alexa Demyelination in Peripheral Nerves: Much to Learn from Leprosy Neuropathy | OMICS International
ISSN: 2376-0389
Journal of Multiple Sclerosis
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Demyelination in Peripheral Nerves: Much to Learn from Leprosy Neuropathy BS*, Andrade PR, Jardim MR, Antunes SL and Sarno EN

Department of Leprosy, Foundation Oswaldo Cruz, Rio de Janeiro, RJ, Brazil

*Corresponding Author:
Bruno Mietto
Department of Leprosy
Foundation Oswaldo Cruz
Rio de Janeiro, RJ, Brazil
Tel: 552125621527
E-mail: [email protected]

Received March 17, 2016; Accepted May 17, 2016; Published May 24, 2016

Citation: Mietto BS, Andrade PR, Jardim MR, Antunes SL, Sarno EN (2016) Demyelination in Peripheral Nerves: Much to Learn from Leprosy Neuropathy. J Mult Scler (Foster City) 3:174. doi:10.4172/2376-0389.1000174

Copyright: © 2016 Mietto BS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Multiple Sclerosis

Leprosy is a chronic infectious disorder of the peripheral nervous system (PNS) caused by the infection of non-neuronal nerve cells, preferentially Schwann cells and resident macrophages, by Mycobacyerium leprae (ML) [1]. There is growing evidence suggesting that damage to the myelin sheath is due to a disturbed Schwann cell response in conjunction with immune cell participation [2-4]. Although demyelination is not easily found in neuropathic leprosy nerve biopsies (Figure 1), nerve conduction studies routinely used in leprosy referral centers indicate that demyelination occurs during most leprosy reactional episodes [5]. Moreover, nerve conduction analyses show that part of these patients recover from previous lesions after 6-month corticosteroid treatment (Jardim MR - personal communication). Other drugs that favor re-myelination are worth being investigated (Figure 1).


Figure 1: Semithin sections (0.5-µm-thick) of human nerve biopsy specimens of leprosy patients. Evidence of remyelinated fibers in leprosy patients with reactional neuritic episodes. A) Transverse semithin section showing remyelinating axons (asterisk) with relatively thin, myelin-sheath- wrapping axons. B) Concentric onion-bulb Schwann cell proliferation encompassing axons.

This is an attempt to remyelinate nerve fibers (arrowheads). Note the reduced quantity of myelinated fibers during this stage of leprosy disease due to secondary axonal degeneration.

The mechanisms involved in nerve fiber damage in leprosy neuropathy have become controversial since Rambukkana and collaborators reported acute myelin stripping after direct ML binding to myelinated Schwann cells in vitro [6,7]. Conversely, followed up the effects of ML infection in myelinated Schwann cell-neuron-co-cultures for 30 days and observed no morphological alterations in the myelin structure of infected fibers in vitro [8].

Since ML infection may also lead to up regulation of a large set of immune genes during the early stages of infection and recognizing that pro-inflammatory cytokines/chemokines are able to induce the breakdown of myelin in peripheral nerves, it is more likely than not that the demyelination process in leprosy neuropathy could also be immune-mediated [9,10]. Taking into account that peripheral nerve demyelination encompasses a multitude of signaling pathways as well as the orchestration of complex glial-axon-immune cell interactions, the complete understanding of the factors underlying the breakdown of myelin after ML infection requires further elucidation.

In this area of research, our group has consistently been shedding light on the role played by ML in modulating the inflammatory network of cytokines produced by Schwann cells and macrophages in vitro and in human peripheral nerves. Over the last decade, we have observed higher levels of mRNA for tumor necrosis factor (TNF) and their downstream-regulated metalloproteinases (MMP)-2 and -9 in leprosy nerves [11,12]. Moreover, TNF has also been detected in the dermis, epidermis, and serum of leprosy reactional skin lesions [13-15]. In the highly activated inflammatory infiltrates, higher levels of TNF mRNA have been detected than in the insidious processes of peripheral nerves, strongly indicating that this mediator plays an important role in the pathogenesis of neural injury in leprosy [11].

In addition, TNF is a central regulator of tissue inflammation in a variety of infections besides autoimmune and neurodegenerative disorders [16,17]. With regard to the PNS, Schwann cells, which constitutively express the TNF protein in non-injured nerves, robustly increase production after injury while also releasing a broad spectrum of pro-inflammatory mediators, including IL-1ß, MCP-1, MIP-1, TGF-ß, and galectin-3 [10,18].The early release of inflammatory mediators by Schwann cells and resident macrophages attracts additional immune cells to the damaged peripheral nerves, thus inducing an inflammatory burst in the infected nerves, chronically followed by axonal and myelin degeneration. In fact, while lack of IL-1ß and TNF signaling impaired immune cell influx towards injured peripheral nerves in mice, higher levels of TNF were linked to neuropathic pain [19]. As such, leprosy patients frequently report neural pain sensations in consonance with the higher TNF expression observed in leprosy nerves [12,20].

In the paper entitled “Inflammatory Cytokines Are Involved in Focal Demyelination in Leprosy Neuritis”, we explored the role of TNF signaling as a major candidate for involvement in segmental demyelination during leprosy disease [21]. The above study observed that TNF, together with its receptor (TNFR) and the TNF-Converting Enzyme (TACE) were most often expressed by Schwann cells in the peripheral nerves of leprosy patients. However, our in vitro study showed that although ML upregulated the expression of membranebound TNF, it did not induce cytokine secretion in these cells. The bacteria were also able to induce gene expression of TNF receptor 1 (TNFR1), whose activation has been associated with many neurodegenerative diseases like multiple sclerosis [22]. Furthermore, ML was seen to induce IL-23 secretion, a cytokine linked to the onset of immune-mediated demyelination [23]. Likewise, TNF by itself was able to increase the secretion of IL-6 and IL-8 in Schwann cell cultures, indicating its potential contribution to the escalating inflammatory response during nerve injury.

The current review highlights the importance of both ML and TNF in eliciting demyelination related to Schwann cell infection. Even though ML did not induce TNF secretion, its ability to upregulate membrane-bound TNF and TNFR1 expression was demonstrated. Thus, ML renders Schwann cells more sensitive to the exogenous TNF levels in the nerve originated from resident macrophages in the early stages of injury and, later on, from recruited inflammatory cells. In view of the fact that this cytokine has been reported to be involved in demyelination, the induction of IL-23 by the bacteria once again reinforces the significant role played by Schwann cells in driving the initial immune response in the early stages of infection and, consequentially, their pivotal contribution to nerve injury [23-25].

The magnitude and underlying mechanisms entailed in nerve demyelination in leprosy neuropathy are subjects of debate. A more complete understanding of the host-pathogen interaction with the axon-myelin unit is crucial to the development of potential therapies for leprosy patients. In addition, our experience indicates that nerve conduction studies are a more reliable and reproducible method to detect myelin loss than routine nerve biopsies. However, these continue to be performed because they are the only means at our disposal to reliably confirm leprosy disease in patients that have no dermatological lesions or positive acid-fast bacilli skin smears.

In this regard, two recent publications provide very novel information regarding future directions to be explored in detailing how myelin is broken down after nerve injury. Both articles have elegantly demonstrated that insulted Schwann cells digest their own myelin by activating intrinsic autophagic-signaling pathways [26,27]. Although there are few reports linking leprosy progression and autophagic genes a possible correlation between demyelination and the regulation of autophagic-related genes in infected Schwann cells deserves further investigation [28,29]. This is a prospective hot topic in the ML-Schwann cell crosstalk field that could elicit alternative views on the possible reasons behind myelin damage in leprosy disease.


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

Article Usage

  • Total views: 8619
  • [From(publication date):
    May-2016 - Mar 19, 2018]
  • Breakdown by view type
  • HTML page views : 8538
  • PDF downloads : 81

Review summary

  1. Nathan
    Posted on Jul 27 2016 at 11:26 am
    This is a very nice mini review on a major thrust area of research. The article presents valuable information collected from recent publications on the process of demyelination of the peripheral nerve fibres as well the studies that attempt in remyelinating the fibres as a prospective treatment method for leprosy.

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version