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Introduction
Singularly perturbed problems (SPP) are common in applied 

sciences and engineering. They often occur in, for example, fluid 
dynamics, quantum mechanics, chemical reactions, electrical networks, 
etc. A well known fact is that the solution of such problems has a multi 
scale character, i.e., there are thin transition layers where the solution 
varies very rapidly, while away from the layers the solution behaves 
regularly and varies slowly. For a detailed discussion on the analytical 
and numerical treatment of such problems one may refer to the Malley 
[1], Doolan et al. [2], Roos et al. [3], and Miller et al. [4]. Numerically, 
the presence of the perturbation parameter leads to difficulties when 
classical numerical techniques are used to solve such problems, this is 
due to the presence of the boundary layers in these problems, see for 
example [1,5]. Even in the case when only the approximate solution is 
required.

Many methods have been developed so far solving Singularly 
perturbed boundary value problems (SPBVP) , nowadays there is 
a new way of computing denominated artificial intelligence which 
through different methods is capable of managing the imprecision's and 
uncertainties that appear when trying to solve problems related to the 
real world, offering strong solution and of easy implementation. One 
of those techniques is known as Artificial Neural Networks (ANN). 
Inspired, in their origin, in the functioning of the human brain, and 
entitled with some intelligence. These are the combination of a great 
amount of elements of process–artificial neurons interconnected that 
operating in a parallel way get to solve problems related to aspects of 
classification. The construction of any given ANN we can identify, 
depending on the location in the network, three kind of computational 
neurons: input, output and hidden.

Singularly Perturbed Problems 
The term "perturbation problem" is generally used in mathematics 

when one deals with the following situation: There is a family of 
problems depending on a small parameter ϵ> 0, which we denote by Pϵ, 
when ϵ=0, we have the reduced problem Po.

We want to study the relationship between the solution of Pϵ  and 
the solution of Po under appropriate assumptions. The perturbation 
problem (PP), may consist of an ordinary differential equation, or 
a system of differential equations, dong with some given conditions 
which illustrate the problem. Thus, the general form of the 2nd order 

singularly perturbed problems (SPP):

( )P x, y, y ,∈ = = ′ ∈
d y
dx

             (1)

where f are n-dimensional vector functions, x is a scalar variable in a 
given interval.

A perturbation problem (1) is called SPP if ϵ→ 0, the solution yϵ(x) 
converges to yo(x) only in some interval of x, but not throughout the 
entire interval, thus giving rise to an "boundary layers" phenomena at 
both end-points [6].

Artificial Neural Network
Artificial neural network is a simplified mathematical model of 

the human brain. It can be implemented by both electric elements 
and computer software. It is a parallel distributed processor with large 
numbers of connections; it is an information processing system that 
has certain performance characters in common with biological neural 
networks [7].

The arriving signals, called inputs, multiplied by the connection 
weights (adjusted) are first summed (combined) and then passed 
through a transfer function to produce the output for that neuron. The 
transfer (activation) function acts on the weighted sum of the neuron’s 
inputs and the most commonly used transfer function is the sigmoid 
function (tansig.) [8].

There are two main connection formulas (types): feedback 
(recurrent) and feed forward connections. Feedback is one type of 
connection where the output of one layer routes back to the input of 
a previous layer, or to the same layer. Feed forward neural network 
(FFNN) does not have a connection back from the output to the input 
neurons [9]. There are many different training algorithms, but the most 
often used training algorithm is the back propagation (BP) rule. A 
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NN is trained to map a set of input data by iterative adjustment of the 
weights. Information from inputs is fed forward through the network 
to optimize the weights between neurons. Optimization of the weights 
is made by backward propagation of the error during training phase. 
The ANN reads the input and output values in the training data set and 
changes the value of the weighted links to reduce the difference between 
the predicted and target (observed) values. The error in prediction is 
minimized across many training cycles (iteration or epoch) until 
network reaches specified level of accuracy. A complete round of 
forward backward passes and weight adjustments using all input output 
pairs in the data set is called an epoch or iteration. In order to perform a 
supervised training we need a way of evaluating the ANN output error 
between the actual and the expected outputs. A popular measure is the 
mean squared error (MSE) or root mean squared error (RMSE) [10].

Structure of Neural Network 
In an ANN expressions structure, architecture or topology, express 

the way in which computational neurons are organized in the network 
[11]. 

Particularly, these terms are focused in the description of how 
the nodes are connected and in how the information is transmitted 
through the network. As it has been mentioned, the distribution of 
computational in the following: 

Number of levels or layers

Neurons in the neural network is done forming levels or layers of 
a determined number of nodes each one. As there are input, output 
and hidden neurons, we can talk about an input layer, an output layer 
and single layer or multilayer hidden layers. By the peculiarity of the 
behavior of the input nodes some authors consider just two kinds of 
layers in the ANN, the hidden and the output. 

Connection patterns

Depending on the links between the elements of the different layers. 
The ANN can be classified as: totally connected, when all the outputs 
from a level get to all and each one of the nodes in the following level, if 
some of the links in the network are lost, then we say that the network 
is partially connected. 

Information flow

Another classification of the ANN is obtained by considering the 
direction of the flow of the through the layers, when any output of the 
neurons is input of neurons of the same level or preceding levels, the 
network is described as feed forward. In counter position if there is at 
least one connected exit as entrance of neurons of previous levels or of 
the same level, including themselves, the network is denominated of 
feedback.

Description of the Method
This section illustrates how our approach can be used to the 

approximation solution of the singular perturbation problem of the 
form: 

( )
2

2 , , ,= ∈′
d y F x y y
dx

 				                  (2)

where x ϵ D, D ⊂ R denoted the domain and y(x) is the solution to be 
computed. 

If yt (x, p) denoted a trial solution with adjustable parameters p, the 
problem is transformed to a discredited from:

( ) ( )( )'
i t i t ix Di

F x ,y x ,p ,y x ,p ,
min

∈
∈∑p 		                    (3)

In our proposed approach, the trial solution yt employs an ANN 
and the parameters p correspond to the weights and biases of the neural 
architecture.

We choose a form for the trial function (x) such that achieved by 
writing as a sum of two terms:

i(x , p) A(x) G(x, N(x,p))= +ty 			                  (4)

where N(x, p) is ANN with parameters p and n input units fed with 
the input vector x. The term (x) contains no adjustable parameters 
and satisfies the BCs. The second term G is constructed so as not to 
contribute to the BCs, since (x) satisfy them. This term can be formed 
by using ANN whose weights and biases are to be adjusted in order to 
deal with the minimization problem.

Illustration of the Method
In this section, we describe solution of SPP using ANN. To illustrate 

the method, we will consider the 2nd order SPP:

( )
2

2 , , ,= ∈′
d y F x y y
dx

			                    (5)

where x ∈ [a, b] and the BC: y(a)=A, y(b)=B; a trial solution can be 
written as: 

(bA aB)(x,p) (x a)(x b) N(x,p)
(b a)
− −

= + + − −
− −t

B Ay x
b a 	                 (6)

where N(x, p) is the output of the ANN with one input unit for x and 

weights p.

The error quantity to be minimized is given by:
22

i i
i2

1

(x p) (x p)(p) ( , (x , p),
=

 
= − 

 
∑

n
t t

i t
i

d y dyE f x y
dx dx

                      (7)

where the xi ∈ [a, b]. Since

( ) ( )
( )

( ) ( ){ } ( )

( )( ) ( )

,

,

,

−
=

−

+ − + −

+ − −

tdy x p B A
dx b a

x a x b N x p

dN x p
x a x b

dx
 

{ }
2

22

(x, p) (x,p)(x,p) 2 (x a) (x b)= + − + −td y dNN
dx dx

2

2

(x, p)(x a) (x b)+ − + −
d N

dx
			                  (8)

It is straight forward to compute the gradient of the error with 
respect to the parameters p.

Numerical Result 
In this section, we report numerical result, using amulti-layer 

ANN having one hidden layer with 5 hidden units (neurons) and one 
linear output unit. The sigmoid activation of each hidden unit is tansig, 
the analytic solution (x) was known in advance. Therefore, we test 
the accuracy of obtained solutions computing the mean square error 
(MSE).
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Example 1 

Consider the following 2nd order singular perturbation problem: 

[ ]y" yy' y 0, x 0,1∈ + − = ∈

BC′s (Dirishlit case): y(0)=-1, y(1)=3.9995, and the analytic 
solution [12]:

2

1 1tanh
2

 + 
= +  

 


∈



x c
y x c c  

where,

 1 2.9995=c

51
2

1 2

11 log log( ) . 10
1

−−
= ∈=

+
cc s t

c c
 

according to the equation (6 ) the trial neural form of the solution is 
taken to be:

( ) ( ) ( )ty x 1 4.9995x x x 1 N x,p= − + + −  

The ANN trained using a grid of ten equidistant points in 0, 1. 
Figure 1 displays the analytic and neural solutions with different 
training algorithm. The neural results with different types of training 
algorithm such as: Levenberg–Marquardt (trainlm), quasi–Newton 
(trainbfg), Bayesian Regulation (trainbr) introduced in Table 1 and its 

errors gave in Table 2, Table 3 gives the performance of the train with 
epoch and time and Table 4 gives the weight and bias of the designer 
network.

 Example 2 

Consider the following 2nd order singular perturbed problem:
yy" 2y' e 0∈ + + =  

with BC: y(0)=0, y(1)=0 and x∈ (0, 1). 

( )
2

72log log  10  ,2
1

−
∈ − = − = + 

∈
x

y e
x

The analytic solution is [12]:

 The ANN trained using a grid of ten equidistant points in 0, 1. 
Figure 2 display the analytic and neural solutions with different training 
algorithm. The neural results with different types of training algorithm 
such as: Levenberg–Marquardt (trainlm), quasi–Newton (trainbfg), 
Bayesian Regulation (trainbr) introduced in Table 5 and its errors gave 
in Tables 6 and 7 gives the performance of the train with epoch and 
time and Table 8 gives the weight and bias of the designer network.

Conclusion 
In this paper, we design neural network to solve singular perturbed 

problem. A fast and efficient algorithm (LM) for ANN with one hidden 
layer has been presented and tested on two examples. Through the 
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Figure 1: Analytic and neural solution of example1 using: trainlm, trainbfg,trainbr and traincgp training algorithm.

Input Analytic solution Out of suggested ANN yt(x) for different training algorithm Numerical solution
x ya(x) Trainlm Trainbfg Trainbr
0.0 3.09950000000000 -0.999880745270845 -0.999880745270845 -0.999934351350428 -1.0000000
0.1 3.19950000000000 3.09952352215727 3.09952352215727 3.09928640827629 3.1035900
0.2 3.29950000000000 3.19982552466162 3.19982552466162 3.19982150310036 3.2011864
0.3 3.39950000000000 3.29890300366976 3.29890300366976 3.29912397768203 3.3003857
0.4 3.49950000000000 3.40001713095587 3.40001713095587 3.39987747119349 3.3999858
0.5 3.59950000000000 3.49974092352976 3.49974092352976 3.47742525061300 3.4997456
0.6 3.69950000000000 3.59934730598352 3.59934730598352 3.59853213880555 3.5995858
0.7 3.79950000000000 3.69942849140595 3.69942849140595 3.70080106004170 3.6994715
0.8 3.89950000000000 3.79968216405646 3.79968216405646 3.79794587586114 3.7993855
0.9 3.99950000000000 3.89954946888650 3.89954946888650 3.89853640620021 3.8993189
1.0 3.99860986942680 3.99860986942680 3.99996079784071 3.9992657

Table 1: Analytic and Neural solution of Example 1.
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The error E(x)=|yt(x)-ya(x)|where yt(x) computed by the following training algorithm
Trainlm Trainbfg Trainbr

6.43341191782776e-05 6.77710633278927e-07 6.56486495714814e-05
5.53198735442351e-05 1.59832806989613e-07 0.000213591723708273
0.000261518497015612 1.20135476944228e-06 0.000321503100361831
0.00110130535869502 0.000916274984845256 0.000376022317968516
0.00122930168483482 7.29152511702580e-08 0.000377471193488521
0.000969607591307931 5.38443689634960e-09 0.0220747493870004
0.00213983449812005 0.00190942600971189 0.000967861194448805
0.000263003413316199 0.00156884042056982 0.00130106004170516
0.00288916575896980 5.40250320035796e-08 0.00155412413885836
0.00368039653067687 0.000814108450935880 0.000963593799789830
0.00180864374061107 2.08825303715798e-08 0.000460797840708516

Table 2: Accuracy of solutions for Example 1.

Train 
Function

Performance of train Epoch Time Msereg.

Trainlm 1.04e-30 18 0:00:01 1.508187974455366e-07
Trainbfg 3.45e-21 251 0:00:04 6.917729369371148e-07
Trainbr   4.68e-04 1386 0:00:16 4.490158138376238e-05

Table 3: The performance of the train with epoch and time.

Weights and bias for trainlm
Net.IW{1,1} Net.LW{2,1} Net.B{1}
0.3313 0.1347 0.5047
0.4316 0.1199 0.8945
0.7179 0.8935 0.3857
0.9162 0.6531 0.2921
0.8900 0.0403 0.2340
Weights and bias for trainbfg
Net.IW{1,1} Net.LW{2,1} Net.B{1}
0.1999 0.3585 0.2499
0.1630 0.1343 0.3648
0.0369 0.9986 0.3991
0.2727 0.5135 0.9263
0.2301 0.3878 0.4955
Weights and bias for trainbr
Net.IW{1,1} Net.LW{2,1} Net.B{1}
0.9193 0.3865 0.6633
0.9889 0.6030 0.6023
0.9326 0.5603 0.6565
0.4615 0.8458 0.3099
0.9049 0.2848 0.3316
			 

Table 4: Initial weight and bias of the network for different training algorithm.

In-put Analytic solution Out of suggested FFNN yt(x) for different training algorithm Numerical  Patching   
methodx ya(x) Trainlm Trainbfg Trainbr

0.0 0 5.30985922569390e-16 3.88590164923235e-06 -0.000108152119378016 0.0000000
0.1 0.597837000755620 0.597837000755621 0.592918052256386 0.572073288709426 0.5978370
0.2 0.510825623765991 0.510825623765991 0.510779902455636 0.502977459576147 0.5108256
0.3 0.430782916092454 0.428258098617260 0.430881601043291 0.433818154990611 0.4307829
0.4 0.356674943938732 0.356228190041481 0.356684767145891 0.364595340116877 0.3566749
0.5 0.287682072451781 0.287682072451781 0.287601746123872 0.295308980153126 0.2876821
0.6 0.223143551314210 0.223143551314210 0.223043377389487 0.225959040328804 0.2231435
0.7 0.162518929497775 0.162518929497775 0.162467868943705 0.156545485907880 0.1625189
0.8 0.105360515657826 0.105379554764756 0.105383361925040 0.105425301654285 0.1053605
0.9 0.0512932943875505 0.0512932943875507 0.0513474403606819 0.0358844139613455 0.0512933
1.0 0 -6.99557875567738e-05 -3.48131331875563e-05 -0.0337201923390429 1.0000000

Table 1: Analytic and Neural solution of Example 1.
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comparison with exact solutions show that the ANN method has good 
accuracy and efficiency and results obtained using the ANN method is 
with low error.
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The error E(x) thit(x)-y,(x) 1 where yt(x) computed by the follming training 
algorithm

Trait Trainbfg Trainbr
5.30985922569390e-16 3.88590164923235e-06 0.0001081)2119373016

5.55111512312578e-16 0.00491894349923447 0.0257637120461945

0 4.57213103546295e-05 0.00784816413984335

0.00252481747519467 9.86849503369248e-05 0.00303523889815655

0.000446753897250962 9.82320715375451e-06 0.00792039617814461

0.00762690770134561 3.03263279092747e-05 2.77555756156239e.16

0.00281548901459333 0.000100173924722308 1.94289029309402e-16

0.00597344358989510 5.10605540695319e-05 4.44039209850063e-16

6.47859964587327e-05 2.28462672137442e-05 1.90391069293111e-05

0.0154038304262050 5.41459731314))9e-05 1.73472347597631e-16

0.0337201923390429 3.48131331375563e-05 6.99557875567738e-05

Table 6: Accuracy of solutions for Example 2.
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Figure 2: Analytic and neural solution of example 2 using: trainlm, trainbfg and 
trainbr  training algorithm. 

Msereg. Time Epoch Performance 
of train

Train 
Function

5.383267058914925e-07 0:00:03 253 1.66e-32 Trainlm
1.982598144414512e-06 0:00:07 479 3.04e-09 Trainbfg
1.860207937865030e-04 0:00:22 1558 2.30e-13 Trainbr   

Table 7: The performance of the train with epoch and time.

Weights and bias for trainhn
Net.B [11] Net.LW (2,1) Net.IW [1,1]
0.6981 0.9831 0.2691
0.6665 0.3015 0.4228
0.1781 0.7011 0.5479
0.1280 0.6663 0.9427
0.9991 0.5391 0.4177
Weights and bias for trainhn
Net.B[11] Net.LW(2,1) Net.IW[1,1]
0.6981 0.9831 0.2691
0.6665 0.3015 0.4228
0.1781 0.7011 0.5479
0.1280 0.6663 0.9427
0.9991 0.5391 0.4177
Weights and bias for trainhn
Net. B[11] Net. LW(2,1) Net. IW[1,1]
0.6981 0.9831 0.2691
0.6665 0.3015 0.4228
0,1781 0.7011 0.5479
0,1280 0.6663 0.9427
0.9991 0.5391 0.4177

Table 8: Initial weight and bias of the network for different training algorithm.

http://onlinelibrary.wiley.com/doi/10.1002/zamm.19950750121/abstract
http://onlinelibrary.wiley.com/doi/10.1002/zamm.19950750121/abstract
http://trove.nla.gov.au/work/14405885?q&versionId=30527219+202023553
http://trove.nla.gov.au/work/14405885?q&versionId=30527219+202023553
http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-3-540-34466-7
http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-3-540-34466-7
http://www.worldscientific.com/worldscibooks/10.1142/8410
http://www.worldscientific.com/worldscibooks/10.1142/8410
http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-540-48124-9
https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-659-31303-5/fast-feed-forward-neural-networks-to-solve-boundary-value-problems
https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-659-31303-5/fast-feed-forward-neural-networks-to-solve-boundary-value-problems
https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-659-31303-5/fast-feed-forward-neural-networks-to-solve-boundary-value-problems
http://www.researchgate.net/publication/6831771_Performance_comparison_of_neural_network_training_algorithms_in_modeling_of_bimodal_drug_delivery
http://www.researchgate.net/publication/6831771_Performance_comparison_of_neural_network_training_algorithms_in_modeling_of_bimodal_drug_delivery
http://www.researchgate.net/publication/6831771_Performance_comparison_of_neural_network_training_algorithms_in_modeling_of_bimodal_drug_delivery
http://books.google.co.in/books/about/Neural_networks.html?id=PSAPAQAAMAAJ&redir_esc=y
http://www.cyut.edu.tw/~ijase/2013/11%281%29/6_025006.pdf
http://www.cyut.edu.tw/~ijase/2013/11%281%29/6_025006.pdf
http://www.cyut.edu.tw/~ijase/2013/11%281%29/6_025006.pdf

	Title
	Corresponding author
	Abstract 
	Keywords
	Introduction
	Singularly Perturbed Problems  
	Artificial Neural Network 
	Structure of Neural Network  
	Number of levels or layers 
	Connection patterns 
	Information flow 

	Description of the Method 
	Illustration of the Method 
	Numerical Result  
	Conclusion  
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Figure 1
	Figure 2
	References 



