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Introduction

Nuclear medicine agents 

In the field of Nuclear Medicine procedures, radio-pharmaceuticals 
are administered to the patients and their radiations are detected 
by sensors. In fact, radiopharmaceuticals are consisting of two 
components, a carrier and a tracer amount of a radionuclide regarding 
defined radiation types [1]. Routinely, scintigraphy imaging detects 
the emission of the tracer in a planar form, whereas in Single Photon 
Emission Tomography (SPECT), the gamma camera detects and 
reconstructs the tracer emissions as 3D images [2]. Innovative 
modalities such as Positron Emission Tomography (PET) uses 
compounds labeled with positron-emitting radionuclides to 
provide functional images. PET is based on the detection of two 
photons produced when the positron is emitted from the nucleus 
of an unstable radionuclide and annihilates with its antiparticle 
(an electron). PET scanner has higher sensitivity and specificity 
than SPECT and is able to detect picomolar concentrations of a 
tracer. PET and SPECT combined with CT scans can compensate 
the attenuation and provide corrections for emission images with 
a more accurate anatomic correlation of tracer uptake in the body 
[3-5]. Moreover, low signal-to-noise ratios (SNR) may make it 
sophisticated to distinguish targets from the background. The 
growth of nanotechnology has brought challenging diagnosis 
and therapy innovations in medicine particularly in the Nuclear 
Medicine imaging. Consequently, dendrimers in the field of nuclear 
medicine have concentrated on improving the primary diagnosis of 
tumors and on their treatment. Conjugating nano-drugs to water-
soluble, nontoxic, biocompatible polymers is well established [6-
8] which includes long blood circulation time, decreased toxicity 
[9-13]. Meanwhile, dendrimers are a new class of highly branched 
spherical polymers that are highly soluble in aqueous solution 
and have a unique surface of many functional groups. Compared 
with many other types of dendrimers, Polyamidoamine (PAMAM) 
dendrimers with huge amine groups have the advantage of 
conjugating with other molecules via an amide linkage [14,15]. As 
a challenge in Nuclear Medicine, both SPECT and PET are limited 
by a low spatial resolution. The main aim of the current review is 
an assessment of the dendrimers effects on SPECT for improving 
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Abstract
Recent progress in nanoscale tumor targeting may able to deliver radionuclides for improving the outcome 

of both cancer diagnosis and therapy. Dendrimers are large and complex molecules with well-defined nanoscale 
structure. Current overview highlights the dendritic nano-probes for Single Photon Emission Computed 
Tomography (SPECT) because of low sensitivity and specificity. Conjugating radiopharmaceuticals and dendrimers 
has produced bioimaging probes which have prolonged enhanced stability, reduced toxicity and improved target 
specificity. However, the application of dendrimers to nuclear medicine is still new technique for improving images. 
Overall, the multidisciplinary structure of dendrimers makes them good choices for medical imaging or treatment.

quality of images. Furthermore, we focused on a wide range of 
applications of linker molecules for increasing SNR correlated with 
images.

Molecular imaging modalities 

SPECT and PET are two major molecular imaging systems which 
are used in nuclear medicine. Both techniques use radio-labeled 
molecules to verification of molecular processes that can be visualized, 
quantified and tracked over time. The impact of molecular imaging 
has been on a greater understanding of characterization of disease 
and detection, and evaluation of treatment [16-18]. SPECT is the most 
established modality and standard imaging procedures have been 
widely available. The radiotracers used in SPECT emit gamma rays, as 
opposed to PET isotopes which are positron emitters like 18F(T1/2=110 
min). The SPECT radiotracers have relatively long half-lives from a few 
hours to a few days (99mTc T1/2=6.0 h; 111In T1/2=67.3 h; 123I T1/2=13.3 
h; 201Tl T1/2=72.9 h). As well as an improvement the imaging agents 
[19,20], focusing on the development of new SPECT imaging systems 
with increased sensitivity and improve image quality and resolution is 
a hot topic recently [21]. 

Image quality

Image quality in Nuclear Medicine, especially in SPECT, is 
determined by attenuation, scatter, spatial and energy resolution, image 
noise and contrast. Moreover, numerous studies have demonstrated 
the integration of CT with SPECT for attenuation correction that 
improved the image quality, and the CT also provides fair anatomical 
images [22]. The CT image is obtained prior to the SPECT image 
and assesses an attenuation map of the spatial distribution of the 
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attenuation coefficients. In one hand, patient movement between 
the two acquisitions can lead to wrong attenuation correction and 
misregistration. Scatter in SPECT images can reduce image contrast, 
so various scatter correction algorithms have been reviewed previously 
[23]. On the other hand, although these algorithms maybe improve 
image qualities these days nanoparticles application offer a modern 
technology for this issue. Image quality depends on resolution, 
sensitivity, a field of view and detector area [24].

Cardiology PET vs. SPECT

The spatial resolution of SPECT is approximately 10 mm while 
for PET is 5 mm. As a comparison between PET and SPECT studies, 
despite the challenges of spatial resolution in SPECT, it is shown that 
SPECT can be a good choice in various clinical applications, especially 
in cardiology. SPECT is well done in myocardial perfusion imaging. 
While the guidelines also suggested the use of [18F] FDG PET to 
assess myocardial viability. Most common 99mTC radiotracers used in 
cardiovascular imaging shown in Figure 1.

Oncology PET vs. SPECT

PET with multiple radiotracers being used for imaging ([18F] 
FDG for glucose metabolism, [18F] FLT for cell proliferation, 18F 
labeled RGD for angiogenesis, [18F] ethylcholine forprostate, etc.). 
However, SPECT is used for bone scintigraphy. In a study on the 
use of [18F] FDG PET vs. SPECT (using 99mTc-HMDP) in detecting 
bone metastases from breast cancer [25] showed that sensitivity and 
accuracy of SPECT were more than PET (85%) vs (17%) and (96%) 
vs. (85%) respectively.

Neurology PET vs. SPECT
99mTc-hexamethylpropyleneamineoxime (99mTc-HMPAO) SPECT 

and [18F] FDGPET is used to detect cerebral perfusion and metabolic 
abnormalities in Alzheimer’s disease [26]. In neurology, 123I is preferred 
for improved blood-brain barrier penetration as compared to the larger 
99mTc SPECT imaging. Common SPECT radiotracers used in neurology 
was shown in Table 1.

Technetium-99m labeling

Research on 99mTc radiopharmaceuticals commenced after the 
development of the 99Mo/99mTc generators [27]. The availability of 
short-lived (half-life: 6h) is a major factor for use of this radioisotope. 
99mTc derivatives are used in several diagnostic procedures, from the 
use of pertechnetate for thyroid uptake to the use of 99mTc-octreotide 
derivatives for imaging neuroendocrine tumors. A major advantage 
of 99mTc for radiopharmaceutical development is a varietal chemistry 
in which making it a good choice to produce many complexes with 
specific desired characteristics. There are hundreds of 99mTc complexes 
useful for diagnostic procedures, of which over thirty are used in clinical 
studies. 99mTc radiopharmaceuticals can be categorized as first, second 
or third generation products, depending on their level of complexity.

First generation 

This generation was employed by taking advantage of the easy 
absorption, distribution and excretion properties of the 99mTc. Previous 
studies led to the thyroid (99mTcO4-), liver (99mTc-colloids), bone (99mTc-
phosphonates) and kidney (99mTc-DTPA) [28]. 

Figure 1: Most common 99mTC labeling for cardiovascular imaging.

  Ammonia core EDA core               

Generation molecular mass/ number of terminal 
groups molecular mass number of terminal groups 

0 359/3         516 4
1 1043/ 6 1428 8
2 2411/12 3252 16
3 5147/24 6900 32
4 10619/48 14196 64
5 21563/96 28788 128
6 43451/192 57972 256
7 87227/384 116340 512
8 174779/768 233076 1024
9 349883/1536 466548 2048

10 700091/3072 933492 4096

Table 1: Theoretical properties of PAMAM dendrimers.
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Second generation 

Nuclear magnetic resonance (NMR) spectroscopy, mass 
spectroscopy (MS) and X-ray diffraction persuade researchers to verify 
the structure and biological behavior of the 99mTc agents and also 
conjugating other tracers to the 99mTc. Consequently, precise design 
of legends led to the discovery of imaging agents for perfusion in 
the myocardium and brain. The widely used cardiac imaging agents 
99mTc-MIBI (sestamibi, Cardiolite), 99mTc-tetrofosmin, and the brain 
imaging agents 99mTc-HMPAO (exametazime, Ceretec) and 99mTc-
ECD (bicisate, Neurolite) are the result of the above strategy in the 
development of 99mTc complexes [29-31].

Third generation 

Development these agents led to the labeling the bifunctional 
chelating agent (BFCA) and new chemistries such as the Tc-tricarbonyl, 
Tc-nitrido, Tc-HYNIC. 99mTc-HYNICEDDA- TOC, developed as an 
alternative to 111In-octreotide, and 99mTc-TRODAT-1 are the best 
examples of third generation 99mTc radiopharmaceuticals [32,33]. 

Dendrimers 

Dendrimers are nano-sized with a homogeneous and monodisperse 
structure which is an ideal candidate as targeting nano-objects regarding 
the vectorization of diagnostic or therapeutic agents through the 
complexation of very diverse metallic ions [34]. These days, however, 
the dendrimers are interesting particles for nuclear medicine imaging 
with attracting a considerable interest to develop novel approaches in 
cancer imaging, molecular diagnosis.

PAMAM dendrimers 

Tomalia et al. synthesized the first generation of Polyamidoamine 
(PAMAM) dendrimers [35] which have ethylene-diamine (EDA) 
core and an amidoamine repeat branching structure (Figure 2).They 
are synthesized via Michael addition of amino groups of EDA with 

methyl acrylate, followed by admiration of the resulting esters with 
EDA, and generation 0 is formed (Figure 3). A repetition of these two 
synthetic steps adds another layer of branching units and produces 
next generation. The size of dendrimer grows linearly in diameter as 
a function of added generations, approximately 1 nm per generation 
(Tables 1 and 2). Each new generation also doubles the number of 
terminal groups and approximately doubles the molecular weight 
of the previous generation. Figure 3 shows the synthesis of amine 
(NH2) terminated PAMAM dendrimers that are cationic; however, 
there are also neutral hydroxyls (OH) and anionic carboxyl (COOH) 
terminated PAMAM dendrimers. Due to half completion of the 
monomer addition, the carboxyl terminated dendrimers are called half 
generations. Regarding to this issue, dendrimers can covalently attach 
several drug molecules, targeting groups. For avoiding sterical snag 
and to provide drug with a reactive group for diagnostic and therapy, a 
variety of spacer molecules can be linked to the drug and as such used 
for conjugation reaction with dendrimers. The presence of hydrophilic 
terminal groups makes dendrimers highly water soluble. The solubility 
increases with the generation number; the higher generation, the 
higher number of terminal groups, leads to increased surface charge 
and polarity. So as will discuss fellow, G2 to G5 dendrimer generations 
is used for suffering more drug or radiopharmaceuticals in the region 
of interests for imaging. Physicochemical characteristics of amine-
terminated PAMAM dendrimers are shown in Table 1 as well.

Discussion 
Regarding the promising dendrimer structure and their valuable 

properties, numerous researches have offered to design 99mTc-labeled 
dendrimers for diagnostic applications in nuclear medicine. Moreover, 
the Starburst structure of dendrimers allows multivalent attachment 
of chelators and targeting moieties.Pioneering work has been carried 
out by Mukhtar et al [36]. They reported two water-soluble generation 
(G), G1 and G2 dendrimers, with porphyrin cores possessing terminal 
iminodiacetic acid groups as chelating moieties for the successful 

Figure 2: Schematic structure of G1 to G8 dendrimers.
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Figure 3: Alteration of G0 generation of dendrimers to G1.

Diameter (nm) Molecular weight Number of surface groups Generation
1.5 517 4 0
2.2 1430 8 1
2.9 3256 16 2
3.6 6909 32 3
4.5 14215 64 4
5.4 28826 128 5
6.7 58048 256 6
8.1 116493 512 7
9.7 467162 1024 8

11.4 934720 2048 9

Table 2: Physiochemical characteristics of amine terminated PAMAM dendrimers.

radiolabeling (95%) with 99mTc. Another study was performed by Agashe 
et al. [37] using this technique to investigate the biodistribution in mice 
of G5 (polypropylene imine) dendrimers (PPI) coated with mannose 
(M-PPI) or lactose (L-PPI) so as to explore the potential of these systems 
as drug carriers. They demonstrated that 99mTc-labeled carbohydrate 
coated dendrimers are cleared from the systemic circulation faster 
than uncoated dendrimers. Conventional nuclear medicine imaging 
has low specificity and sensitivity using radiolabeled tumor specific 
agents. Multiple-step amplification pre-targeting greatly increases the 
accumulation of radioactivity in the target tissue. One approach to 
prepare a well-defined of 99mTc-labeled dendrimer for SPECT imaging 
is to incorporate a single high-affinity 99mTc ligand at the focal point of 
high-generation dendrons [38]. Other trials carried out by Shen et al. 
[39] by involving the G5 PAMAM dendrimers functionalized at the 
primary amines periphery with DTPA as a 99mTc-ligand and folic acid 
(FA) as a targeting agent for folate receptors over-expressed in cancer 
cells [40]. Their synthesized radiolabeled PAMAM–FA [conjugate 1] 
had excellent in vitro/in vivo stability, and the biodistribution analysis 
in tumor-bearing nude mice indicated its rapid blood clearance and 
preferential accumulation at the tumor site within 6 hours, which was 
further confirmed by micro-SPECT imaging (Figure 4). 

A subsequent study [41] by the same group demonstrated, both 
through biodistribution and micro-SPECT imaging studies, that 
indirect FA conjugation with G5 PAMAM through a PEG spacer 
increased the tumor uptake: PEG is hydrophilic and structurally 
flexible, potentially evading the recognition and phagocytosis by 
macrophage cells in the lymphatic system. This enables folic acid 
modified with PEG to selectively bind with a metastatic tumor-cell 
leading to receptor-mediated endocytosis. Such a study confirmed the 
potential of an FA-conjugated dendrimer as a promising imaging tool 
for cancer diagnosis (Figure 5).

Further Applications of Dendrimers

Many authors with increasing the solubility and decrease the non-
specific cellular uptake suggest the primary amine on the surface of 
PAMAM dendrimer were partially converted to acetamide moieties in 
the presence of acetic anhydride and triethylamine [42]. Folic acid (FA) 
is an optimal targeting ligand for selective delivery of attached imaging 
and therapeutic agents which has high affinity to the folate receptor 
[43,44] even after labeling with therapeutic/diagnostic agents and it 
was used for targeting of FR-positive tumors. The limited distribution 
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Figure 4: Micro-SPECT imaging of normal healthy mouse at 2, 4 and 6 h after injection the tracer.

of its receptor (FR) in normal tissues and over-expressed in cancer 
cells made folic acid relatively satisfactory targeting ligand [45]. 
Recent studies have demonstrated that the conjugation dendrimers 
with fluorescein may lead to a preferential distribution of the cargo 
in the targeted tumor cells [46-54]. Emiting fluorescence from 
dendrimers cannot yet be adapted for clinical use; however, exogenous 
fluorophores can be conjugated to the exteriorprimary amine groups 
to enable detection by the respective imaging modalities. Generation 
size changes the pharmacokinetic and pharmaco-dynamic properties 
of dendrimers and increasing the size alter their permeability across the 
vascular wall, excretion route, and their recognition and uptake by the 
reticulo-endothelial system. Therefore, smaller sized dendrimers may 
be used for renal imaging, whereas larger sized preferentially used for 
imaging the liver and spleen.

Conjugation of FA to the partially acetylated dendrimers was 
carried out via condensation between the c-carboxyl group of FA 
and the primary amine of the dendrimer. Zhang et al. have confirmed 
that synthesized 99mTc radio-labeled dendrimer PAMAM-G5-folic 
acid conjugate showed certain accumulation in KB tumor-bearing 
nude mice [55]. Their Micro-SPECT imaging further confirmed the 
conjugate of 99mTc-G5-Ac-FA-1B4M DTPA concentrated in the tumor 
as time increased and had excellent in vitro/in vivo stability and rapid 
clearance from blood (Figure 6).

Numerous in vivo studies have demonstrated that 80% of the 99mTc-
G5-Ac-FA-DTPA and 99mTc-G5-Ac-DTPA remained intact within 6h 
in the blood of normal mice [39,55]. Moreover, their biodistribution was 
investigated with KB tumor–bearing nude mice. For this assessment, 
the mice were maintained on a folate-deficient diet for the duration of 
the experiment to minimize the circulating levels of FA. As a result, 99mTc-
G5-Ac-DTPA and 99mTc-G5-Ac-FA-DTPA fast cleared from the blood, 
decreasing from 11.75% injected dose/gram (ID/g) at 2 h to 5.60% ID/g at 
6 h for 99mTc-G5-Ac-DTPA and from 12.59% ID/g at 2 h to 4.00% ID/g at 
6 h for 99mTc-G5-Ac-FA-DTPA. Both agents remained at a low level up to 
6 h in the FR-negative organs, including the brain. Micro-SPECT imaging 
also confirmed the uptake of 99mTc-G5-Ac-FA-DTPA in the FR-positive 
tumors, liver, and kidneys [39,55]. Investigating on 99mTc-G5-Ac-pegFA-
DTPA, 99mTc-G5-Ac-FA-DTPA and 99mTc-G5-Ac DTPA showed that 

Conjugate 1

PEGylation of the PAMAM dendrimer-FA conjugate improves the tumor 
targeting and may be used as a targeted delivery system for imaging labels 
and therapeutic drugs [41,55].

Parrott et al. have recently developed dendrimers based on aliphatic 
polyester dendrons labeled with 99mTc for dynamic SPECT imaging 
using rats. It was reported that SPECT images correlated well with 
data obtained from biodistribution studies. Furthermore, synthesized 
dendrimers were rapidly cleared from the bloodstream and were 
nontoxic [56]. Avidin is a quickly internalizing molecule into either 
normal hepatocytes or cancer cells, especially ovarian and colorectal 
adenocarcinoma cells, which expresses b-D-galactose receptors [57-61] 
and extremely easy to conjugate with biotin. 
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Figure 6: SPECT image of KB-bearing nude mice at 2, 4 and 6 h after injection the tracer.

Figure 5: Micro-SPECT images of KB tumour-bearing nude mice at 4 h: T, tumour; L, lungs; K, kidney (upper images for technetium labelled G5 PAMAM-PEG-
FA, middle images for technetium labelled G5 PAMAM-FA 2, and lower images for technetium labelled G5 PAMAM).

Xu et al. also evaluated dendrimers as SPECT imaging agents. 
However the conjugate containing folic acid molecule has much 
accumulation in kidneys, so they tried to employ avid in instead of 
folic acid to observe the biodistribution and micro-SPECT imaging. 
They synthesized and characterized 99mTc radio-labeled acetylated 
dendrimer–avidin conjugates. The radio-labeled conjugate of Avidin-
G5-Ac81-1B4M10-99mTc was successfully prepared and characterized 
which exhibits excellent in vitro/in vivo stability and rapid clearance 
from blood. The in vitro cell uptake assay revealed that the conjugate 
for Avidin-G5-Ac81-1B4M10-99mTc could bind efficiently to HeLa cell, 
both of the in vivo biodistribution and micro-SPECT imaging study 
shows that the high uptake was observed in liver and spleen while low 
in the kidney (Figure 4) [62]. In their study, after receiving the same 
dose of labeled compound Av-G5-Ac81-1B4M10-99mTc, animals were 

euthanized at the designated times and selected tissues were removed, 
weighed, and counted to determine 99mTc distribution. The percentages 
of ID/g in normal mice at 2 h, 4 h and 6 h post-injection of Av-G5-
Ac81-1B4M10-99mTc were shown in Table 3.

In addition, acetylated PAMAM (G5-Ac) was conjugated with 
biotin and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetria 
minepentaacetic acid (1B4M-DTPA), respectively to form the complex 
Bt-G5-Ac-1B4M which was further conjugated with avidin to give the 
conjugate Av-G5-Ac-1B4M. Both of the conjugates were radio-labeled 
with 99mTc, respectively. In vitro cellular uptake study showed that the 
conjugate of Av-G5-Ac-1B4M-99mTc exhibits much higher cellular 
uptake in HeLa cells than that of Bt-G5-Ac-1B4M-99mTc [63]. According 
to these researches about in vitro/in vivo stability, biodistribution and 
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Figure 7: Scintigraphy image of normal (a) and melanoma-bearing mice (b) injected with 99mTc (CO)3-dendrimer-FITC, 1 h post-injection. (a) White and yellow 
arrows point liver and kidneys respectively. (b) White bracket shows the region where the tumor was located. Yellow bracket shows the abdominal region (liver 
and kidneys) where mask was placed in order to avoid image interference with tumor region. Low uptake observed in surrounding muscle tissues provides good 
contrast for tumor imaging.

micro-SPECT imaging was observed only for the conjugate of Av-
G5-Ac-1B4M-99mTc. In another study, PAMAM dendrimers G4 were 
labeled with 99mTc and conjugated with Fluoresceinisothiocyanate 
(FITC) (Figure 7). 

Moreover, dendrimers such as Eu-G3P4A18N, which are build of 
G3 PAMAM dendrimers may be used in imaging studies for detection 
of the distribution sites of metastatic hepatic colorectal tumors [64]. 
Fluorinated dendrimers may act as surfactants in biphasic systems 
(water/supercritical CO2) or as phase transfer catalysts of anionic 
species from water to supercritical fluids [65,66]. Thanks to the large 
and well-defined surface area of a dendrimer, they are ideal agents 
for sensing ions and gases. Metallo-dendrimers are the second 
type of dendrimers that may be utilized as carriers for catalysts. 
Furthermore, these types of macromolecules are promising substrates 
for multielectroredox processes, photochemistry and photophysics 
[65]. Catalytic activity present also palladium-based dendrimer-
encapsulated metal nanoparticles (DEMNs) [67] and Cu (II)-PAMAM 
dendrimers [68]. Photophysical properties exhibit also ionic liquid 
crystals based on PAMAM and PPI dendrimers (Table 4) [69].

As far a smulti-imaging, low-generation dendrimers, G2 maximum, 
can be used instead of their more complex, time consuming, and high 
generation contrary. Application of small size dendrimer is beneficial 

at all of aspects such as, synthetic accessibility, reproducibility and 
characterization, complete elimination from the body. Therefore, 
physical size of a dendrimer, which can be controlled by its generation, the 
charges and hydrophilicity affect the dendrimer’s pharmacokinetics and 
pharmacodynamics. However, the application of dendrimers to nuclear 
medicine and radiochemistry is still in its infancy. But rapid technological 
and scientific progresses in bioimaging, nanomedicine and theragnosis, 
will provide new research opportunities for biodendrimer scientists in the 
preclinical and clinical development of new therapies [70].

Recently, Hamidi et al. synthesized aldehyde terminated 
dendrimers (Polyamidoaldehyde (PAMAL) dendrimers) using 
aminoacetaldehydedimethylacetal instead of glutaraldehyde and 
prevent side chain crosslinking problem in producing dendrimers 
with terminal aldehyde group, successfully. Their research shows that 
PAMAL has lower toxicity than PAMAM dendrimers in cell cultures 
(MCF7 breast cancer cell line), which can good choice for diagnostic 
and especial therapeutics procedures (Figure 8).

SPECT has continued to dominate due to lower cost and use of 
generator-based radionuclides as compared to PET, which required 
higher infrastructure cost of cyclotron and radiochemistry facilities. 
Therefore, better radiotracer design has to be combined with 
improvements in hardware to improve image quality [71,72].

Organs 2 h 4 h 6 h
Blood 1.44 ± 0.05 a 0.91 ± 0.21 0.77 ± 0.02
Heart 2.48 ± 022 238 ± 0.75 124 ± 0.01
Liver 45.55 ± 2.14 47.74 ± 1.33 56541 ± 130

Spleen 43.80 ± 0.50 4738 ± 2.00 51.09 ± 5.99
Lung 12.56 ± 3.02 9393 ± 1.81 731 ± 292

Kidney 2.121 ± 0.17 228 ± 0.01 335 ± 0.40
Intestine 0.84 ± 0.18 0.45 ± 0.15 0A4 ± 0.06
Stomach 022 ± 007 0.51 ± 0.01 0448 ± 0.05
Muscle 0.24 ± 0.01 0.18 ± 0.05 0.16 ± 0.02

Skin 0.69 ± 0.26 0.57 ± 0.12 051 ± 13.08
Bone 0.67 ± 0.02 0.553 ± 0.09 0447 ± 0.01
Brain 0.04 ± 0.01 0.04 ± 0.02 OAS ± 0.01

aValues are shown as mean ± SD (id/g)(n=3)

Table 3: Bioditribution of Avidin-G5-AC81-1B4M10 99mTC 2, 4 and 6 h after injection the tracer in normal mice.



Citation: Bagheri H, Vosough FT, Dadgar H (2018) Dendrimer Nanoparticles Conjugated 99mTC as a Promising Bioimaging Probe. J Nucl Med Radiat 
Ther 9: 390. doi: 10.4172/2155-9619.1000390

Page 8 of 10

Volume 9 • Issue 6 • 1000390
J Nucl Med Radiat Ther, an open access journal
ISSN: 2155-9619

Figure 8: Synthesis pathway of aldehyde terminated dendrimers (G2).

Target SPECT radiotracer/ligand

Regional cerebral perfusion
99mTc-bicisate (ECD, Neurolite), 99mTc-exametazime (HMPAO, Ceretec), 

[123Idiodoamphetamine (123SIJIMP)
Cerebrospinal fluid kinetics IllIn-Pentetate

Phosphatidylserine - dementia 99mTC-HYNIC - annexin V
Dopamine D2, D3 receptors [123I] iodobenzamide (IBZM), [123I epidepride]

Dopamine reuptake transporter [123I] ioflupane, [123I] altropane, 99mTc-TRODAT
Peripheral benzodiazepine receptor (PBR) [123I] PK11195

Amyloid [123I] IMPY
Serotonin teuptake transporter (SERT) [123I] IDAM, [123I] JADAM

GABA receptor [123I] diomazenil

Table 4: Common radiotracers for neurology assessments.

Conclusion
Conjugating radiopharmaceuticals and dendrimers has produced 

bioimaging probes which have prolonged enhanced stability, reduced 
toxicity and improved target specificity. However, the application of 
dendrimers to nuclear medicine is still new technique for improving 
images. Pharmaceuticals may be encapsulated in dendrimers, 
physically adsorbed or chemically attached on to the dendrimer surface. 
Therefore, since these nanoparticles conjugated with radio tracers like 
99mTC, quality of images in the region of interest increased. Overall, the 
multidisciplinary structure of dendrimers makes them good choices for 
medical imaging or treatment.
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