
Volume 3 • Issue 3 • 1000160
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Open AccessResearch Article

Keywords: Singularly perturbed problems; Neural network; Quasi-
Newton; Levenberg-Marquardt, Bayesian regulation

Introduction
Singularly perturbed problems (SPP) are common in applied

sciences and engineering. They often occur in, for example, fluid
dynamics, quantum mechanics, chemical reactions, electrical networks,
etc. A well known fact is that the solution of such problems has a multi
scale character, i.e., there are thin transition layers where the solution
varies very rapidly, while away from the layers the solution behaves
regularly and varies slowly. For a detailed discussion on the analytical
and numerical treatment of such problems one may refer to the Malley
[1], Doolan et al. [2], Roos et al. [3], and Miller et al. [4]. Numerically,
the presence of the perturbation parameter leads to difficulties when
classical numerical techniques are used to solve such problems, this is
due to the presence of the boundary layers in these problems, see for
example [1,5]. Even in the case when only the approximate solution is
required.

Many methods have been developed so far solving Singularly
perturbed boundary value problems (SPBVP) , nowadays there is
a new way of computing denominated artificial intelligence which
through different methods is capable of managing the imprecision's and
uncertainties that appear when trying to solve problems related to the
real world, offering strong solution and of easy implementation. One
of those techniques is known as Artificial Neural Networks (ANN).
Inspired, in their origin, in the functioning of the human brain, and
entitled with some intelligence. These are the combination of a great
amount of elements of process–artificial neurons interconnected that
operating in a parallel way get to solve problems related to aspects of
classification. The construction of any given ANN we can identify,
depending on the location in the network, three kind of computational
neurons: input, output and hidden.

Singularly Perturbed Problems
The term "perturbation problem" is generally used in mathematics

when one deals with the following situation: There is a family of
problems depending on a small parameter ϵ> 0, which we denote by Pϵ,
when ϵ=0, we have the reduced problem Po.

We want to study the relationship between the solution of Pϵ and
the solution of Po under appropriate assumptions. The perturbation
problem (PP), may consist of an ordinary differential equation, or
a system of differential equations, dong with some given conditions
which illustrate the problem. Thus, the general form of the 2nd order

singularly perturbed problems (SPP):

()P x, y, y ,∈ = = ′ ∈
d y
dx

 (1)

where f are n-dimensional vector functions, x is a scalar variable in a
given interval.

A perturbation problem (1) is called SPP if ϵ→ 0, the solution yϵ(x)
converges to yo(x) only in some interval of x, but not throughout the
entire interval, thus giving rise to an "boundary layers" phenomena at
both end-points [6].

Artificial Neural Network
Artificial neural network is a simplified mathematical model of

the human brain. It can be implemented by both electric elements
and computer software. It is a parallel distributed processor with large
numbers of connections; it is an information processing system that
has certain performance characters in common with biological neural
networks [7].

The arriving signals, called inputs, multiplied by the connection
weights (adjusted) are first summed (combined) and then passed
through a transfer function to produce the output for that neuron. The
transfer (activation) function acts on the weighted sum of the neuron’s
inputs and the most commonly used transfer function is the sigmoid
function (tansig.) [8].

There are two main connection formulas (types): feedback
(recurrent) and feed forward connections. Feedback is one type of
connection where the output of one layer routes back to the input of
a previous layer, or to the same layer. Feed forward neural network
(FFNN) does not have a connection back from the output to the input
neurons [9]. There are many different training algorithms, but the most
often used training algorithm is the back propagation (BP) rule. A

*Corresponding author: Tawfiq LNM, Department of Mathematics, College of
Education for pure science/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq,
E-mail: drluma_m@yahoo.com

Received February 04, 2014; Accepted March 25, 2014; Published April 14, 2014

Citation: Tawfiq LNM, Al-Abrahemee KMM (2014) Design Neural Network to Solve
Singular Perturbation Problems. J Appl Computat Math 3: 160 doi:10.4172/2168-
9679.1000160

Copyright: © 2014 Tawfiq LNM, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Abstract
The aim of this paper is to design neural network to present a method to solve Singular perturbation problems

(SPP) by using network having one hidden layer with 5 hidden units (neurons) and one linear output unit, the sigmoid
activation of each hidden units is tansigmoid. The neural network trained by the back propagation with different
algorithms such as quasi-Newton, Levenberg-Marquardt, and Bayesian Regulation. Finally the results of numerical
experiments are compared with the exact solution in illustrative examples to confirm the accuracy and efficiency of
the presented scheme.

Design Neural Network to Solve Singular Perturbation Problems
Tawfiq LNM* and Al-Abrahemee KMM
Department of Mathematics, College of Education for Pure Science/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq

Journal of
Applied & Computational Mathematics

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679

Tawfiq and Al-Abrahemee, J Appl Computat Math 2014, 3:3

DOI: 10.4172/2168-9679.1000160

Citation: Tawfiq LNM, Al-Abrahemee KMM (2014) Design Neural Network to Solve Singular Perturbation Problems. J Appl Computat Math 3: 160
doi:10.4172/2168-9679.1000160

Page 2 of 5

Volume 3 • Issue 3 • 1000160
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

NN is trained to map a set of input data by iterative adjustment of the
weights. Information from inputs is fed forward through the network
to optimize the weights between neurons. Optimization of the weights
is made by backward propagation of the error during training phase.
The ANN reads the input and output values in the training data set and
changes the value of the weighted links to reduce the difference between
the predicted and target (observed) values. The error in prediction is
minimized across many training cycles (iteration or epoch) until
network reaches specified level of accuracy. A complete round of
forward backward passes and weight adjustments using all input output
pairs in the data set is called an epoch or iteration. In order to perform a
supervised training we need a way of evaluating the ANN output error
between the actual and the expected outputs. A popular measure is the
mean squared error (MSE) or root mean squared error (RMSE) [10].

Structure of Neural Network
In an ANN expressions structure, architecture or topology, express

the way in which computational neurons are organized in the network
[11].

Particularly, these terms are focused in the description of how
the nodes are connected and in how the information is transmitted
through the network. As it has been mentioned, the distribution of
computational in the following:

Number of levels or layers

Neurons in the neural network is done forming levels or layers of
a determined number of nodes each one. As there are input, output
and hidden neurons, we can talk about an input layer, an output layer
and single layer or multilayer hidden layers. By the peculiarity of the
behavior of the input nodes some authors consider just two kinds of
layers in the ANN, the hidden and the output.

Connection patterns

Depending on the links between the elements of the different layers.
The ANN can be classified as: totally connected, when all the outputs
from a level get to all and each one of the nodes in the following level, if
some of the links in the network are lost, then we say that the network
is partially connected.

Information flow

Another classification of the ANN is obtained by considering the
direction of the flow of the through the layers, when any output of the
neurons is input of neurons of the same level or preceding levels, the
network is described as feed forward. In counter position if there is at
least one connected exit as entrance of neurons of previous levels or of
the same level, including themselves, the network is denominated of
feedback.

Description of the Method
This section illustrates how our approach can be used to the

approximation solution of the singular perturbation problem of the
form:

()
2

2 , , ,= ∈′
d y F x y y
dx

 				 (2)

where x ϵ D, D ⊂ R denoted the domain and y(x) is the solution to be
computed.

If yt (x, p) denoted a trial solution with adjustable parameters p, the
problem is transformed to a discredited from:

() ()()'
i t i t ix Di

F x ,y x ,p ,y x ,p ,
min

∈
∈∑p 		 (3)

In our proposed approach, the trial solution yt employs an ANN
and the parameters p correspond to the weights and biases of the neural
architecture.

We choose a form for the trial function (x) such that achieved by
writing as a sum of two terms:

i(x , p) A(x) G(x, N(x,p))= +ty 			 (4)

where N(x, p) is ANN with parameters p and n input units fed with
the input vector x. The term (x) contains no adjustable parameters
and satisfies the BCs. The second term G is constructed so as not to
contribute to the BCs, since (x) satisfy them. This term can be formed
by using ANN whose weights and biases are to be adjusted in order to
deal with the minimization problem.

Illustration of the Method
In this section, we describe solution of SPP using ANN. To illustrate

the method, we will consider the 2nd order SPP:

()
2

2 , , ,= ∈′
d y F x y y
dx

			 (5)

where x ∈ [a, b] and the BC: y(a)=A, y(b)=B; a trial solution can be
written as:

(bA aB)(x,p) (x a)(x b) N(x,p)
(b a)
− −

= + + − −
− −t

B Ay x
b a 	 (6)

where N(x, p) is the output of the ANN with one input unit for x and

weights p.

The error quantity to be minimized is given by:
22

i i
i2

1

(x p) (x p)(p) (, (x , p),
=

 
= − 

 
∑

n
t t

i t
i

d y dyE f x y
dx dx

 (7)

where the xi ∈ [a, b]. Since

() ()
()

() (){ } ()

()() ()

,

,

,

−
=

−

+ − + −

+ − −

tdy x p B A
dx b a

x a x b N x p

dN x p
x a x b

dx

{ }
2

22

(x, p) (x,p)(x,p) 2 (x a) (x b)= + − + −td y dNN
dx dx

2

2

(x, p)(x a) (x b)+ − + −
d N

dx
			 (8)

It is straight forward to compute the gradient of the error with
respect to the parameters p.

Numerical Result
In this section, we report numerical result, using amulti-layer

ANN having one hidden layer with 5 hidden units (neurons) and one
linear output unit. The sigmoid activation of each hidden unit is tansig,
the analytic solution (x) was known in advance. Therefore, we test
the accuracy of obtained solutions computing the mean square error
(MSE).

Citation: Tawfiq LNM, Al-Abrahemee KMM (2014) Design Neural Network to Solve Singular Perturbation Problems. J Appl Computat Math 3: 160
doi:10.4172/2168-9679.1000160

Page 3 of 5

Volume 3 • Issue 3 • 1000160
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Example 1

Consider the following 2nd order singular perturbation problem:

[]y" yy' y 0, x 0,1∈ + − = ∈

BC′s (Dirishlit case): y(0)=-1, y(1)=3.9995, and the analytic
solution [12]:

2

1 1tanh
2

 + 
= +  

 


∈



x c
y x c c

where,

 1 2.9995=c

51
2

1 2

11 log log() . 10
1

−−
= ∈=

+
cc s t

c c

according to the equation (6) the trial neural form of the solution is
taken to be:

() () ()ty x 1 4.9995x x x 1 N x,p= − + + −

The ANN trained using a grid of ten equidistant points in 0, 1.
Figure 1 displays the analytic and neural solutions with different
training algorithm. The neural results with different types of training
algorithm such as: Levenberg–Marquardt (trainlm), quasi–Newton
(trainbfg), Bayesian Regulation (trainbr) introduced in Table 1 and its

errors gave in Table 2, Table 3 gives the performance of the train with
epoch and time and Table 4 gives the weight and bias of the designer
network.

 Example 2

Consider the following 2nd order singular perturbed problem:
yy" 2y' e 0∈ + + =

with BC: y(0)=0, y(1)=0 and x∈ (0, 1).

()
2

72log log 10 ,2
1

−
∈ − = − = + 

∈
x

y e
x

The analytic solution is [12]:

 The ANN trained using a grid of ten equidistant points in 0, 1.
Figure 2 display the analytic and neural solutions with different training
algorithm. The neural results with different types of training algorithm
such as: Levenberg–Marquardt (trainlm), quasi–Newton (trainbfg),
Bayesian Regulation (trainbr) introduced in Table 5 and its errors gave
in Tables 6 and 7 gives the performance of the train with epoch and
time and Table 8 gives the weight and bias of the designer network.

Conclusion
In this paper, we design neural network to solve singular perturbed

problem. A fast and efficient algorithm (LM) for ANN with one hidden
layer has been presented and tested on two examples. Through the

0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1

4

3.5

3

2.5

2

1.5

1

0.5

0

-0.5

-1

Exact
Im
bfg
br

Figure 1: Analytic and neural solution of example1 using: trainlm, trainbfg,trainbr and traincgp training algorithm.

Input Analytic solution Out of suggested ANN yt(x) for different training algorithm Numerical solution
x ya(x) Trainlm Trainbfg Trainbr
0.0 3.09950000000000 -0.999880745270845 -0.999880745270845 -0.999934351350428 -1.0000000
0.1 3.19950000000000 3.09952352215727 3.09952352215727 3.09928640827629 3.1035900
0.2 3.29950000000000 3.19982552466162 3.19982552466162 3.19982150310036 3.2011864
0.3 3.39950000000000 3.29890300366976 3.29890300366976 3.29912397768203 3.3003857
0.4 3.49950000000000 3.40001713095587 3.40001713095587 3.39987747119349 3.3999858
0.5 3.59950000000000 3.49974092352976 3.49974092352976 3.47742525061300 3.4997456
0.6 3.69950000000000 3.59934730598352 3.59934730598352 3.59853213880555 3.5995858
0.7 3.79950000000000 3.69942849140595 3.69942849140595 3.70080106004170 3.6994715
0.8 3.89950000000000 3.79968216405646 3.79968216405646 3.79794587586114 3.7993855
0.9 3.99950000000000 3.89954946888650 3.89954946888650 3.89853640620021 3.8993189
1.0 3.99860986942680 3.99860986942680 3.99996079784071 3.9992657

Table 1: Analytic and Neural solution of Example 1.

Citation: Tawfiq LNM, Al-Abrahemee KMM (2014) Design Neural Network to Solve Singular Perturbation Problems. J Appl Computat Math 3: 160
doi:10.4172/2168-9679.1000160

Page 4 of 5

Volume 3 • Issue 3 • 1000160
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

The error E(x)=|yt(x)-ya(x)|where yt(x) computed by the following training algorithm
Trainlm Trainbfg Trainbr

6.43341191782776e-05 6.77710633278927e-07 6.56486495714814e-05
5.53198735442351e-05 1.59832806989613e-07 0.000213591723708273
0.000261518497015612 1.20135476944228e-06 0.000321503100361831
0.00110130535869502 0.000916274984845256 0.000376022317968516
0.00122930168483482 7.29152511702580e-08 0.000377471193488521
0.000969607591307931 5.38443689634960e-09 0.0220747493870004
0.00213983449812005 0.00190942600971189 0.000967861194448805
0.000263003413316199 0.00156884042056982 0.00130106004170516
0.00288916575896980 5.40250320035796e-08 0.00155412413885836
0.00368039653067687 0.000814108450935880 0.000963593799789830
0.00180864374061107 2.08825303715798e-08 0.000460797840708516

Table 2: Accuracy of solutions for Example 1.

Train
Function

Performance of train Epoch Time Msereg.

Trainlm 1.04e-30 18 0:00:01 1.508187974455366e-07
Trainbfg 3.45e-21 251 0:00:04 6.917729369371148e-07
Trainbr 4.68e-04 1386 0:00:16 4.490158138376238e-05

Table 3: The performance of the train with epoch and time.

Weights and bias for trainlm
Net.IW{1,1} Net.LW{2,1} Net.B{1}
0.3313 0.1347 0.5047
0.4316 0.1199 0.8945
0.7179 0.8935 0.3857
0.9162 0.6531 0.2921
0.8900 0.0403 0.2340
Weights and bias for trainbfg
Net.IW{1,1} Net.LW{2,1} Net.B{1}
0.1999 0.3585 0.2499
0.1630 0.1343 0.3648
0.0369 0.9986 0.3991
0.2727 0.5135 0.9263
0.2301 0.3878 0.4955
Weights and bias for trainbr
Net.IW{1,1} Net.LW{2,1} Net.B{1}
0.9193 0.3865 0.6633
0.9889 0.6030 0.6023
0.9326 0.5603 0.6565
0.4615 0.8458 0.3099
0.9049 0.2848 0.3316
			

Table 4: Initial weight and bias of the network for different training algorithm.

In-put Analytic solution Out of suggested FFNN yt(x) for different training algorithm Numerical Patching
methodx ya(x) Trainlm Trainbfg Trainbr

0.0 0 5.30985922569390e-16 3.88590164923235e-06 -0.000108152119378016 0.0000000
0.1 0.597837000755620 0.597837000755621 0.592918052256386 0.572073288709426 0.5978370
0.2 0.510825623765991 0.510825623765991 0.510779902455636 0.502977459576147 0.5108256
0.3 0.430782916092454 0.428258098617260 0.430881601043291 0.433818154990611 0.4307829
0.4 0.356674943938732 0.356228190041481 0.356684767145891 0.364595340116877 0.3566749
0.5 0.287682072451781 0.287682072451781 0.287601746123872 0.295308980153126 0.2876821
0.6 0.223143551314210 0.223143551314210 0.223043377389487 0.225959040328804 0.2231435
0.7 0.162518929497775 0.162518929497775 0.162467868943705 0.156545485907880 0.1625189
0.8 0.105360515657826 0.105379554764756 0.105383361925040 0.105425301654285 0.1053605
0.9 0.0512932943875505 0.0512932943875507 0.0513474403606819 0.0358844139613455 0.0512933
1.0 0 -6.99557875567738e-05 -3.48131331875563e-05 -0.0337201923390429 1.0000000

Table 1: Analytic and Neural solution of Example 1.

Citation: Tawfiq LNM, Al-Abrahemee KMM (2014) Design Neural Network to Solve Singular Perturbation Problems. J Appl Computat Math 3: 160
doi:10.4172/2168-9679.1000160

Page 5 of 5

Volume 3 • Issue 3 • 1000160
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

comparison with exact solutions show that the ANN method has good
accuracy and efficiency and results obtained using the ANN method is
with low error.

References

1. O’Malley RE (1991) Singular Perturbation Methods for Ordinary Differential
Euations, Springer Verlag, New York.

2. Doolan EP, Miller JJH, Schilders WHA (1980) Uniform Numerical Methods for
Problems with Initial and Boundary Layers, Boole Press, Dublin, Ireland.

3. Roos HG, Stynes M, Tobiska L (1996) Numerical Methods for Singularly
Perturbed Differential Equations, Springer, Berlin.

4. Miller JJH, O’Riordan E, Shishkin GI (1996) Fitted Numerical Methods for
Singular Perturbation Problems, World Scientific, Singapore.

5. O’Malley RE (1974) Introduction to Singular Perturbations, Academic Press,
New York.

6. Jianzhong M (1997) Some Singular Singularly Perturbed Problems, Calgary,
Alberta, September.

7. Galushkin AI (2007) Neural Networks Theory, Springer, Berlin, Germany.

8. Ali MH (2012) Design fast feed forward neural networks to solve two point
boundary value problems. MSc thesis, University of Baghdad, College of
Education for science/Ibn Al-Haitham.

9. Mehrotra K, Mohan CK, and Ranka S (1996) Elements of Artificial Neural
Networks, Springer, New York, USA.

10.	Ghaffari A, Abdollahi H, Khoshayand MR, Bozchalooi IS, Dadgar A, et al, (2006)
Performance comparison of neural network training algorithms in modeling of
bimodal drug delivery. International Journal of Pharmaceutics, 327: 126-138.

11. Haykin S (1993) Neural networks: A comprehensive foundation.

12.	Padmajaa P, Reddy YN (2013) A Numerical Patching Method for Solving
Singular Perturbation Problems Via Padé Approximates. International Journal
of Applied Science and Engineering 1: 51-67.

The error E(x) thit(x)-y,(x) 1 where yt(x) computed by the follming training
algorithm

Trait Trainbfg Trainbr
5.30985922569390e-16 3.88590164923235e-06 0.0001081)2119373016

5.55111512312578e-16 0.00491894349923447 0.0257637120461945

0 4.57213103546295e-05 0.00784816413984335

0.00252481747519467 9.86849503369248e-05 0.00303523889815655

0.000446753897250962 9.82320715375451e-06 0.00792039617814461

0.00762690770134561 3.03263279092747e-05 2.77555756156239e.16

0.00281548901459333 0.000100173924722308 1.94289029309402e-16

0.00597344358989510 5.10605540695319e-05 4.44039209850063e-16

6.47859964587327e-05 2.28462672137442e-05 1.90391069293111e-05

0.0154038304262050 5.41459731314))9e-05 1.73472347597631e-16

0.0337201923390429 3.48131331375563e-05 6.99557875567738e-05

Table 6: Accuracy of solutions for Example 2.

0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1

Exact
Im
bfg
br

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

Figure 2: Analytic and neural solution of example 2 using: trainlm, trainbfg and
trainbr training algorithm.

Msereg. Time Epoch Performance
of train

Train
Function

5.383267058914925e-07 0:00:03 253 1.66e-32 Trainlm
1.982598144414512e-06 0:00:07 479 3.04e-09 Trainbfg
1.860207937865030e-04 0:00:22 1558 2.30e-13 Trainbr

Table 7: The performance of the train with epoch and time.

Weights and bias for trainhn
Net.B [11] Net.LW (2,1) Net.IW [1,1]
0.6981 0.9831 0.2691
0.6665 0.3015 0.4228
0.1781 0.7011 0.5479
0.1280 0.6663 0.9427
0.9991 0.5391 0.4177
Weights and bias for trainhn
Net.B[11] Net.LW(2,1) Net.IW[1,1]
0.6981 0.9831 0.2691
0.6665 0.3015 0.4228
0.1781 0.7011 0.5479
0.1280 0.6663 0.9427
0.9991 0.5391 0.4177
Weights and bias for trainhn
Net. B[11] Net. LW(2,1) Net. IW[1,1]
0.6981 0.9831 0.2691
0.6665 0.3015 0.4228
0,1781 0.7011 0.5479
0,1280 0.6663 0.9427
0.9991 0.5391 0.4177

Table 8: Initial weight and bias of the network for different training algorithm.

http://onlinelibrary.wiley.com/doi/10.1002/zamm.19950750121/abstract
http://onlinelibrary.wiley.com/doi/10.1002/zamm.19950750121/abstract
http://trove.nla.gov.au/work/14405885?q&versionId=30527219+202023553
http://trove.nla.gov.au/work/14405885?q&versionId=30527219+202023553
http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-3-540-34466-7
http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-3-540-34466-7
http://www.worldscientific.com/worldscibooks/10.1142/8410
http://www.worldscientific.com/worldscibooks/10.1142/8410
http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-540-48124-9
https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-659-31303-5/fast-feed-forward-neural-networks-to-solve-boundary-value-problems
https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-659-31303-5/fast-feed-forward-neural-networks-to-solve-boundary-value-problems
https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-659-31303-5/fast-feed-forward-neural-networks-to-solve-boundary-value-problems
http://www.researchgate.net/publication/6831771_Performance_comparison_of_neural_network_training_algorithms_in_modeling_of_bimodal_drug_delivery
http://www.researchgate.net/publication/6831771_Performance_comparison_of_neural_network_training_algorithms_in_modeling_of_bimodal_drug_delivery
http://www.researchgate.net/publication/6831771_Performance_comparison_of_neural_network_training_algorithms_in_modeling_of_bimodal_drug_delivery
http://books.google.co.in/books/about/Neural_networks.html?id=PSAPAQAAMAAJ&redir_esc=y
http://www.cyut.edu.tw/~ijase/2013/11%281%29/6_025006.pdf
http://www.cyut.edu.tw/~ijase/2013/11%281%29/6_025006.pdf
http://www.cyut.edu.tw/~ijase/2013/11%281%29/6_025006.pdf

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Singularly Perturbed Problems
	Artificial Neural Network
	Structure of Neural Network
	Number of levels or layers
	Connection patterns
	Information flow

	Description of the Method
	Illustration of the Method
	Numerical Result
	Conclusion
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Figure 1
	Figure 2
	References

