alexa Determination of Tellurium in Tellurium-Containing Organic Compounds by Microwave Plasma-Atomic Emission Spectrometry | Open Access Journals
ISSN: 2329-6798
Modern Chemistry & Applications
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Determination of Tellurium in Tellurium-Containing Organic Compounds by Microwave Plasma-Atomic Emission Spectrometry

Lastovka AV1,2, Fadeeva VP1,2, Bazhenov MA1,2 and Tikhova VD1*

1NN Vorozhtsov Novosibirsk, Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Russia

2Novosibirsk National Research State University, Russia

*Corresponding Author:
Tikhova VD
NN Vorozhtsov Novosibirsk, Institute
of Organic Chemistry, Siberian Branch
of Russian Academy of Science, Russia
Tel: +73833306554
E-mail: [email protected]

Received Date: June 24, 2017 Accepted Date: July 06, 2017 Published Date: July 10, 2017

Citation: Lastovka AV, Fadeeva VP, Bazhenov MA, Tikhova VD (2017) Determination of Tellurium in Tellurium-Containing Organic Compounds by Microwave Plasma-Atomic Emission Spectrometry. Mod Chem appl 5: 225. doi: 10.4172/2329-6798.1000225

Copyright: © 2017 Lastovka AV, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Modern Chemistry & Applications

Abstract

A method for determining tellurium in tellurium-containing organic compounds (TOC) by a microwave plasmaatomic emission spectrometer Agilent 4100 has been suggested. One of the sample decomposition methods - the oxygen flask combustion or the acid decomposition in a heating block-can be applied. Telluradiazole derivatives and some other TOC with 20 to 58% tellurium content have been analyzed. Elements such as nitrogen, sulfur, potassium, selenium present in the TOC do not prevent from determining tellurium. The relative error of the analysis is 1-5%.

Telluradiazole derivatives and some other tellurium-containing organic compounds with 20 to 58% tellurium content have been analysed by MP-AES spectrometer Agilent 4100

Keywords

Tellurium containing organic compounds; Sample decomposition; Microwave plasma atomic; Emission spectrometry; Agilent 4100

Introduction

Chemistry of tellurium organic compounds (TOC) has intensively been developing in recent decades. The increased interest in this field is due to widely use of these substances as catalysts in organic reactions (e.g., rubber vulcanization), inhibitors of metal corrosion, insecticides, fungicides, components of special photographic materials, pharmaceuticals etc. [1-5]. In view of great practical importance of these compounds for science and technology, a large number of analytical methods for the determination of tellurium in various objects were developed: gravimetric methods based on the precipitation of elemental tellurium by treating with inorganic and organic reducing agents, [6-8] titrimetric methods based on redox reactions using iodide-anion, salts of iron(II), chromium(II) or titanium(III) as reducing agents, as well as potassium permanganate or dichromate as oxidizing agents for Te (IV), [9-11] electrochemical methods, which allow one to determine the tellurium and selenium at simultaneous presence with a sensitivity being 10-5 M [12-14] spectrophotometric methods based on the formation of complexes with sulfur-containing organic reagents (diethyldithiocarbamate, thiurea, and their derivatives, bismuthiol II, and so on [15,16] or on the formation of ion pairs of tellurium acido complexes with organic bases-pyrazolone derivatives and rhodamine dyes [17-19]. Three spectrophotometric methods were used to determine small tellurium content in the environment (water, plant material, soil), and thin telluride films [20]. These methods are based on the formation of three differently colored Te-complexes. Magenta color was obtained by oxidation of 4-bromophenyl-hydrazine by tellurium in a basic medium followed by condensation of the product with N-(1- naphthyl) etylenediamine dihydrochloride. Red color was obtained by oxidation of 3-methyl-2-benzothiazolinone hydrazone hydrochloride followed by condensation with the chromotropic acid. Orange color was obtained by oxidation of 2,3-dimethoxystrichnidin-10-one in an acid medium. Beer’s law was obeyed in the range of 1.0-25 mg mL-1 for magenta product, 0.7-20 mg mL-1 for red, and 0.3-15 mg mL-1 for orange. The authors noted that these methods were simpler and more sensitive than the other known ones, and standard deviations were 0.2-0.3%. Several dyes were proposed for the extraction-photometric determination of tellurium: victoria blue 4R, brilliant green, rhodamine 4C. The latter dye was used, for example, in the analyses of tellurium salt solutions and semiconductor films [21]. The extraction-photometric redox process was described for the selective determination of selenium(IV) and tellurium(IV) with the detection limit of 5 ?10-5 mg L-1, based on different oxidability of analytes by antimony(V) ion associates in acidic or alkaline media [22]. The method does not require either preconcentrating and separating analytes, or masking the associated components in analyte mixtures. The possibility of using benzal green as a reagent for the rapid determination of tellurium(IV) is shown by Oda et al. [23]. The dye was immobilized on viscose fabrics and it formed ion associate with molibdotellurous heteropolyacid with different color intensity. The range of detectable concentrations is 0.01-0.1 mg L-1 of Te(IV). Currently, spectrometric methods are most commonly used for the tellurium determination. Atomic absorption spectrometry was used in the analysis of geological samples (ores, minerals, rocks) with tellurium content 0.0-100 mg g-1, [24] coal, [25] in lead and lead alloys, [26] in the environment (water, plants, biological materials) [27-29]. Such techniques as atomic emission spectrometry (AES) with inductively coupled (ICP) or microwave (MP) plasma, in conjunction with mass spectrometry, [30-33] atomic fluorescence spectrometry, [34-36] the optical emission spectrometry [37] are used for the tellurium and tellurium trace analysis in various objects. In most of these works, tellurium is converted to the hydride before the spectrometric measurements to increase the sensitivity of the method. The atomic emission method with continuous hydride generation was used for the simultaneous determination of Sb, As, Bi, Ge, Se, and Te in a set of sediment samples [38]. The detection limit for Te was 6.5 μg L -1. The tellurium determination was made in the gold concentrate by ICP-AES [39]. It was shown that tellurium may be separated from the majority of interfering components (such as Ag, Pb, Zn, Si, Ca, Mg, Al, Fe) in the sample by coprecipitation with arsenic to eliminate the matrix effect. The detection limit of Te was 4.23 μg g-1. Zhang et al. [40] investigated the possibility of group preconcentration of As, Cd, Se, and Te for the subsequent simultaneous determination of these elements by ICP-AES in the technogenic raw materials. Sorption of arsenic, selenium, tellurium, and cadmium oxyanions on iron, lanthanum, and magnesium hydroxides was used. The relative standard deviation of the method was 9-2.5% under the content of determined elements from 10 -4 to 10-1% mass. It was found that the presence of iron (>500 μg mL- 1) can lead to 10% decrease of the Te (214.2 nm) signal. When new organotellurium compounds are synthesized they should be completely described. It requires quantitative determination of so-called basic biogenic elements (carbon, hydrogen, nitrogen) as well as tellurium. Unlike small tellurium content in the above-mentioned inorganic, biological and ecological objects of analysis, tellurium content in synthetic TOC may be up to tens of percent’s. The first necessary step in TOC analysis is a complete decomposition of organic matter. In the few published studies on the analysis of TOC, they used wet decomposition in mineral acids, [41-43] burning in a stream of oxygen at 900-950°C or the oxygen flask combustion. Afterwards, tellurium was determined by the methods of gravimetry potentiometry, [42] spectrophotometry [43]. The main disadvantages of all these methods are their long duration and tediousness. MP-AES method for the determination of tellurium in TOC has not previously been used, although it is characterized by high accuracy and selectivity, rapidity, efficiency, wide range of detectable concentrations, and it does not involve converting tellurium in a single analytical form. The aim of this work is finding the conditions for sample preparation (decomposition) and developing a procedure for quantitative determination of tellurium in synthetic multi-element tellurium-containing organic compounds by microwave plasma-atomic emission spectrometry using the Agilent 4100 spectrometer.

Experimental

Instruments. Analysis was performed with Agilent 4100 MPAES (Australia) microwave plasma - atomic emission spectrometer. The sample supply system was a self-adjusted one-piece quartz torch. Plasma was generated by igniting with auxiliary argon and maintained with nitrogen. The configuration of the plasma was vertically-oriented with axial observation and computer-control of the plasma viewing position. A Curny-Terner monochromator, self-adjusted, with a 600 mm focal length was used. Holographic gitter with 2400 lines mm-1 was used. The spectral range was 178-780 nm and spectral resolution was 0.050 nm. A High-speed CCD detector, having 532 × 128 pixels, with a quantum efficiency of >90% was used; it was cooled to 0°? with a Peltier element. A double-pass glass cyclonic spray chamber and a One- Neb micronebulizer were used. Hot BlockTM Digestion System (25-Well 100 ml) Agilent 4107 (Australia) was applied for acid decomposition of organic samples. The samples and reagents were weighed with Mettler Toledo AT20 (Switzerland) microanalytical balance and Sartorius CP224S (Germany) analytical balance. Reagents. Solutions of H2O2, KNO 3, HCl, HNO3 (by Reakhim) were prepared from reagent-grade and high-purity chemicals. Oxygen gas from a cylinder with a purity of 99.7% was used for burning. The specimen holder was made of platinum wire (Ø=0.6-1.0 mm) with a purity of 99.99%. Blue ribbon ash-free filters were cut into 3 × 3 cm squares with 1-cm branches, impregnated with a saturated KNO3 solution and dried; an H-type polyethylene film; glycerol, polyurethane foam, twice-distilled water. Reference substance - Certified reference standard sample of tellurium(IV) ions solution- MCO 0529: 2003 (GSO 6082-91) (Russia).

Results and Discussion

Analytical wavelength selection. ?omparative measurements of the Te standard solutions were made at 3 wavelengths: 214.281; 225.902; 238.578 nm. The calibration curves were constructed followed by measurement of the Te solution (5 ppm) (Table 1). It is clear from Table 1 that only two emission lines are appropriate for the measurements. Atomic line 214.281 nm was selected due to its maximal intensity, but the measurement at this wavelength should be carried out after the full nitrogen purge of monochromator. Although this emission line is influenced by vanadium, tantalum, and cadmium, however, such elements are not encountered in the studied synthetic organic compounds. The study of sample decomposition. A telluriumcontaining organic compound, 3,4-dicyano-1,2,5-telluradiazole (C 4N4Te), was used to study the methods of sample preparation. Composition and structure of this substance is confirmed by elemental analysis, NMR, IR and MS spectrometry. The purity of the compound is 99.9%. When using the oxygen flask combustion, we tested 3 different solutions for absorbing the combustion products: 1) 10 mL of 0.1 M HCl; 2) 3 mL of HNO3 (conc.)+5 mL H2O+2 mL H2O2; 3) 10 mL of HNO 3 (conc.). The best results were obtained with absorbing mixtures 1) and 3). When using the nitric acid (8 mL HNO3 (conc.)+2 mL of 30% H 2O2) decomposition in the heating block, we experimentally selected the temperature of the reaction (from 60 to 130 °C) and the duration (45 to 60 min) of the process. Finally, satisfactory results were obtained after decomposition of the sample for one hour at 130°C. The following results were obtained in the discussed conditions (P=0.95; n=6): with the oxygen flask combustion -55.5 ± 1.7%; with the acid decomposition in the heating block -55.5 ± 0.3%. The calculated tellurium content in 3,4-dicyano-1,2,5-tellurodiazole is 55.1%. Therefore, both methods can be used to decompose the TOC when analyzing tellurium.

λ, nm 214.281 225.902 238.578
I, rel. 4885.9 1147.2 2127.8
The equation of the calibration curve 565.81 ci-3.46 (80.98 ci)/(1-0.04 ci) 201.37 ci-4.81
Approximation linear rational linear
r (correlation coefficient) 1.00000 1.00000 0.99999
Found Te, ppm 5.04 ± 0.02 4.33 ± 0.11 5.08 ± 0.04

Table 1: The results of determining 5 ppm Te at three emission lines (P=0.95; n=7).

Procedures for the decomposition of tellurium-containing organic compounds

The oxygen flask combustion: A portion of 0.1M HCl (10 mL) was placed into a 500 mL Erlenmeyer’s flask which was filled with oxygen from a cylinder. A weighed portion of a tellurium-containing compound (~2.0-3.0 mg) wrapped into a small square of a potassium nitrate-impregnated ash-free filter with a piece of polyethylene film was fixed on a Pt wire; the branch of the filter was ignited, placed into the flask, and burned. The combustion having been completed, the flask was thoroughly shaken for 5 min and placed into a fridge for 40 min to complete the absorption of combustion products. The acid decomposition in a heating block: A weighed portion of a tellurium- containing compound (~2.0-3.0 mg) was placed in polypropylene 100 mL vessel. HNO3 (8 mL) and 30% H2O2 (2 mL) were added to the probe. The vessel was covered with a lid (not tightly) and placed in a heating block HotBlockTM Digestion System, Agilent 4107. It took 60 min at 130°C to complete decomposition of the substance.

After the decomposition, the content of the flask or vessel were quantitatively transferred to a 100 mL volumetric flask rinsing its walls, stopper, wire or vessel with twice-distilled water and diluted to the mark. The tellurium content in the resulting solution was determined by MP AES using a preliminarily constructed calibration curve. Construction of calibration curves. The calibration curve was made using the solutions obtained with dilution of Certified reference standard sample of tellurium(IV) ions solution MCO 0529:2003 (GSO 6082-91) (Russia). We used 4 concentrations of Te(IV)-1, 5, 10, 15 ppm. The intensity of Te emission line at 214.241 nm was recorded on the spectrometer. The data were processed using the Agilent MP Expert software (version 1.4.0.4317). The conditions of measurements on the spectrometer were as follows: pressure in the spray chamber was 100 kPa, uptake delay-15 s, read time-3 s, stabilization time-15 s, pump speed-15 ppm, number of replicates-3, automatic background correction. A linear intensity dependence of the recorded signal (r ≥ 0.99998) was observed for reference substance solutions in this concentration range. Various tellurium-containing organic compounds have been analyzed according to the developed technique (Table 2).

Substance Empirical formula Calculated,
% ??
Found, % ??
The oxygen flask combustion The acid decomposition in heating block

1-Thiophenyl-3,4-dicyano-1,2,5-tellurodiazole 18?crown?6 potassium salt complex
C22H29KN4O6STe 19.81 19.81 ± 0.3 19.92 ± 0.3

4,4?-(Tellurobis(propane-3,1-diyl)) bis(2,6-di-tert-buthylphenol)
C34H54O2Te 20.50 20.72 ± 0.6 *

Tetrabuthylammonium 1-bromo-3,4-dicyano-1,2,5-telluradiazolide
C20H36N5BrTe 23.0 23.3 ± 1.0 23,6 ± 1.7

bis(Diethylamino-thioxo-methanesulfenyl)tellane
C10H20N2S4Te 30.08 30.22 ± 0.13 29.9 ± 0.3

Potassium 1-isoselenocyanato-3,4-dicyano-1,2,5-telluradiazolide
C5N5KSeTe 34.0 * 33.5 ± 1.2

3,4-dicyano-1,2,5-tellurodiazole
?4N4Te 55.1 55.5 ± 1.7 55.5 ± 0.3

2,2?-Ditellanediyldianiline
C12H12N2Te2 58.07 57.99 ± 0.18 57.89 ± 0.05

Table 2: Results of tellurium determination in TOC using two methods of sample preparation (P=0.95, n=5).

Conclusion

Thus, the method for the tellurium determination has been proposed. It combines the oxygen flask combustion or acid decomposition followed by measuring Te content by the MP-AES method. Such elements as nitrogen, sulfur, potassium, selenium, included in the TOC do not influence the quantitative determination of tellurium. Statistical processing was performed on the results obtained by the decomposition of 5-6 weighed portions of each substance. The relative error is in the range of 1-5%.

Acknowledgements

We are grateful to Prof. AV Zibarev and employees of the Laboratory of Heterocyclic Compounds (NIOCH SB RAS) for the samples provided for our study.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 145
  • [From(publication date):
    September-2017 - Oct 23, 2017]
  • Breakdown by view type
  • HTML page views : 115
  • PDF downloads :30
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords