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Abstract

The aim of this paper is to extend to ternary algebras the classical theory of formal
deformations of algebras introduced by Gerstenhaber. The associativity of ternary algebras
is available in two forms, totally associative case or partially associative case. To any partially
associative algebra corresponds by anti-commutation a ternary Lie algebra. In this work, we
summarize the principal definitions and properties as well as classification in dimension 2 of
these algebras. Then we focuss ourselves on the partially associative ternary algebras, we
construct the first groups of a cohomolgy adapted to formal deformations and then we work
out a theory of formal deformation in a way similar to the binary algebras.
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Introduction

We are concerned in this work by certain ternary algebraic structures which appear more or
less naturally in various domains of theoretical and mathematical physics. Indeed, theoretical
physics progress of quantum mechanics and the discovery of the mechanics of Nambu, as well
as works of S. Okubo gave impulse to a significant development involving ternary structures.
The quark model proposed by Y. Nambu in 1973 [26, 35] represents a particular case of ternary
system of algebras and was known since under the name of “Nambu Mechanics”. The cubic
matrices and a generalization of the determinant, called the “hyperdeterminant”, also illustrates
the ternary algebras. It was first introduced by Cayley in 1840, then found again and generalized
by Kapranov, Gelfand and Zelevinskii in 1990 [26] . Other ternary and cubic algebras have been
studied by Lawrence, Dabrowski, Nesti and Siniscalco, Plyushchay, Rausch de Traubenberg,
and other authors. The ternary operation gives rise to partially associative, totally associative
or Lie ternary algebras, one direction of our work is devoted to classification up to isomorphism
of ternary algebras in small dimensions. However, in the second part we are interested in the
deformation and degeneration of ternary algebras. These two fundamental concepts are useful in
order to have more information about the ternary algebra or to construct new algebras starting
from a given algebra. The study of deformations of the ternary algebras leads to the cohomology
study of these algebras.

The main purpose of our work is to build and study a cohomology for the partially associative
ternary algebras, totally associative ternary algebras and the ternary Lie algebras. In this paper
we focuss on partially associative ternary algebras and express the first cohomology groups
adapted to formal deformation.

1 Definitions

Let V be a vector space over k, an algebraically closed field of characteristic zero. A ternary
operation on V is a linear map m : V ⊗ V ⊗ V −→ V . Assume that V is n-dimensional with n
finite and let B = {e1, ..., en} be a basis of V , the ternary operation m is completely determined
by its structure constants Cs

ijk defined by
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m(ei ⊗ ej ⊗ ek) =
n∑

s=1

Cs
ijkes (1.1)

1.1 Totally and partially associative ternary algebras.

Definition 1.1. A totally associative ternary algebra is given by a k-vector space V and a
ternary operation m satisfying

m(m(x⊗ y ⊗ z)⊗ u⊗ v) = m(x⊗m(y ⊗ z ⊗ u)⊗ v) = m(x⊗ y ⊗m(z ⊗ u⊗ v)) (1.2)

for all x, y, z, u, v ∈ V .

Definition 1.2. A partially associative ternary algebra is given by a k-vector space V and a
ternary operation m satisfying

m(m(x⊗ y ⊗ z)⊗ u⊗ v) + m(x⊗m(y ⊗ z ⊗ u)⊗ v) + m(x⊗ y ⊗m(z ⊗ u⊗ v)) = 0 (1.3)

for all x, y, z, u, v ∈ V .

If there is no ambiguity on the ternary operation and in order to simplify the writing, one
will denote m(x⊗ y ⊗ z) = (xyz).

Remark 1.1. Let (V, ·) be a bilinear associative algebra. Then, the ternary operation, defined
by

m(x, y, z) = (x · y · z) (1.4)

determines on the vector space V a structure of totally associative ternary algebra which is not
partially associative.

1.2 Free associative ternary algebras.

In this paragraph, we give the construction of the free totally associative ternary algebra and
the free partially associative ternary algebra on a finite-dimensional vector space V . This con-
struction is a particular case of the k-ary algebras studied by Gnedbaye [18]. The free totally
associative ternary algebra is given by the following

Proposition 1.1. Let V be a finite-dimensional vector space. We set

T<2>(V ) :=
⊕
n≥0

V ⊗2n+1 (1.5)

The space T<2>(V ) provided with the ternary operation induced by triple concatenation given by

(w0w1w2) = x0
0 ⊗ . . .⊗ x0

2n0
⊗ x1

0 ⊗ ...⊗ x1
2n1

⊗ x2
0 ⊗ . . .⊗ x2

2n2
(1.6)

where wi = xi
0 ⊗ . . . ⊗ xi

2ni
∈ V ⊗2ni+1 (i = 0, 1, 2) defines the free totally associative ternary

algebra on the vector space V . This ternary algebra is denoted by tAss<2>(V ).

The free partially associative ternary algebra results from the previous proposition. One
denotes the space of the symmetric group S2n+1 on V ⊗2n+1 by (V ⊗2n+1)S2n+1 . According to
the previous proposition, one may consider the symmetric and free totally associative ternary
algebra which we denote by stAss<2>(V ) on a vector space V , described by the space

T<2>(V )sym :=
⊕
n≥0

(V ⊗2n+1)S2n+1 (1.7)

provided with a ternary operation induced by triple concatenation.
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Proposition 1.2. The construction of the free partially associative ternary algebra is represented
by a sequence of vector spaces defined by the relation

pAss<2>
0 = V, pAss<2>

n = ⊕
0 ≤ n1, n2 ≤ n− 1

n1+n2 = n− 1

V ⊗pAss<2>
n1

⊗pAss<2>
n2

, for n ≥ 1 (1.8)

We denote the partially associative free ternary algebra on V by pAss<2>(V )

1.3 Symmetric ternary algebras and ternary Lie algebras

In what follows the ternary operation is denoted by [x, y, z] for all x, y, z in V.

Definition 1.3. A ternary algebra on a vector space V is said symmetric if

[xσ(1), xσ(2), xσ(3)] = [x1, x2, x3], ∀σ ∈ S3 and ∀x1, x2, x3 ∈ V (1.9)

Definition 1.4. A ternary operation is said commutative if∑
σ∈S3

Sgn(σ)[xσ(1), xσ(2), xσ(3)] = 0, ∀σ ∈ S3 and ∀x1, x2, x3 ∈ V (1.10)

Remark 1.2. A symmetric ternary operation is commutative.

Definition 1.5. An antisymmetric ternary algebra is characterized by the relation

[xσ(1), xσ(2), xσ(3)] = Sgn(σ)[x1, x2, x3], ∀σ ∈ S3 and ∀x1, x2, x3 ∈ V (1.11)

Definition 1.6. A ternary Lie algebra is an antisymmetric ternary operation satisfying the
generalized Jacobi condition:

J(x1, x2, x3, x4,x5) =
∑
σ∈S5

Sgn(σ)[[xσ(1), xσ(2), xσ(3)], xσ(4), xσ(5)] = 0 (1.12)

The concept of Lie algebra was generalized to Lie n-ary algebras by V. Fillipov in 1985 [13]
(in Russian) and in addition by Ph. Hanlon and M. Wachs in 1990 [22], see also [33].

Remark 1.3. The generalized Jacobi condition is still written∑
σ∈S3

Sgn(σ)[[xσ(xi1
), xσ(xi2

),xσ(xi3
)], xσ(xi4

), xσ(xi5
)] =

= [[xi1 , xi2 , xi3 ], xi4 , xi5 ]− [[xi1 , xi2 , xi4 ], xi3 , xi5 ]
+ [[xi1 , xi2 , xi5 ], xi3 , xi4 ] + [[xi1 , xi3 , xi4 ], xi2 , xi5 ]
− [[xi1 , xi3 , xi5 ], xi2 , xi4 ] + [[xi1 , xi4 , xi5 ], xi2 , xi3 ]
− [[xi2 , xi3 , xi4 ], xi1 , xi5 ] + [[xi2 , xi3 , xi5 ], xi1 , xi4 ]
− [[xi2 , xi4 , xi5 ], xi1 , xi3 ] + [[xi3 , xi4 , xi5 ], xi1 , xi2 ] (1.13)

Remark 1.4. One can easily check that for a ternary Lie algebra

[x, x, y] = [x, y, y] = [x, y, x] = 0

As in the binary case, there is a functor which makes correspond to any partially associative
ternary algebra a ternary Lie algebra.

Proposition 1.3. To any partially associative ternary algebra on a vector space V with ternary
operation m, one associates a ternary Lie algebra on V defined by the bracket

[x1, x2, x3] =
∑
σ∈S3

Sgn(σ)m(xσ(1) ⊗ xσ(2) ⊗ xσ(3)) (1.14)

Proof. It is clear that the bracket is antisymmetric and direct calculation shows that the gen-
eralized Jacobi condition is satisfied.
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2 Algebraic varieties of ternary algebras

Let V be n-dimensional k-vector space with n finite and {e1, . . . , en} be a basis of V . Let m be
a ternary operation on V . The multilinearity of m implies that for all ei, ej , ek one has

m(ei ⊗ ej ⊗ ek) =
n∑

s=1

Cs
ijkes (2.1)

Consequently, the ternary operation is completely determined by the set of structure constants:

{Xi}i=1,...,n4 = {Cs
ijk, i, j, k, s = 1, ..., n} ⊂ kn4

(2.2)

2.1 Algebraic varieties of totally associative ternary algebras

The set of n-dimensional totally associative ternary algebras is determined by the following
system of algebraic polynomial equations

n∑
i7=1

Ci7
i1i2i3

Ci6
i7i4i5

=
n∑

i7=1

Ci7
i2i3i4

Ci6
i1i7i5

=
n∑

i7=1

Ci7
i3i4i5

Ci6
i1i2i7

(2.3)

where i1, . . . , i6 = 1, . . . , n. This set forms a quadratic algebraic variety embedded in kn4
and is

denoted by tAssn.

2.2 Algebraic varieties of partially associative ternary algebras

The set of n-dimensional partially associative ternary algebras is denoted by pAssn, it forms an
algebraic variety embedded in kn4

and is determined by the following polynomial system:

n∑
i7=1

Ci7
i1i2i3

Ci6
i7i4i5

+
n∑

i7=1

Ci7
i2i3i4

Ci6
i1i7i5

+
n∑

i7=1

Ci7
i3i4i5

Ci6
i1i2i7

= 0 (2.4)

where i1, . . . , i6 = 1, . . . , n.

2.3 Algebraic varieties of ternary Lie algebras

The set of n-dimensional Lie ternary algebras denoted by £3
n is an algebraic variety embedded

in kn2(n−1)(n−2). The variety of ternary Lie algebras is determined by the following polynomial
system :

n∑
i7=1

Ci7
i1i2i3

Ci6
i7i4i5

+
n∑

i7=1

Ci7
i1i2i4

Ci6
i7i3i5

+
n∑

i7=1

Ci7
i1i2i5

Ci6
i7i3i4

+
n∑

i7=1

Ci7
i1i3i4

Ci6
i7i2i5

−
n∑

i7=1

Ci7
i1i3i5

Ci6
i7i2i4

+
n∑

i7=1

Ci7
i1i4i5

Ci6
i7i2i3

−
n∑

i7=1

Ci7
i2i3i4

Ci6
i7i1i5

+
n∑

i7=1

Ci7
i2i3i5

Ci6
i7i1i4

−
n∑

i7=1

Ci7
i2i4i5

Ci6
i7i1i3

+
n∑

i7=1

Ci7
i3i4i5

Ci6
i7i1i2

= 0

where i1, . . . , i6 take values 1 to n and

Ci4
σ(i1)σ(i2)σ(i3) = Sgn(σ)Ci4

i1i2i3
, ∀σ ∈ S3, i1, . . . , i4 = 1, ..., n
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2.4 Action of GLn(k) on varieties of ternary algebras

The action of the group GLn(k) on an algebraic variety of ternary algebras Υ, where Υ indicates
tAssn, pAssn or £3

n, is defined as follows:

Gln(k)×Υ −→ Υ, (f,m) 7→ m′ = f.m

Thus

m′(x1 ⊗ x2 ⊗ x3) = f−1m(f(x1)⊗ f(x2)⊗ f(x3)) (2.5)

Let m ∈ Υ, the orbit of m is denoted by θ(m) and defined by

θ(m) = {f.m/f ∈ GLn(k)} (2.6)

In other words,

m′ ∈ θ(m) ⇐⇒ ∃f ∈ Gln(k) : m′ = f.m, θ(m) ⊂ Υ (2.7)

The orbits are in correspondence with the isomorphism classes of n-dimensional ternary algebras.
The stabilizer subgroup of m,

Stab(m) = {f ∈ GLn(k)/m = f.m}

is Aut(m), the automorphisms group of m.
The orbit θ(m) is identified with the homogeneous space GLn(k)

Aut(m) . Thus,

dim θ(m) = n2 − dim Aut(m)

The orbit θ(m) is provided, when k = C (a complex field), with the structure of a differentiable
manifold. In fact, θ(m) is image through the action of the Lie group GLn(k) of the point m,
considered as a point of Hom(V ⊗ V ⊗ V, V )×Hom(V, V ⊗ V ⊗ V ).

The Zariski tangent space to Υ at the point m corresponds to Z 2(m,m) and the tangent
space to the orbit corresponds to B2(m,m), the cohomology group Z 2(m,m) and B2(m,m) are
described in section (4.2).

An algebras whose orbit is open for the topology of Zariski is called rigid and constitute an
interesting class for the geometrical study of algebraic varieties [21]. Indeed, the Zariski closure
of an open orbit constitutes an irreducible component of the algebraic variety.

The last section of this paper is devoted to classifications up to isomorphism of 2-dimensional
partially associative ternary algebras, totally associative ternary algebras and ternary Lie alge-
bras.

3 Operads of ternary algebras

An operad is an algebraic tool which provides a modeling of operations with n variables on a
certain type of algebras, such that (Lie algebras, commutative algebras, associative algebras,
partially associative ternary algebras and totally associative ternary algebras etc).

The operads of the binary algebras were studied by many authors [14, 28] and those of the
ternary algebras by Gnedbaye [19].

An operad (resp. unital operad) on a sequence of k-vector spaces denoted V ectk is an asso-
ciative algebra (resp. unital associative algebra) in the monoidal category (S −mod,⊗). More
explicitly, a k-linear operad is a collection of n-dimensional vector spaces P(n) provided with
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actions of the symmetric groups Sn and a distinguished element I for P(1) (the unit) and
compositions

◦i : P(k)⊗ P(n) −→ P(k + n− 1), µ⊗ν 7−→ µ ◦i ν

such that for µ ∈ P(k), ν ∈ P(n), and for all k, n ∈ N and i = 1, . . . , k one has

µ ◦i ν(x1, . . . , xk+n+1) = µ(x1, . . . , xi−1, ν(xi, . . . , xi+n−1), xi+n, . . . , xk+n−1)

satisfying the following axioms.

• Equivariance: compatibility of the symmetric group action with compositions. By setting

µ(σ.(x1, . . . , xn)) = µσ(x1, . . . , xn)

the permutations π ∈ Sk and ρ ∈ Sn define σ = π ◦i ρ ∈ Sk+n−1. The equivariance is can
be expressed by

µπ ◦π(i) νρ = (µ ◦i ν)σ

• Associativity of the compositions: for all λ ∈ P(l), µ ∈ P(k), ν ∈ P(n), we have

(λ ◦i µ) ◦j+k−1 ν = (λ ◦j ν) ◦i µ for 1 ≤ i < j ≤ l (3.1)
(λ ◦i µ) ◦i−1+j ν = λ ◦i (µ ◦j ν) for 1 ≤ i ≤ l, 1 ≤ j ≤ k (3.2)

• The unit I is defined by

I ◦1 µ = µ = µ ◦i I (3.3)

for all µ ∈ P(k) and i = 1, . . . , k. In this case the operad is unital. For the examples see
[9], [28].

The ternary operations lead to the following operads:

• pAss(3): operad of partially associative ternary algebras,
• tAss(3): operad of totally associative ternary algebras,
• Lie(3): operad of ternary Lie algebras,
• tAssSym(3): operad of totally associative symmetric ternary algebras.

The concept of Koszul duality for the associative algebras is an algebraic theory developed in
the seventies by S. Priddy. Later in 1994, V. Ginzburg et M. M. Kapranov in their article [17]
generalized this concept for the algebraic operads.

Let P be an operad, one denotes by P ! the dual operad within the meaning of Koszul duality.
For the ternary algebras there are the following results [19].

Theorem 3.1. One has

pAss(3)! = tAss(3)

tAss(3)! = pAss(3)

(Lie(3))! = tAssSym(3)
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4 Formal deformations of ternary algebras

In this section we extend to ternary algebras the formal deformation theory introduced in 1964
by Gerstenhaber [15] for associative algebras, and in 1967 by Nijenhuis and Richardson for Lie
algebras [36]. The formal deformations of mathematical objects is one of the oldest technics
used by mathematicians. The deformations give more information about the structure of the
object, for example one can try to see which properties are stable under deformation.

In this theory the scalar’s field is extended to the power series ring. A more general approach
was developed by Fialowski and her collaborators, following Schlessinger where a commutative
algebra is taken instead of power series ring in one variable. The fundamental results of Ger-
stenhaber’s theory connect deformation theory with the suitable cohomology groups. There is
no general cohomology theory. Every structure has a cohomology, a Hochschild cohomology
for associative algebras, Chevalley-Eilenberg cohomology for Lie algebras etc. In the following
we define the concept of deformation for any ternary operation and define the suitable 1 and 2
cohomology groups for partially associative ternary algebras adapted to formal deformation.

Let V be a vector space over a field k and m0 be a ternary operation on V . Let k[[t]] be
the power series ring in one variable t and coefficients in k and V [[t]] be the extension of V by
extending the coefficients domain from k to k[[t]]. Then V [[t]] is a k[[t]]-module and when V is
finite-dimensional and we have

V [[t]] = V ⊗k k[[t]] (4.1)

One notes that V is a submodule of V [[t]]. The extension of ternary operations to V [[t]],

V [[t]]⊗ V [[t]]⊗ V [[t]] −→ V [[t]]

may be considered by using the k[[t]]-linearity as a map

V ⊗ V ⊗ V −→ V [[t]]

Definition 4.1. A formal deformation of ternary operation m0 on V is given by a ternary
operation mt defined by

mt :V ⊗ V ⊗ V −→ V [[t]] (4.2)

x⊗ y ⊗ z 7−→ mt(x⊗ y ⊗ z) =
∑
i≥0

mi(x⊗ y ⊗ z)ti (4.3)

where mi ∈ Hom(V ⊗ V ⊗ V, V ).

4.1 Deformations of partially associative ternary algebras

The deformation of a partially associative ternary algebra is determined by the deformation of
the ternary operation.

Definition 4.2. Let V be a k-vector space and τ0 = (V,m0) be a partially associative ternary
algebra. A deformation of τ0 on V is given by a linear map

mt : V ⊗ V ⊗ V −→ V [[t]]

defined by

mt(x⊗ y ⊗ z) =
∑
i≥0

mi(x⊗ y ⊗ z)ti, where mi ∈ Hom(V ⊗3, V )

satisfying the following condition

mt(mt(x⊗ y⊗ z)⊗ v⊗w)+mt(x⊗mt(y⊗ z⊗ v)⊗w)+mt(x⊗ y⊗mt(z⊗ v⊗w)) = 0 (4.4)

We call the condition (4.4) the deformation equation of partially associative ternary algebra
τ0.
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4.1.1 Deformation equation

In the following, we study the equation (4.4) and thus characterize the deformations of partially
associative ternary algebras. The equation may be written∑

i≥0

timi(
∑
j≥0

mj(x⊗ y ⊗ z)tj ⊗ v ⊗ w) +
∑
i≥0

timi(x⊗
∑
j≥0

mj(y ⊗ z ⊗ v)tj ⊗ w)

+
∑
i≥0

timi(x⊗ y ⊗
∑
j≥0

mj(z ⊗ v ⊗ w)tj) = 0 (4.5)

or∑
i≥0

∑
j≥0

(mi(mj(x⊗y⊗z)⊗v⊗w)+mi(x⊗mj(y⊗z⊗v)⊗w)+mi(x⊗y⊗mj(z⊗v⊗w))ti+j = 0 (4.6)

Definition 4.3. We call ternary partial associator the map

Hom(V ⊗3, V )×Hom(V ⊗3, V ) −→ Hom(V ⊗5, V ), (mi,mj) 7−→ mi ◦mj (4.7)

defined for all x, y, z ∈ V by

mi ◦mj(x⊗ y ⊗ z ⊗ v ⊗ w) = mi(mj(x⊗ y ⊗ z)⊗ v ⊗ w) + mi(x⊗mj(y ⊗ z ⊗ v)⊗ w)
+ mi(x⊗ y ⊗mj(z ⊗ v ⊗ w))

Remark 4.1. This associator can be generalized in the following way. Let

f ∈ Hom(V ⊗(2k+1), V ) and g ∈ Hom(V ⊗(2s+1), V )

Then f • g ∈ Hom(V ⊗(2(k+s)+1), V ) is defined by

f • g(x1, . . . , x2(k+s)+1) =
2k+1∑
i=1

f(x1, . . . , g(xi, . . . , xi+2s), xi+2s+1, . . . , x2(k+s)+1)

By using the ternary partial associator, the deformation equation may be written as follows

∑
i≥0

∑
j≥0

(mi ◦mj)ti+j = 0 or
∑
k≥0

tk
k∑

i=0

mi ◦mk−i = 0 (4.8)

This equation is equivalent to the following infinite system:

k∑
i=0

mi ◦mk−i = 0, k = 0, 1, . . .

In particular,

• for k = 0, m0 ◦m0 = 0, this corresponds to the partial associativity of m0,

• for k = 1, m0 ◦m1 + m1 ◦m0 = 0,

• for k = 2, m2 ◦m0 + m1 ◦m1 + m0 ◦m2 = 0.
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4.1.2 Equivalent and trivial deformations

In this paragraph, we characterize the equivalent and trivial deformations of a partially associa-
tive ternary algebras.

Definition 4.4. Given two deformations of a partially associative ternary algebra mt =
∑

i≥0 mit
i

and m′
t =

∑
i≥0 m′

it
i of m0 (m0 = m′

0), we say that they are equivalent if there is a formal iso-
morphism Φt : V → V [[t]] which is a k[[t]]-linear map that may be written in the form

Φt =
∑
i≥0

Φit
i = Id + Φ1t + Φ2t

2 + . . . where Φi ∈ Endk(V ) and Φ0 = Id

such that

Φt ◦mt = m′
t ◦ Φt (4.9)

A deformation mt of m0 is said to be trivial if and only if mt is equivalent to m0.

The condition (4.9) may be written

Φt(mt(x⊗ y ⊗ z)) = m′
t(Φt(x)⊗ Φt(y)⊗ Φt(z)), ∀x, y, z ∈ V (4.10)

which is equivalent to

∑
i≥0

Φi

∑
j≥0

mj(x⊗ y ⊗ z)tj

 ti =
∑
i≥0

m′
i

∑
j≥0

Φj(x)tj ⊗
∑
k≥0

Φk(y)tk
∑
l≥0

Φl(z)tl

 ti (4.11)

or ∑
i,j≥0

Φi(mj(x⊗ y ⊗ z))ti+j =
∑

i,j,k,l≥0

m′
i(Φj(x)⊗ Φk(y)⊗ Φl(z))ti+j+k+l

By identification of coefficients, one obtains that the constant coefficients are identical

m0 = m′
0 because Φ0 = Id

and for coefficients of t one has

Φ0(m1(x⊗ y ⊗ z)) + Φ1(m0(x⊗ y ⊗ z)) = m′
1(Φ0(x)⊗ Φ0(y)⊗ Φ0(z))

+ m′
0(Φ1(x)⊗ Φ0(y)⊗ Φ0(z))

+ m′
0(Φ0(x)⊗ Φ1(y)⊗ Φ0(z))

+ m′
0(Φ0(x)⊗ Φ0(y)⊗ Φ1(z))

from which it follows

m1(x⊗ y ⊗ z) + Φ1(m0(x⊗ y ⊗ z)) = m′
1(x⊗ y ⊗ z) + m0(Φ1(x)⊗ y ⊗ z)

+ m0(x⊗ Φ1(y)⊗ z) + m0(x⊗ y ⊗ Φ1(z))

Consequently,

m′
1(x⊗ y ⊗ z) = m1(x⊗ y ⊗ z) + Φ1(m0(x⊗ y ⊗ z))−m0(Φ1(x)⊗ y ⊗ z)

−m0(x⊗ Φ1(y)⊗ z)−m0(x⊗ y ⊗ Φ1(z))
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4.2 Cohomological approach of a partially associative ternary algebras

The study of the deformation equation leads us to certain elements of the cohomology of par-
tially associative ternary algebras. The existence of this cohomology is ensured by the operadic
structure of the ternary algebras.

Let τ = (V,m0) be a partially associative ternary algebra on a k-vector space V.

Definition 4.5. We call ternary p-cochain a linear map ϕ : V ⊗2p+1 −→ V . The set of p-cochains
on V is

{p(τ, τ) = {ϕ : V ⊗2p+1 = V ⊗ V ⊗ ...⊗ V︸ ︷︷ ︸
2p+1 times

−→ V }

The 1-coboundary and 2-coboundary operators for partially associative ternary algebras are
defined as follows

Definition 4.6. We call ternary 1-coboundary of partially associative ternary algebra τ the
map

δ1 : {0(τ, τ) −→ {1(τ, τ), f 7−→ δ1f

defined by

δ1f(x⊗ y⊗ z) = f(m0(x⊗ y⊗ z))−m0(f(x)⊗ y⊗ z)−m0(x⊗ f(y)⊗ z))−m0(x⊗ y⊗ f(z))

Definition 4.7. We call ternary 2-coboundary operator of partially associative ternary algebra
τ the map

δ2 : {1(τ, τ) −→ {2(τ, τ), ϕ 7−→ δ2ϕ

defined by

δ2ϕ(x⊗ y ⊗ z ⊗ v ⊗ w) = m0[ϕ(x⊗ y ⊗ z)⊗ v ⊗ w] + m0[x⊗ ϕ(y ⊗ z ⊗ v)⊗ w]
+ m0[x⊗ y ⊗ ϕ(z ⊗ v ⊗ w)] + ϕ[m0(x⊗ y ⊗ z)⊗ v ⊗ w]
+ ϕ[x⊗m0(y ⊗ z ⊗ v)⊗ w] + ϕ[x⊗ y ⊗m0(z ⊗ v ⊗ w)]

Remark 4.2. The operator δ2 can also be defined by

δ2ϕ = ϕ •m0 + m0 • ϕ

where • is the operation defined in the paragraph (4.1.1). Note that δ2 ◦ δ1 = 0.

The cohomology spaces relative to these coboundary operators are

Definition 4.8. The space of 1-cocycles of τ is

Z 1(τ, τ) = {f : V −→ V | δ1f = 0}

The space of 2-coboundaries of τ is

B2(τ, τ) = {ϕ : V ⊗3 −→ V |ϕ = δ1f, f ∈ {0(τ, τ)}

The space of 2-cocycles of τ is

Z 2(τ, τ) = {f : V ⊗3 −→ V | δ2f = 0}
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Remark 4.3. One has B2(τ, τ)⊂Z 2(τ, τ), because δ2 ◦ δ1 = 0. Note also that Z 1(τ, τ) gives the
space of derivations of a ternary algebra τ , denoted Der(τ).

Definition 4.9. We call the pth cohomology group of the partially associative ternary algebra
τ the quotient

H p(τ, τ) =
Z p(τ, τ)
Bp(τ, τ)

, p = 1, 2

We characterize now deformations in terms of cohomology. Let mt be a deformation of a
partially associative ternary algebra τ0 = (V,m0).

By using the definition of 2-coboundaries and by gathering the first and the last term, the
deformation equation (4.4) may be written

δ2mk =
k−1∑
i=1

mi ◦mk−i = 0, k = 1, 2, . . .

Lemma 4.1. The first term m1 in the deformation mt is a 2-cocycle of the cohomology of the
partially associative ternary algebra τ0.

Proof. Take k = 1 in the deformation equation (4.4).

Definition 4.10. Let τ0 = (V,m0) be a partially associative ternary algebra and m1 be an
element of Z 2(τ0, τ0). The cocycle m1 is said integrable if there exists a deformation mt =∑

i≥0 mit
i of τ0.

Proposition 4.1. Let mt be a deformation of a partially associative ternary algebra. The
integrability of m1 depends only on its cohomology class.

Proof. We saw in the previous section that if two deformations m and m′ are equivalent then
m′

1 = m1 + δΦ1. Recall that two elements are cohomologous if there difference is a coboundary.
Thus,

δm1 = 0 =⇒ δm′
1 = δ(m1 + δΦ1) = δm1 + δ(δΦ1) = 0

m1 = δg =⇒ m′
1 = δg − δΦ1 = δ(g − Φ1)

which end the proof.

Proposition 4.2. There is, over k[[t]]/t2, a one to one correspondence between the elements of
H 2(τ0, τ0) and the infinitesimal deformation

mt(x⊗ y ⊗ z) = m0(x⊗ y ⊗ z) + m1(x⊗ y ⊗ z)t, ∀x, y, z ∈ V (4.12)

Proof. The proof follows from a direct calculation.

Assume now that

mt(x⊗ y ⊗ z) = m0(x⊗ y ⊗ z) + m1(x⊗ y ⊗ z)t + m2(x⊗ y ⊗ z)t2 + . . . , ∀x, y, z ∈ V

such that m1 = . . . = mn−1 = 0.
The deformation equation implies δmn = 0 which means mn ∈ Z 2(τ0, τ0). If further mn ∈

B2(τ0, τ0), i.e mn = δg with g ∈ Hom(V, V ), then using a formal morphism Φt = Id + tg we
obtain that the deformation mt is equivalent to the deformation given for all x, y, z ∈ V by

m′
t(x⊗y⊗z) = Φ−1

t ◦mt ◦(Φt(x)⊗Φt(y)⊗Φt(z)) = m0(x⊗y⊗z)+m′
n+1(x⊗y⊗z)tm+1 + . . .

and again mn+1 ∈ Z 2(τ0, τ0).
Thus, we have the following theorem.



52 H. Ataguema and A. Makhlouf

Theorem 4.1. Let τ = (V,m0) be a partially associative ternary algebra and mt be a one
parameter family of deformations of m0. Then mt is equivalent to

mt(x⊗ y ⊗ z) = m0(x⊗ y ⊗ z) + m′
p(x⊗ y ⊗ z)tp + m′

p+1(x⊗ y ⊗ z)tp+1 + . . . (4.13)

where m′
p ∈ Z 2(τ0, τ0) and m′

p /∈ B2(τ0, τ0).

The previous theorem leads to the following fundamental corollary.

Corollary 4.1. If H 2(τ0, τ0) = 0, then all deformations of τ0 are equivalent to a trivial defor-
mation.

Remark 4.4. A partially associative ternary algebra such that any deformation is equivalent
to trivial deformation is called rigid. The previous result gives a sufficient condition for the
rigidity. Recall that rigid ternary algebras has a great interest in the study of algebraic varieties
of ternary algebras. The Zariski closure of the orbit of a rigid ternary algebra gives an irreducible
component.

5 Degeneration of ternary algebras

The concept of degeneration (also called contraction) of algebras appeared first in the physics
literature (Segal 1951, Inönü and Wigner 1953) [23] to describe the classical mechanics as a
degeneration of quantum mechanics. Later in 1961, Saletan [37], generalized this concept and
gave a necessary and sufficient condition for the existence of Lie algebra contractions. The
concepts of degenerations and deformations give more information about the structure of the
object and helps, in general, to construct new algebras. They are also used to study algebraic
varieties of algebras (associative, Lie, . . . ) see (Gabriel, Gerstenhaber, Mazzola, Richardson,
Makhlouf, Nijenhuis, Goze, Inönü, Saletan, . . . ) and in the theory of quantum groups by
Celegheni, Giachetti, Sorace et Tarlini [7, 8].

The aim of this section is to introduce the concept of degeneration of ternary algebras.
Let τ = (V,m) be a ternary algebra and Isom(V ) be the set of invertible maps of End(V ).

Recall that the action of Isom(V ) on the ternary algebras denoted f.τ is defined by

(f.m)(x⊗ y ⊗ z) = f−1(m(f(x)⊗ f(y)⊗ f(z))

Definition 5.1. Let τ1 and τ0 be two ternary algebras on a k-vector space V and ft be a one
parameter continuous family of endomorphism of V such that

ft = f0 + tf1 + t2f2 + . . .

One supposes that ft is invertible for t 6= 0. If the limit ft.τ1 exists when t → 0 and is equal to τ0,
where τ0 belongs to the Zariski closure θ(τ1) of the orbit of τ1, we say that τ0 is a degeneration
of τ1.

The following proposition gives the connection between degeneration and deformation.

Proposition 5.1. Let τ0 be a formal degeneration of τ1, then τ1 is a formal deformation of τ0.

Proof. In fact, if τ0 = limt→0 ft.τ1 is the degeneration of τ1, then τt = ft.τ1 is a deformation of
τ0.

Remark 5.1. The converse is in general false.
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6 Classifications

In this section, we establish the classification up to isomorphism of 2-dimensional partially
associative ternary algebras and totally associative ternary algebras. Ternary Lie algebras with
dimension lower than 5 correspond to antisymmetric ternary operations.

Proposition 6.1. Any 2-dimensional partially associative ternary algebra is trivial or isomor-
phic to the ternary algebras defined by the following non trivial product

m(e1 ⊗ e1 ⊗ e1) = e2 (6.1)

Proposition 6.2. Any nontrivial 2-dimensional totally associative ternary algebra is isomorphic
to one of the following totally associative ternary algebras:

m1
1 m1

1(e1 ⊗ e1 ⊗ e1) = e1 m1
1(e1 ⊗ e1 ⊗ e2) = e2 m1

1(e1⊗ e2 ⊗ e1) = e2

m1
1(e1 ⊗ e2 ⊗ e2) = e1 + e2 m1

1(e2 ⊗ e1 ⊗ e1) = e2 m1
1(e2⊗ e1 ⊗ e2) = e1 + e2

m1
1(e2 ⊗ e2 ⊗ e1) = e1 + e2 m1

1(e2 ⊗ e2 ⊗ e2) = e1 + 2e2

m1
2 m1

2(e1 ⊗ e1 ⊗ e1) = e1 m1
2(e1 ⊗ e1 ⊗ e2) = e2 m1

2(e1 ⊗ e2 ⊗ e1) = e2

m1
2(e1 ⊗ e2 ⊗ e2) = 0 m1

2(e2 ⊗ e1 ⊗ e1) = e2 m1
2(e2 ⊗ e1 ⊗ e2) = 0

m1
2(e2 ⊗ e2 ⊗ e1) = 0 m1

2(e2 ⊗ e2 ⊗ e2) = 0

m1
3 m1

3(e1 ⊗ e1 ⊗ e1) = 0 m1
3(e1 ⊗ e1 ⊗ e2) = 0 m1

3(e1 ⊗ e2 ⊗ e1) = 0
m1

3(e1 ⊗ e2 ⊗ e2) = 0 m1
3(e2 ⊗ e1 ⊗ e1) = 0 m1

3(e2 ⊗ e1 ⊗ e2) = 0
m1

3(e2 ⊗ e2 ⊗ e1) = 0 m1
3(e2 ⊗ e2 ⊗ e2) = e1

m1
4 m1

4(e1 ⊗ e1 ⊗ e1) = 2e1 + e2 m1
4(e1 ⊗ e1 ⊗ e2) = e1 + e2 m1

4(e1 ⊗ e2 ⊗ e1) = e1 + e2

m1
4(e1 ⊗ e2 ⊗ e2) = e1 m1

4(e2 ⊗ e1 ⊗ e1) = e1 + e2 m1
4(e2 ⊗ e1 ⊗ e2) = e1

m1
4(e2 ⊗ e2 ⊗ e1) = e1 m1

4(e2 ⊗ e2 ⊗ e2) = e2

m1
5 m1

5(e1 ⊗ e1 ⊗ e1) = e1 m1
5(e1 ⊗ e1 ⊗ e2) = 0 m1

5(e1 ⊗ e2 ⊗ e1) = 0
m1

5(e1 ⊗ e2 ⊗ e2) = 0 m1
5(e2 ⊗ e1 ⊗ e1) = 0 m1

5(e2 ⊗ e1 ⊗ e2) = 0
m1

5(e2 ⊗ e2 ⊗ e1) = 0 m1
5(e2 ⊗ e2 ⊗ e2) = e2

m1
6 m1

6(e1 ⊗ e1 ⊗ e1) = 0 m1
6(e1 ⊗ e1 ⊗ e2) = 0 m1

6(e1 ⊗ e2 ⊗ e1) = 0
m1

6(e1 ⊗ e2 ⊗ e2) = 0 m1
6(e2 ⊗ e1 ⊗ e1) = 0 m1

6(e2 ⊗ e1 ⊗ e2) = 0
m1

6(e2 ⊗ e2 ⊗ e1) = 0 m1
6(e2 ⊗ e2 ⊗ e2) = e2

m1
7 m1

7(e1 ⊗ e1 ⊗ e1) = e1 m1
7(e1 ⊗ e1 ⊗ e2) = e2 m1

7(e1 ⊗ e2 ⊗ e1) = e1 − e2

m1
7(e1 ⊗ e2 ⊗ e2) = e1 m1

7(e2 ⊗ e1 ⊗ e1) = e2 m1
7(e2 ⊗ e1 ⊗ e2) = −e1 + e2

m1
7(e2 ⊗ e2 ⊗ e1) = e1 m1

7(e2 ⊗ e2 ⊗ e2) = e2

m1
8 m1

8(e1 ⊗ e1 ⊗ e1) = 0 m1
8(e1 ⊗ e1 ⊗ e2) = 0 m1

8(e1 ⊗ e2 ⊗ e1) = e1

m1
8(e1 ⊗ e2 ⊗ e2) = 0 m1

8(e2 ⊗ e1 ⊗ e1) = 0 m1
8(e2 ⊗ e1 ⊗ e2) = e2

m1
8(e2 ⊗ e2 ⊗ e1) = 0 m1

8(e2 ⊗ e2 ⊗ e2) = 0

m1
9 m1

9(e1 ⊗ e1 ⊗ e1) = 0 m1
9(e1 ⊗ e1 ⊗ e2) = 0 m1

9(e1 ⊗ e2 ⊗ e1) = 0
m1

9(e1 ⊗ e2 ⊗ e2) = e1 m1
9(e2 ⊗ e1 ⊗ e1) = 0 m1

9(e2 ⊗ e1 ⊗ e2) = −e1

m1
9(e2 ⊗ e2 ⊗ e1) = e1 m1

9(e2 ⊗ e2 ⊗ e2) = e2

m1
10 m1

10(e1 ⊗ e1 ⊗ e1) = e1 m1
10(e1 ⊗ e1 ⊗ e2) = e2 m1

10(e1 ⊗ e2 ⊗ e1) = 0
m1

10(e1 ⊗ e2 ⊗ e2) = 0 m1
10(e2 ⊗ e1 ⊗ e1) = 0 m1

10(e2 ⊗ e1 ⊗ e2) = 0
m1

10(e2 ⊗ e2 ⊗ e1) = 0 m1
10(e2 ⊗ e2 ⊗ e2) = 0
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m1
11 m1

11(e1 ⊗ e1 ⊗ e1) = e1 m1
11(e1 ⊗ e1 ⊗ e2) = e2 m1

11(e1 ⊗ e2 ⊗ e1) = −e2

m1
11(e1 ⊗ e2 ⊗ e2) = e1 m1

11(e2 ⊗ e1 ⊗ e1) = e2 m1
11(e2 ⊗ e1 ⊗ e2) = −e1

m1
11(e2 ⊗ e2 ⊗ e1) = e1 m1

11(e2 ⊗ e2 ⊗ e2) = e2

m1
12 m1

12(e1 ⊗ e1 ⊗ e1) = e1 m1
12(e1 ⊗ e1 ⊗ e2) = 0 m1

12(e1 ⊗ e2 ⊗ e1) = 0
m1

12(e1 ⊗ e2 ⊗ e2) = 0 m1
12(e2 ⊗ e1 ⊗ e1) = e2 m1

12(e2 ⊗ e1 ⊗ e2) = 0
m1

12(e2 ⊗ e2 ⊗ e1) = 0 m1
12(e2 ⊗ e2 ⊗ e2) = 0

m1
13 m1

13(e1 ⊗ e1 ⊗ e1) = e2 m1
13(e1 ⊗ e1 ⊗ e2) = e1 m1

13(e1 ⊗ e2 ⊗ e1) = e1

m1
13(e1 ⊗ e2 ⊗ e2) = e2 m1

13(e2 ⊗ e1 ⊗ e1) = e1 m1
13(e2 ⊗ e1 ⊗ e2) = e2

m1
13(e2 ⊗ e2 ⊗ e1) = e2 m1

13(e2 ⊗ e2 ⊗ e2) = e1

m1
14 m1

14(e1 ⊗ e1 ⊗ e1) = −e1 + e2 m1
14(e1 ⊗ e1 ⊗ e2) = e1 m1

14(e1 ⊗ e2 ⊗ e1) = e1

m1
14(e1 ⊗ e2 ⊗ e2) = e2 m1

14(e2 ⊗ e1 ⊗ e1) = e1 m1
14(e2 ⊗ e1 ⊗ e2) = e2

m1
14(e2 ⊗ e2 ⊗ e1) = e2 m1

14(e2 ⊗ e2 ⊗ e2) = e1 + e2

In the case of ternary Lie algebras, we have

Proposition 6.3. Any n-dimensional antisymmetric ternary operation with n ≤ 4 is a ternary
Lie algebra.

These results of classification are obtained either by a direct reasoning or using a formal
computation software [29].
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