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All people know the same truth. Our lives consist of how we choose 
to distort it.

Woody Allen 

Deconstructing Harry (1997)

Kaplan-Meier survival analysis [1] and Cox proportional hazards 
regression [2] are commonly used to assess outcomes in randomized 
clinical trials. These methods typically employ a simple two-state 
non‑deterministic model to represent the transition from an initial 
baseline state to a terminal outcome state (often a composite of multiple 
endpoints). Many pathophysiological processes, however, involve a 
deterministic sequence of some number of intermediate transitions: 
from the baseline state to unstable angina (UA) to myocardial infarction 
(MI), for example. In such cases, the simple two-state model may be 
insufficient to capture important dynamics of the actual underlying 
clinical process. 

Multi-state dynamical models can overcome this limitation 
through the integrated assessment of any number of clinically relevant 
state‑to‑state transitions over time. These models can thereby be used 
to deconstruct a deterministic sequence of transitions (A→B→C) into 
its individual components: from the initial state to the intermediate 
state (A→B) and from the intermediate state to the terminal state 
(B→C). Because a given treatment might selectively affect any number 
of these component transitions, these models can help pinpoint the 
mechanism(s) by which a particular treatment results in benefit or 
harm. 

Descriptions of multi-state models are typically based on stochastic 
considerations and directed at statisticians [3‑8]. They are therefore 
relatively difficult for clinicians to comprehend. The goal of this 
essay is to provide a more transparent description of these models, 
better suited to a non‑technical clinical audience, and to illustrate 
their practical clinical relevance by comparing the performance of a 
three‑state dynamical model to that of a two‑state stochastic model in 
a hypothetical randomized controlled trial. 

Deterministic dynamical models versus non-deterministic 
stochastic models

The distinction between dynamical and stochastic models is likely 
to be unfamiliar to clinicians and statisticians alike. In brief, the former 
describes the behavior of causal deterministic systems (the usual domain 
of physics), while the latter describes the behavior of probabilistic 
non‑deterministic systems (the usual domain of epidemiology). 

Dynamical models have their origins in late 17th Century 
Newtonian mechanics, as a way of describing the deterministic 
behavior of complex systems such as planetary orbits in terms of 
the solutions to ordinary differential equations. In 1864, Waage and 
Guldberg expanded dynamical modeling to the field of chemistry by 
formulating the “law of mass action,” which states that the speed of 
a chemical reaction is proportional to the quantity of the reacting 
substances [9]. The resultant discipline of chemical kinetics thereby 
describes how different conditions can influence the speed of reaction 
and yield information about its mechanism [10]. 

Stochastic models have their origins in late 19th Century 
applications of probability as a way of describing the non‑deterministic 
behavior of complex systems (such as economics), using sets of 
random variables to predict the evolution of random events over time. 
In contrast to a dynamical model which can evolve only in a single way 
(as does the solution to an ordinary differential equation), a stochastic 
model can evolve in many ways.
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Abstract
Stochastic survival models, such as Cox proportional hazards regression, are commonly used to assess outcomes 

in randomized clinical trials. These models are typically designed as non‑deterministic two-state systems representing 
the transition from an initial baseline state to a terminal outcome state. Many pathophysiological processes, however, 
involve a deterministic sequence of additional transitions: from the baseline state to an intermediate state (e.g., unstable 
angina) and thence to a terminal state (e.g., myocardial infarction). In such cases, the typical two‑state model may 
be insufficient to capture the dynamics of the actual clinical process. The purpose of this essay is to compare the 
performance of a three-state dynamical model to a two-state stochastic model in a hypothetical clinical trial. This 
comparison demonstrates that the former is better than the latter (i) at deconstructing the sequence of outcome 
transitions into its individual causal components, and (ii) at correctly characterizing the effect of treatment on each 
of these components. In conclusion, dynamical models can provide novel insights into the mechanism(s) by which a 
given treatment is associated with benefit and harm. Such models should therefore be used more widely in the design, 
analysis and interpretation of clinical trials.
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The dynamical/stochastic distinction is the basis for the 
epistemological divide between classical and Bayesian statistics (the 
former considering hypotheses to be fixed and observations to be 
random variables, and the latter considering observations to be fixed 
and hypotheses to be random variables). As we shall see, this seemingly 
academic distinction between the realism of empirical observation 
and the idealism of theoretical interpretation has important clinical 
consequences.

The initial application of dynamical models to medicine dates back 
to the opening paragraph of a 1926 paper by A. G. McKendrick [11], a 
pioneer of mathematical epidemiology: 

In the majority of the processes with which one is concerned in the study 
of the medical sciences, one has to deal with assemblages of individuals, 
be they living or be they dead, which become affected according to some 
characteristic…. If one thinks of these individuals…as moving in all sorts of 
dimensions, reversibly or irreversibly, continuously or discontinuously, by unit 
stages or per saltum, then the method of their movement becomes a study 
in kinetics, and can be approached by the methods ordinarily adopted in the 
study of such systems [12].1

McKendrick’s principal focus was on the analysis of epidemics and 
infectious disease transmission. Since then, his dynamical approach 
has been applied to a broad range of biological processes including 
plasma membrane electrodynamics [13], digitalis pharmacokinetics 
[14], contractile periodicity [15], myocardial imaging [16], cancer 
chemotherapy [17], and clinical epidemiology [18-21]. 

The two-state model

In its simplest instantiation, a two-state dynamical model ( )
k

A B→ can 
be used to represent the transition from an initial state A (analogous to 
the substrate of a chemical reaction) to a subsequent state B (analogous 
to the product of a chemical reaction). Mathematically, this model can 
be represented by an ordinary differential equation, where the rate 
of change in A with respect to time, t, is inversely proportional to its 
prevalence and to a constant of proportionality or rate constant, k (the 
hazard), which can be quantified by fitting empirical data on [A] and its 
rate of change to the dynamical rate equation:

[ ] [ ]d A k A
dt

= −                                                    

As shown in the next paragraph, the precision of this 
parameterization is proportional to the sample size employed in its 
estimation.

Let us compare this two-state dynamical model to a two‑state 
stochastic model in a hypothetical clinical trial. The control group 
consists of 1000 patients with UA (defined by some set of entry 
criteria), 500 of whom manifest MI over 90 days of follow-up; the 
treatment group consists of an additional 1000 patients (defined by 
the same set of entry criteria), only 250 of whom manifest MI over 
90 days of follow-up. Based on these empirical observations, and the 
aforementioned equations for a two-state dynamical model, k =0.0077 
± 0.0004 days‑1 (−ln[1−500/1000]/90) for the control group vs 0.0032 
± 0.0002 days‑1 (−ln[1−250/1000]/90) for the treatment group. Using 
these data, a random sample of 1000 patients for each group was 
generated in which the rate constants are log‑normally distributed 
1To provide some historical perspective, just a year earlier, R. A. Fisher, 
the founder of modern statistical practice—having failed to recognize that 
“assemblages of individuals [move] by unit stages”—claimed, in the introduction 
to his ground‑breaking book, Statistical Methods for Research Workers, that 
“Scientific theories [including chemical kinetics] which involve the properties of 
large aggregates of individuals are essentially statistical arguments” [12]. Fisher 
thereby eliminates the role of determinism in epidemiology, while McKendrick 
emphasizes it. 

and time‑to‑event is exponentially distributed. Conventional survival 
analyses were performed on these patient level data using WinSTAT 
(version 2012.1). The resultant stochastic and dynamical survival 
curves were almost identical (Figure 1), and the stochastic hazard ratio 
of 0.45 (95% CI: 0.39-0.52; p<0.00001) based on Cox regression was 
very similar to the dynamical hazard ratio of 0.42 (95% CI: 0.36‑0.48; 
p<0.00001) based on the ratio of the rate constants. Using a simple two-
state model, therefore, the dynamical analysis and stochastic analyses 
are essentially equivalent.

The three-state model

In contrast, a three-state dynamical model  1 2

( )
k k

A B C→ → represents 
the state transitions, not as a single first order process, but as a sequence 
of first order processes 1k

A B→  
and 2k

B C→ .2 This three‑state model can be 
used to mirror a wide range of clinically relevant scenarios, from k1 > k2 
to k1 ≈ k2 to k1 < k2 (Figure 2). Consider the scenario when k1 > k2 (say, 
by a factor of 5). As a result, the transition A→B will predominate before 
the transition B→C gets underway. Consequently, the intermediate 
[B] increases rapidly at a rate defined by k1, and thereafter decreases 
more slowly at a rate defined by k2. The situation has been likened to 
three vertically positioned water buckets [10]. Imagine the top bucket 
leaks through a large hole into the middle bucket, which leaks in turn 
through a much smaller hole into the bottom bucket. As a result, water 
placed in the first bucket flows rapidly into the second bucket, from 
which it then flows more slowly into the third bucket. This scenario is 
analogous to the relatively fast initial transition from UA to MI and to 
the relatively slow subsequent transition from MI to cardiac death (the 
lower left panel in Figure 2).

A contrasting scenario occurs when we place the small hole in the 
top bucket and the large hole in the middle bucket, thereby making 
k1 <  k2 (again, by a factor of 5). Now, water leaks out of the middle 
bucket faster than it comes in. As a result, the water level in the middle 
bucket never rises very high. Consequently, [B] rapidly approaches a 
value approximated by the ratio k1/k2 and then falls more slowly at a 
rate defined by k1. Because k1/k2 is relatively low, [B] is similarly low. 
This scenario is analogous to the relatively slow initial transition from 
stable coronary disease to stent thrombosis and the relatively fast 
subsequent transition from stent thrombosis to cardiac death (the 
upper right panel in Figure 2).

Even more complex dynamical models have been constructed 
to assess independent outcomes representative of safety and efficacy 
[19] competitive outcomes exemplified by cardiovascular versus 
2Consequently, the hazard associated with each of the three states is defined by a 
simultaneous triad of ordinary differential equations: 

1
d[A] [ ]k A
dt

= −

1 2
d[B] [ ] [ ]k A k B
dt

= − −

2
d[C] [B]k
dt

= −

As with the two-state model, integration of these equations allows us to define the 
proportion of each of these states over time (10). In the usual situation, where [A]=1 
and [B]=[C]=0 at t=0:

[A] = e-kt
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2 1
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a conventional two‑state stochastic model (Kaplan‑Meier curves and 
Cox proportional hazards analysis), and using a three‑state dynamical 
model (where UA served as the intermediate state and MI served as the 
terminal state). Since the trial design takes MI to be wholly conditioned 
on the antecedent occurrence of UA, the outcomes were analyzed 
consecutively and not as a composite of competing risks.

Figure 3 summarizes the four pairwise comparisons of the 
stochastic and dynamical analyses over 90 days of follow-up. For each 
pair, the right panel illustrates the proportion of the outcome based 
on the dynamical equations and empirical rate constants for a three-
state model, and the left panel illustrates the proportion of the outcome 
based on the Kaplan‑Meier curves for hypothetical survival data (1000 
patients per group), generated, as in HARI. Let us examine each of the 
situations in detail.

Effect of the initial transition rate on the intermediate state 

The pair of graphs in the upper left quadrant of Figure 3 illustrates 
the effect of a 50% reduction in the initial rate constant (k1) on the 
proportion of the intermediate state [UA]. Both the stochastic and 
dynamical analyses demonstrate statistically significant reductions in 
this outcome (Table 2), but the Kaplan‑Meier curves fail to capture the 
actual pattern of the change over time. Since k1 < k2 in this example, 
the dynamical model shows that [UA] remains relatively low and 
invariant over follow-up in both the control and treatment groups. 
This is consistent with our water bucket analogy. If you reduce the size 
of the hole in the first bucket, less water flows into the second bucket. 
The Kaplan-Meier curves derived from the very same data, however, 
exhibit a continual increase in [UA] over time for both the control and 
treatment groups, and do not therefore distinguish between cause (the 
change in k1) and effect (the change in [UA]).

Effect of the initial transition rate on the terminal state 

The pair of graphs in the upper right quadrant of Figure 3 illustrates 
the effect of the same 50% reduction in k1 on the proportion of the 
terminal state [MI]. Now, both the stochastic and dynamical models 
exhibit similar patterns of reduction over follow-up (although the 
former overestimates the magnitude of this change by approximately 
50% in comparison to the latter). Referring again to our water bucket 
analogy, since we reduced the size of the hole in the first bucket, 
causing less water to flow into the second bucket, less water also flows 
into the third bucket even though the hole in the second bucket has not 
changed in size. Consequently, changes in the initial transition rate echo 
through the sequence of subsequent transitions. The change in [MI] is 
thereby identified as statistically significant by both the stochastic and 
dynamical models even though there was no change in its transition 
rate (Table 2). The dynamical model identifies this disconnect between 
cause (the change in k2) and effect (the change in [MI]); the stochastic 
model does not. 

Effect of the subsequent transition rate on the intermediate 
state

 The pair of graphs in the lower left quadrant of Figure 3 illustrates 
the effect of a 50% reduction in the subsequent rate constant (k2) on 
[UA]. The patterns of change were similar to those already described 
for k1, but opposite in direction. In contrast to the decrease associated 
with a reduction in k1, [UA] increased in response to a reduction in 
k2, albeit not to a statistically significant degree (Table 2). This again is 
explained by our water bucket analogy. By reducing the size of the hole 
in the second bucket, less water flows into the third bucket, causing the 

non‑cardiovascular events [20] and reversible outcomes typified by the 
waxing and waning of clinical symptoms [21].

Application of the three-state model to a hypothetical clinical 
trial

Imagine now a randomized clinical trial called Hypothetical 
Assessment of Revascularization Interventions (HARI) for treatment 
among 2000 patients with stable coronary disease. The outcomes 
of interest were a subsequent diagnosis of UA and a consequent 
diagnosis of MI. The empirical observations over 90 days of follow-
up are summarized in Table 1. These outcomes were analyzed using 

 
Figure 1:A two-state dynamical vs a two-state stochastic model. The 
graphs summarize the statistical analysis of a typical randomized clinical trial 
based on hypothetical data. The left panel illustrates conventional Kaplan-
Meier curves for which the hazard ratio (HR) and 95% log normal confidence 
interval (CI) are computed using Cox proportional hazards regression. 
The black line is for the control group and the grey line is for the treatment 
group. The right panel illustrates analogous curves derived from a dynamical 
analysis of the same data. The points represent 1000 random resamples 
of the log‑normally distributed rate constants and exponentially distributed 
time‑to‑event data. The black points represent the control group and the grey 
points represent the treatment group. The hazard ratio and 95% confidence 
interval derived from these data are similar to those using Cox regression.

Figure 2: A sequential three-state dynamical model. The grey lines 
represent the intermediate state and the black lines represent the terminal 
state. Note the wide range of patterns for rate constants (k1 and k2) that vary 
over 1.4 orders of magnitude (from 0.002 to 0.05).
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level of water in the second bucket to rise. Here too, only the dynamical 
model identifies this discordance between cause (the change in k2) and 
effect (the change in [UA]).

Effect of the subsequent transition rate on the terminal state

 Finally, the pair of graphs in the lower right quadrant of Figure 3 
illustrates the effect of the same 50% reduction in k2 on [MI]. The pattern of 
response was similar to that following a change in k1, but less in magnitude. 
As before, reducing the size of the hole in the second bucket causes less 
water to flow into the third bucket, but this is now partially offset by the fact 
that reducing the size of the hole also causes the water level in the second 

bucket to rise, thereby increasing the flow of water into the third bucket. 
Consequently, despite a statistically significant reduction in k2, the change 
in [MI] was not statistically significant (Table 2).

Clinical implications
Treatments can wittingly or unwittingly target a spectrum of 

pathophysiological mechanisms associated with efficacy and safety. 
A new drug, for example, might activate an anti-inflammatory 
pathway and stabilize the atherosclerotic plaque, thereby preventing 
the development of UA, or it might inhibit a pathway involved in 
platelet aggregation and thereby prevent the occurrence of MI. These 

Figure 3: A three-state dynamical vs a two-state stochastic model. The graphs summarize the statistical analysis of a hypothetical randomized clinical trial 
(HARI). The left panel of each pair illustrates conventional Kaplan-Meier curves. The black line is for the control group and the grey line is for the treatment group. 
The right panel of each pair illustrates analogous curves derived from a dynamical analysis of the same data. As in Figure 1, the points represent 1000 random 
log normal resamples of the rate constant and time‑to‑event data. The black points represent the control group and the grey points represent the treatment group. 
The top row illustrates the analyses based on a 50% reduction in k1 (transition from the initial to the intermediate state). The bottom row illustrates parallel analyses 
based on a 50% reduction in k2 (transition from the intermediate to the terminal state). The comparative analyses of these data are summarized in Table 2. See text 
for discussion.

HR=hazard ratio, CI=confidence interval, p=p-value, ↓k1=reduced initial transition rate, ↓k2=reduced subsequent transition rate. Values for the stochastic model are based 
on Cox regression; values for the dynamical model are based on a z test of the rate constants.

Table 2: Stochastic and dynamical analysis of HARI

Intermediate State Terminal State
Stochastic Model Dynamical Model Stochastic Model Dynamical Model

HR 0.32 0.50 0.57 1.00
↓k1 95% CI 0.17-0.61 0.38-0.65 0.43-0.75 0.59-1.73

p 0.001 0.000 0.000 0.973
HR 1.30 1.00 0.85 0.50

↓k2 95% CI 0.87-1.93 0.81-1.24 0.67-1.09 0.35-0.73
p 0.198 1.000 0.208 0.000

Pts=Patients, k=kinetic rate constant (−ln[1−Events/Pts]/Days), SEM=standard error of the mean, CAD=coronary artery disease, UA=unstable angina, MI= myocardial 
infarction, CAD→UA=transition from the initial state (CAD) to the intermediate state (UA), UA→MI=transition from the intermediate state (UA) to the terminal state (MI), 
↓k1=reduced initial transition rate, ↓k2=reduced subsequent transition rate. The numbers in boldface represent 50% reductions in the post-treatment rate constants.

Table 1: Hypothetical Assessment of Revascularization Interventions (HARI)

Control Group Treatment Group
Transition Events Pts Days k ± SEM Events Pts Days k ± SEM

↓k1 CAD→UA 165 1000 90 0.0020 ± 0.0002 86 1000 90 0.0010 ± 0.0001
UA→MI 163 165 45 0.0981 ± 0.0156 85 86 45 0.0990 ± 0.0221

↓k2 CAD→UA 165 1000 90 0.0020 ± 0.0002 165 1000 90 0.0020 ± 0.0002
UA→MI 163 165 45 0.0981 ± 0.0156 147 165 45 0.0492 ± 0.0049
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distinctions can be masked, however, in the design of a clinical trial 
if the primary outcome of interest is taken to be a composite of 
causally interrelated events (UA or MI, for example). Although the 
components of such composites are usually reported along with the 
primary outcome, formal statistical analysis of these components can 
be hampered by limitations in sample size or baseline event rate [22].

In this context, a recent study compared the performance of 
alternative stochastic models for analysis of repeated ischemic events 
among all components of the primary endpoint (all  cause death, MI 
or stroke) in the Targeted Platelet Inhibition to Clarify the Optimal 
Strategy to Medically Manage Acute Coronary Syndromes (TRILOGY 
ACS) trial (23). The investigators concluded that models accounting 
for all events, especially those incorporating subjective weightings 
indicative of the clinical relevance of the individual components, 
appeared most advantageous. 

Thus, even when widely accepted methods of survival analysis are 
applied to idealized samples of data (as in HARI), we might yet be led 
to draw erroneous conclusions. Based on the Kaplan‑Meier curves in 
Figure 3 and the Cox regressions in Table 2, for example, a drug that 
truly prevents UA (by halving the rate of plaque destabilization) may be 
falsely adjudged to prevent MI as well, when in fact the latter is only a 
passive consequence of the former. Similarly, a drug that truly prevents 
MI (by halving the rate of platelet aggregation) may be falsely 
adjudged to hasten the onset of UA (in this case, by 30%), and may 
not therefore be characterized as beneficial. A dynamical analysis 
circumvents these errors, and better identifies the underlying 
mechanism(s) of action. 

Limitations

A few caveats are deserving of mention. First, the dynamical 
models in these analyses are not rigorously deterministic. A rigorously 
deterministic model would be able to tell us (no matter where we are 
at present) where we have been in the past and where we will be in the 
future. Each state in such a model would have a single unique arrow 
leading into it and a single unique arrow leading out of it. Moreover, 
a rigorously deterministic model would be reversible: change the 
direction of every arrow, and the model remains deterministic. Physics 
is like this (24); medicine is not (25). In medicine, we cannot usually 
reverse the sequence A→B→C to A←B←C. Even if we could, the model 
would still not be rigorously deterministic since there is no arrow 
telling us how we got to the initial state in the first place. 

Second, the pedagogical design of HARI as a three-state consecutive 
process is an over simplification of a more complex network of 
transitions. In actuality, things are not so simple. Clinical events such 
as MI, for example, can occur more than once in a given patient. In 
addition, MI can occur without UA, and UA can resolve without 
MI. Although each of these complicating features can be modeled by
increasingly complex sets of differential equations, and software exists
to facilitate their solution, the task can be daunting.

Third, the dynamics of these models are assumed to be first order. 
In chemical kinetics, the order of an elementary transition is generally 
equivalent to its “molecularity” (the number of reactants involved in 
the process). By analogy, since clinical transitions typically involve 
individual patients (with the possible exception of communicable 
diseases and sexual contact), it is reasonable to consider them 
unimolecular processes manifesting linear first order dynamics [11]. If 
the empirical evidence suggests otherwise, the equations can again be 
modified to reflect this.

Fourth, both the stochastic and dynamical models are continuous 
analogs of an underlying discrete binomial process. Their accuracy 
therefore depends on the overall size of the study population and the 
attendant number of events in that population. The larger the sample, 
the better the models can be expected to perform. 

Finally, while it would be preferable to base these analyses on 
patient level time‑to‑event data from an actual clinical trial, such 
data were not available in the medical literature. The analyses in this 
essay were therefore based on simulated data sets. Consequently, the 
conclusions deriving from these simulations will need to be verified by 
application to actual clinical trial data. 

Conclusions
Notwithstanding these limitations, the present findings indicate 

that three‑state dynamical models are better than two‑state stochastic 
models (i) at deconstructing the sequence of outcome transitions into 
its individual causal components, and (ii) at correctly characterizing 
the effect of treatment on each of these components. Accordingly, these 
dynamical models can provide novel insights into the mechanism(s) 
by which a given treatment is associated with benefit and harm. Such 
models should therefore be used more widely in the design, analysis 
and interpretation of clinical trials.
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