=+l3cot30r> a =— , b = .\E (76)
sin wt s1n\/§a)t
this propagator can finally be expressed as follows:
1
2
SUNPRPRE™ S
27ih )\ sin wtsin \/ga)t
exp{lmw[cotwt(xI +x,)? 3 cotyBot(x, - x,)* +ﬂx] +&x2 -1 —Jﬁ}}x
4h me me
xexp{@ cotwt(x] +x,)’ +«/§cot«/§a)t(x{ -x))’ + s 2(X,1 X)) _ zﬁ(xl —%,) X, (77)
41 mao sinwt sin/3ot
{%_ 25, +x,) | 23(x, ‘XJ}X;H
me sin wt sinx/ga)t

When putting Equation(77) into Equation(71) and doing some arrangement, we then get

(%, t)_(m”) I R

72\ 2207 sin otsinBot (78)
exp{iQ}J‘j:J:dx;dx'zexp{—a(x; +X3)° = B(x] = X5) + 47X +77X) |
With

a= ﬁ(l - ima)a) , o = #(i + ima)a)

B= #(ﬁc —imwb), B = %(lc +imab)

imo| J , ,
V= |: 2 _a(x1+x2)_b(x1_xz)}
2h | mo

B imw{ J,

—E —a'(x,+x,)+b'(x, _xz):|

ma

UL,

me
Q=——|a(x +x,)" +b(x,—x,)" +—Lx +2x,-J - J, (79)
4h mao mo

When changing x| and x, into

r 1 ’ r
Xlzg(X +Y)
N
x2=5(X -Y) (80)
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then, Equation(78) becomes

1
(2]
pee 4rih )\ 2707 sin wtsin\3ot

exp{iQ} J‘:dX' exp{—aX'2 + §'X'} J.j:dY exp{—,BY'2 + U'Y'}

(81)
where
)
2
o1
v=—(y-n (82)
2
Equation (81) is easily integrate using Gaussian integral, then, one gets the expression of the time-dependent wave function which is
1
v (X,,X,,t)= m'e’ 3 ’ x
v 2707 (im@cot wt — 1)(A, —ime~/3 cot \/ga)t) sin wtsin~/3ot
xexp M{cota)t(xl +x,)? +~/3 cotBot(x, —x,)’ +ﬂxl + &xz - Jﬁ}
4h mo mao
2.2 2
e (- 2]
167(A —im@cot wt) \ ma sin wt (83)
m’w’® 1 230, -x) )
. 7(']3 - J4 ) Y -~
167(A, —imaw~3 cotx/ga)t) mao smﬁa)t
Where we recall that
A=~Nmk , A =y +2mk. » @&* _k,
m
k+ 2k, h
wéz( <) ot = (84)
m 2m.| .

Probability density: In term of the time-dependent wave function, the probability density is define by
P(x] ’xz;t) = l//*(xl 7x29t)l//(x1 > Xo 9t)

(85)
Carrying out this product using Gaussian integrals and taking into account Equations (83), we obtain after few arrangements the probability
density of the system, which reads

2 2
P(x,x;t) = ZTT'I 2 \/5 : x
270 sin a)tsm\/ga)t

(A% + M’ cot’ wt)(A2 +3m’e” cot® \3wt)

m’e’ ( A 1 2x,+%,) )
exp< — — (], +7], )220
p{ 8h k/12+m2w200t2wt][ (3+1,)

Tl—

mo sin mt (86)
mzwz( A L(J 4 )_Z\B(Xl—xz) 2
8 Llé+3mzwzcot2\/§wt mo > sin/3ot

Entropy: By definiton, the Gibbs-Shannon entropy reads

+0 +00

S= —J I P(x,,x,;t)In P(x,, x,;t)dx,dx,

(87)
When setting

mw*A

A= ,
"2 + mPw’ cot® wr)sin® wf

3mlw’ A,

- 2h( A +3m’ @’ cot’ \/ga)t) sin® /3ot

AZ
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B maA
21(A* + m*w* cot® wt)sin ot

(J5+7,)

1

_ \/Ema)ﬂc
21(A2 +3m*@* cot® 3wr)sin\3ewr

(J3_J4)

2
(88)

A
Y8R + mie’ cot’ o)
— ﬂ'C
8h(/12C +3m*w’ cot? \/ga)t)

(5 +7.)

(J3 _*]4)2

2

1

mw*3 1 2
M =
2776 sin wt sinv3or (A* +m’ @’ cot® ot )(A. + 3m’ o’ cotzx/ga)t)

and proceeding to the changes

1
=—(X+Y
X, 2( )
1
X, :E(X_Y) (89)

Equation(89) becomes

1 +00 +00

S=-2 j j P(X,Y:t)In P(X,Y;t)dXdY (90)
Where

P(X,Y;t)InP(X,Y;t) == Mexp{-C, — Cz}exp{fAle + BIX} on
exp{-A,Y* +B,Y}(InM-AX* +BX-A,Y* +B,Y - (C, +C,))

Integrating Equation(92) using Gaussian integrals yields to the
entropy of the system which is

2 2 2
g__ M7 _1 exp i+ﬁ_cl_cz
8A A, AA, 4A, 4A, (92)

1, 1
(InM+-B} +-Bi-A -4, -C,-C;)

Numerical results

We notice in figure 2 that the entropy decreases with time and tends
towards a limit.

Therefore, decoherence decrease (Figure 2).

This result is in accordance with that obtained by M.A. de Ponte
et al.[14] for two coupled dissipative oscillators. Physically, this means
that the whole system is organizes itself and evolves towards a coherent
state in which information will be preserved.

From figure 3, we note that the entropy of the system oscillates by
keeping a constant amplitude which means that the exchange between
the system and its surrounding are quasi-perfect so that the system
keeps a certain coherence. The system is slowly affected by external
forces. Physically, this coherence can be interpreted as being due to
the fact that information remains preserved in time. This result is in
accordance with that obtained by Tabue et al. [15] for the pure states of
a damped harmonic oscillator.

<102 Entropy for f1 (t) different to fz(t).
3
25 ﬂ n
R n A
A,

>
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S 15
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i ‘ /
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VUV

4 5 6 8 9 10
time
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0 1 2

Figure 2: Entropy with parameter k = 0.001, k_ = 0.005, wo = 5.

X 10.3 Entropy for f1 (t) different to f2(t).
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Figure 3: Entropy with parameter k = 0.001, k_ =k, wo = 5.
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Figure 4: Entropy with parameter k = 0.001, k. = 0, wo = 5.

Figure 4 shows that entropy increases in time, and thus decoherence
increases. This means that, the whole system collects environment
which accentuates decoherence and so the system disorganizes itself.
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One could expect such a result which is in accordance with that
obtained by Tabue et al. [15] for a damped harmonic oscillator.

Conclusion

Using the Feynman path integral method we have determined the
DCHO propagator after which, considering the particular case where
the external driving forces are sinusoidal, we have determined the
entropy associated to the system. We reveal numerically that, when two
harmonic oscillators subjected to an external driving force are coupled,
one compensates the effects of the other so that the whole system
organizes itself and evolves towards an equilibrium position in which
it will conserve certain coherence. That is explained by the decrease of
the entropy which thereafter tends towards a limit. We also reveal that
at resonance the system is in a coherent state which is explained by the
conservation, with time of the oscillation amplitudes of the entropy of
the system. Thus, we have shown that to reduce decoherence in a system
one can just couple such a system with a driven harmonic oscillator or
the system in question to resonance.
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