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Abstract

Many studies have evaluated the effects of physical training on several metabolic parameters, but few studies
have been conducted to evaluate the effects of detraining on these variables. Female mice were distributed into
three experimental groups: sedentary controls (C-SED, not trained), trained controls (TR, trained for 10 weeks) and
a detraining group (DT, animals detrained for 2 weeks after 8 weeks of training). The exercise protocol was
performed by swimming applied for 60 min/day on 5 days/week. The DT group showed an increase of body weight
in the 10th week when compared to the 8th week (after training cessation) and the TR group. The groups did not
show differences in the plasma levels of corticosterone, glucose, total cholesterol or triglycerides. The DT group
showed decreased glycogen content when compared to the TR group. No significant differences were found in the
gene expression of glycogen synthase or glycogen phosphorylase or in hepatic glycogen content between CT and
TR or DT group. We verified that after a training period of 8 weeks, the animals had an increase in body weight after
two weeks of detraining. After two weeks of detraining, animals showed a decrease in liver glycogen content, without
an altered fasting glucose concentration in their plasma.
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Introduction
Physical exercise has been proposed as a therapeutic strategy to

treat a variety of metabolic diseases. Many studies have evaluated the
effect of physical training in several metabolic parameters, but few
studies have been conducted to evaluate the effects of training
interruption on these variables. Detraining has been defined as the
partial or complete loss of training-induced anatomical, physiological
and performance adaptations as a consequence of training reduction
or cessation [1].

It has been shown that variables such as weight, carbohydrate and
lipid metabolism and myocardial mechanics can be affected after a
short period without training (detraining) [2-6].

Fats and carbohydrates are the main substrates for ATP resynthesis
in tissues. Felig and Wahren [7] showed that glucose mobilization
during exercise is associated with the metabolic demands of muscles
during activity. The maintenance of steady levels of blood glucose
during physical exercise is performed through very precise controls of
the hepatic production of glucose, which involves hormonal feedback
mechanisms [8,9]. Fatty acids are important oxidative substrates at rest
and during exercise [10]. During exercise, fatty acid oxidation can
increase 5–10 times above resting levels, with maximum oxidation
rates observed at exercise intensities ∼65% of maximal oxygen uptake
(V̇O2max) [10].

Endogenous carbohydrates are mainly stored as muscle and liver
glycogen and represent less than 5% of total energy storage [11]. Most

studies have investigated the role of muscle glycogen after exercise
[reviewed in 12], but very few studies have focused on the potentially
important role of substrates in the liver. Evidence from early studies in
rodents suggests that when carbohydrates are available after exercise,
liver glycogen resynthesis is the first priority and muscle glycogen
synthesis is secondary [13]. Other authors showed that a single feeding
of glucose or fructose was sufficient to initiate liver glycogen synthesis
after exercise, without affecting muscle glycogen synthesis [14].

The size of pre-exercise glycogen stores has been recognized as one
of the most important factors limiting the maintenance of moderate-
to-high power output for extended periods of time [15]. A number of
studies have shown that physical training increases intramuscular and
hepatic glycogen storage [16-19].

Detraining of one week reduces the levels of muscle GLUT4 gene
expression in rats [20]. Moreover, 48 hours of detraining decreases
insulin binding, IRβ protein and IRβ tyrosine phosphorylation in
muscle [21]. This evidences suggested that muscle glycogen content
decrease after detraining. However, the effects of detraining on hepatic
glycogen storage are not clear.

Discontinuation of exercise is common among the athletes and also
in general population. Athletic individuals have detraining periods
because of injuries, vacation, and overtraining, which leads to a rapid
gain of body weight and excess fat while general population disrupt the
training for a number of reasons, including work needs, family
obligations, and social factors. It is crucial to investigate the
physiological alterations during this period and their role in human
health.

Fernandes et al., J Liver 2014, 3:3
DOi: 10.4172/2167-0889.1000159

Research Article Open Access

J Liver
ISSN:2167-0889 JLR, an open access journal

Volume 3 • Issue 3 • 159

Jo
urnal of Liver

ISSN: 2167-0889

Journal of Liver

mailto:vaniadalmeida@uol.com.br


The aim of the present study was to evaluate the effects of
detraining for 2 weeks on biometrical and biochemical parameters in
female mice after an 8-week training period.

Methods

Ethical considerations
The institutional review board (Comissão de Ética em Pesquisa da

Universidade Federal de São Paulo) approved this study and ensured
that animal care and evaluations were performed according to ethical
standards (CEP: 1894/09). The mice used in this study were treated in
accordance with the guidelines established by the Ethical and Practical
Principles of the Use of Laboratory Animals [22].

Experimental groups
Three-month-old Swiss female mice from the CEDEME (Centro de

Desenvolvimento de Modelos Experimentais) facility were housed in
standard polypropylene cages in a temperature-controlled room (21 ±
2°C) with a 12:12-h light-dark cycle (lights on at 0700 h). Female mice
were used in the present study to avoid the effect of exercise training
on body weight in male mice. They were allowed free access to food
and water. To determine the regularity of two estrous cycles, the
female mice were subjected to a vaginal smear two weeks prior to the
experimental procedures [23]. Animals were distributed into three
experimental groups: a sedentary control group (C-SED), a Trained
Group (TR) and a Detraining Group (DT): [see Figure 1].

Training protocol
The exercise protocol was performed according to the Resource

Book for the Design of Animal Exercise Protocols of American
Physiological Society [24]. Swimming training was performed
individually in circular plastic receptacles (20 cm diameter) filled with
water (35 cm deep) at 32–34°C. Water was maintained in continuous
turbulence to provide continuous exercise. For adaptation, training
was limited to 5 min on the first day and increased by 10 min each day.
Mice swam for a total period of 10 weeks, 60 min/day and 5 days/week
as previously described [25]. All the manipulations were conducted
between 0700 h and 0900 h.

To minimize the stress effect among the trained animals, all the
other groups (C-SED and DT - after training protocol interruption)
were placed in the swimming tank for 5 min/day, 2 days/week.

Twenty-four hours after the last swimming training session, the
animals in diestrus phase were fasted for four hours and euthanized by
decapitation between 0800 h and 1100 h.

Biometric evaluation
During the entire protocol period, weight measurements were taken

on a weekly basis.

Analytical procedures
The blood was collected in tubes containing Ethylenediaminetetra

acetic acid (EDTA), heparin or no anticoagulant (Becton Dickinson,
New England, UK). Immediately after collection, the total blood
aliquots were used for the determination of glucose (Average intra-
assay CV: 2.5%), total cholesterol (Average intra-assay CV: 2.3%) and
triglycerides (Average intra-assay CV: 3.4%) using a photometric

measurement of reflection by Accutrend Plus (Roche, Mannheim,
Baden-Württemberg, Germany).

The tubes were centrifuged at 4°C for 10 min at 3,000 rpm to
extract the plasma and serum aliquots. A set of serum aliquots was
stored at –80°C for the corticosterone measurements (ICN-
Biomedical, Orangeburg, NY, USA) using Radioimmunoassay kits
(Average intra-assay CV: 4%). Perigonadal fat, liver, heart and
gastrocnemius muscle were carefully removed. An analytical balance
(Bioprecisa, Model-FA2104N, Curitiba, Paraná, Brazil), accurate to
0.001 g was used to evaluate the mass of the organ, and the calculation
of the relative mass of tissue was performed based on the percentage of
adipose tissue, taking into account the total weight of the animal.

The liver samples were rapidly excised, weighed and small pieces
(0.5 g) were kept in a potassium hydroxide (30%) solution until the
carbohydrate content (manly glycogen) was measured by the sulfuric
acid-anthrone reaction on the day of euthanasia, as described
elsewhere [26,27].

Real-time PCR
For the reaction, TRIzol reagent (Invitrogen, Carlsbad, CA) was

added to approximately 100 mg of liver and the total RNA was isolated
according to the manufacturer's protocol. An agarose gel (1%)
electrophoresis was performed to evaluate the integrity of the
molecules. After DNAse (Promega, Madison, USA) treatment, the
total RNA was reverse-transcribed using ImProm-IITM Reverse
Transcriptase (Promega, Madison, USA). The diluted cDNA was
added to 2× SYBR Green PCR Master Mix (Applied Biosystems,
Warrington, UK) together with the respective primers for Glycogen
Phosphorylase (GP) and Glycogen Synthase (GS). The expression of
the target genes was normalized using Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) as the endogenous control. The quantitative
real-time PCR assays were performed using a 7500 Real-Time PCR
instrument (Applied Biosystems). The analysis of the relative
expression was performed using a standard dilution curve-based
method for relative real-time PCR data processing performed based on
the 2(ΔΔ(CT)) method [28].

Statistical Analysis
A repeated measures Analysis of Variance (ANOVA) test was used

to analyze weight gain; one-way ANOVA test was used to analyze all
the other parameters. When necessary, an a posteriori Duncan’s test
was used. All the variables were checked for normality and
transformed when necessary, using the Z-score, to normalize the data.
The data were analyzed using the statistical software SAS System for
Windows (Statistical Analysis System, V 8.02 SAS Institute Inc,
1999-2001, Cary, NC). The results are presented as the mean ± S.E.M.,
and the level of significance was set at p<0.05.

Results

Body weight
Figure 2 represents changes in the body weight of mice submitted to

training or detraining in different periods of time. Significant
differences between the groups were found (F (6, 78) = 2.81, p=0.01):
the DT group showed an increase of body weight in the 10th week
when compared to both the 8th week (after training cessation)
(p<0.001) and the TR group (p<0.001).
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Figure 1: Overall study design. C-SED = sedentary controls, TR =
trained and DT = detraining

Figure 2: Body weight gain of female mice after the training and
detraining periods. C-SED=sedentary controls (N=6), TR=trained
(N=12) and DT=detraining (N=11). The values are presented as the
mean ± S.E.M. * Different from the CT group; # Difference between
the 8th and 10th weeks (p<0.05).

Organs
As demonstrated in Table 1, the animals did not show differences in

organ weight (perigonadal fat (F (2, 26)=2.15, p=0.14); liver (F (2,
21)=0.10, p=0.91); heart (F (2, 25)=1.48, p=0.25); gastrocnemius
muscle (F (2, 26)=0.67, p=0.52)). When expressed as a percentage of
total body mass, a similar result was observed (perigonadal fat (F (2,
26)=2.00, p=0.16); liver (F (2, 21)=0.70, p=0.51); heart (F (2, 26)=0.49,
p=0.62); gastrocnemius muscle (F (2, 26)=0.57, p=0.57) (Table 2).

Biochemical profile
The groups did not show differences in the plasma levels of

corticosterone (F (2, 26)=1.26, p=0.30), glucose (F (2, 31)=0.16,
p=0.85) total cholesterol (F (2, 31)=0.34, p=0.71), or triglycerides (F (2,
31)=1.11, p=0.34), as depicted in Table 3.

 C-SED TR DT

Heart (g) 0.15 ± 0.00 0.15 ± 0.01 0.14 ± 0.00

Liver (g) 1.46 ± 0.07 1.50 ± 0.08 1.4 ± 0.04

WAT (g) 0.78 ± 0.07 0.71 ± 0.11 1.03 ± 0.15

Gastrocnemius (g) 0.17 ± 0.01 0.18 ± 0.01 0.18 ± 0.01

C-SED = sedentary controls (N=10), TR = trained (N=10), DT = detraining (N=9)
and WAT=white adipose tissue. The values are presented as the mean ± S.E.M

Table 1: Organ weights of female mice after the training and
detraining periods

C-SED TR DT

Heart (%) 0.41 ± 0.05 0.46 ± 0.03 0.42 ± 0.02

Liver (%) 4.34 ± 0.20 4.78 ± 0.54 4.36 ± 0.17

WAT (%) 2.32 ± 0.20 2.12 ± 0.30 3.06 ± 0.50

Gastrocnemius (%) 0.50 ± 0.03 0.55 ± 0.05 0.53 ± 0.03

C-SED=sedentary controls (N=10), TR = trained (N=10), DT = detraining (N=9)
and WAT=white adipose tissue. The values are presented as the mean ± S.E.M

Table 2: Relative organ weights (%) of female mice after the training
and detraining periods

 C-SED TR DT

Glucose (mg/dL) 157.8 ± 6.95 162.8 ± 5.29 159.8 ± 7.03

Cholesterol (mg/dL) 159.6 ± 0.93 159.2 ± 1.50 158.1 ± 1.28

Triglycerides (mg/dL) 192.0 ± 29.29 210.0 ± 18.59 166.5 ± 15.80

Corticosterone (ng/mL) 59.0 ± 1.57 61.5 ± 1.56 58.7 ± 1.10

C-SED=sedentary controls (N=10), TR = trained (N=10), DT = detraining (N=9)
and WAT=white adipose tissue. The values are presented as the mean ± S.E.M.

Table 3: Biochemical profile of female mice after the training and
detraining periods

Hepatic glycogen, GS and GF
To evaluate the hepatic profile, we analyzed the hepatic glycogen

content and the expression of glycogen synthase and glycogen
phosphorylase. Differences in the hepatic glycogen content were found
among the groups (F (2, 23)=5.13, p=0.01) (Figure 3). The DT group
showed decreased glycogen content when compared to the TR group
(p=0.01). When the expression of genes involved in the control of the
storage (glycogen synthase) and degradation (glycogen phosphorylase)
of hepatic glycogen was evaluated, no significant differences were
found (F(2, 21)=2.16, p=0.14 and F(2, 14)=0.48, p=0.63, respectively;
Figure 4 and 5, respectively). These results suggest that a mechanism
other than gene expression is involved in the alteration of glycogen
content observed in this study.
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Figure 3: The liver glycogen content of female mice after the
training and detraining periods. C-SED=sedentary controls (N= 6),
TR=trained (N= 10) and DT=detraining (N= 10). The values are
presented as the mean ± S.E.M. # Difference from the TR group
(p<0.05)

Figure 4: The relative expression of glycogen synthase in the livers
of female mice after the training and detraining periods. C-
SED=sedentary controls (N=6), TR=trained (N=5) and
DT=detraining (N=6). The values are presented as the mean ±
S.E.M

Discussion

Body and organ weight
We found that the exercise protocol was effective in maintaining

the body mass of animals submitted to the 10-week training protocol
(Figure 2). Other authors showed that swim training results in skeletal
muscle adaptations consistent with increased resistance to fatigue,
including increased mitochondrial enzyme activity [29], increased
lipogenic enzyme expression and enhanced muscle capillarization
[30,31]. Other studies have shown that regular exercise in humans and
animals are effective in maintaining body mass [32-34]. Allen and co-
workers [35] demonstrated that voluntary wheel running does not
tend to change the body weight, which follows instead the weight gain
of age-matched sedentary control mice.

Despite knowledge of the benefits of physical exercise, a current
decrease of physical activity has been identified [36,37]. For years,
detraining in animals has been associated with a rapid gain of fat mass
[2,3]. Yasari and co-workers [38] showed that female mice maintained
with a standard diet presented increased energy intake and reduced
leptin concentration after 2 weeks of detraining. In humans,
interruption of physical exercise combined with a high fat diet was a
stimulus for obesity development [39,40]. These findings are in
accordance with the weight gain observed in our work, which showed
that exercise associated with a standard diet led to an increase in body
weight after the cessation of exercise (Figure 2).

Despite the fact that a 2-week detraining increased body weight, no
differences in organ weight or relative weight were observed in these
animals (Table 1 and 2, respectively). Although no statistically
significant differences in the organs were found, it is possible to
observe a tendency toward an increase in white adipose tissue in the
detraining group. In accordance with this finding, other studies have
shown that an increase in body weight is linked to fat mass gain in
animals and humans [2,3,41].

Figure 5: The relative expression of glycogen phosphorylase in the
livers of female mice after the training and detraining periods. C-
SED=sedentary controls (N=6), TR=trained (N= 5) and
DT=detraining (N=6). The values are presented as the mean ±
S.E.M

Biochemical profile
Despite the body weight gain in mice from the detraining group, we

did not find alterations in the serum glucose, triglyceride and total
cholesterol levels (Table 3).

Kawanaka and co-workers [4] showed that after physical training,
animals have an increase in glucose transport type 4 (GLUT-4)
expressions and improvement in insulin sensitivity in muscle. It was
reversed after ninety hours of detraining. Others studies showed that
insulin sensitivity decreased after a few days of detraining in physically
active people [42,43]. Lehnen and co-workers [44] showed that,
although a reduction in GLUT4 expression was observed, some
metabolically beneficial effects of exercise were preserved, including an
insulin response verified by the tolerance test. Yasari and co-workers
[5] did not find differences in glucose concentration, which is in
agreement with our work. They observed an increase in insulin levels
after 4 weeks of detraining associated with a high fat diet. It is possible
that the increase in insulin secretion is sufficient to maintain the
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normal levels of glucose. Considering these data, we could suggest that
the normal glucose concentrations observed in this study (Table 3)
were maintained by the increase in insulin levels.

The effects of exercise on lipid metabolism were investigated many
years ago [45,46]. It is well established that chronic exercise training
has favorable effects on the plasma lipid profile [47,48]. Physical
inactivity is related to excess plasma triglyceride concentration, which
contributes, at least partially, to the increased risk of chronic disease
that is observed in association with atherosclerosis, fatty liver, diabetes,
and obesity [49]. Plasma triglyceride and total cholesterol levels were
not affected by the detraining status in this present work (Table 3).
These data are consistent with Sandretto and co-workers, who
observed that, even in high fat diet hamsters, the triglyceride and total
cholesterol levels were not affected by cessation of exercise, despite the
weight gain. Some studies showed that after the training cessation,
some metabolic variables are maintained including fat free acids and
highest lipid oxidation in liver and adipose tissue [5,50]. Exercise led
to an increase of lipoprotein lipase, even two weeks after training
cessation and despite the increase in lipid oxidation due to physical
training, the benefits of exercise are gradually lost [2,5,51].

Liver glycogen content and gene expression
The contribution of muscle and liver glycogen to energy

metabolism during exercise varies according to its intensity and
duration. Blood glucose plays a greater role during the low intensity
exercise, whereas muscle glycogen is the main source of glucose in
high intensity exercise (>80% of VO2max). In moderate exercise, the
first metabolic pathways of carbohydrate metabolism to be involved
are skeletal muscle glycogenolysis and glycolysis. Later circulating
glucose, formed through activated gluconeogenesis, becomes an
important energetic source and a crucial role in preventing
hypoglycemia during exercise, and it is generally believed that
strategies to enhance liver glycogen after exercise would increase the
exercise capacity in a subsequent exercise bout [14,52]. Hypoglycemia
has been described as a possible cause of fatigue during prolonged
endurance exercise, and hepatic glycogenolysis contributes
significantly to the prevention of hypoglycemia. Having higher liver
glycogen stores could be beneficial [53,54]. Many studies have focused
only on muscle glycogen, but evidence from early rodent studies
suggests that when carbohydrates are available after exercise, liver
glycogen resynthesis is the first priority and muscle glycogen synthesis
is secondary [13].

We showed an increase in the liver glycogen content of mice trained
after 10 weeks, however no statistical difference was observed. When
compared the trained group with detraining group, we showed that
this modest increase was lost after two weeks of detraining (Figure 3).
A reduction in the liver glycogen content is associated with important
metabolic consequences. Fatty acids become important substrates for
energy production [55]. Moreover, when liver glycogen stores are
reduced, the gluconeogenesis is activated to maintain the glucose
needs for glucose-dependent tissues such as brain or erythrocytes.
Amino acids are important substrates to gluconeogenesis, many of
them originating from skeletal muscle. Loss of liver glycogen with
subsequent accelerated gluconeogenesis may therefore represent a
muscle wasting [56].

We hypothesized that when exercise activity is abruptly
discontinued, the state of equilibrium is interrupted and some effects
of exercise are lost in a short period. When the expression of genes
involved in the storage and degradation of glycogen were evaluated,

we did not find differences between the groups (Figure 4 and 5). Tsai
and co-workers [57] showed that liver glucose-6-phosphate
dehydrogenase activity was increased at 8 days after the
discontinuation of running. It is possible that despite there being no
alterations in gene expression, the activity of some enzymes such as
glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen
phosphorylase may affect glycogen content in detraining animals.
Marinho and co-workers [19] demonstrated that obese mice
submitted to eight weeks of aerobic exercise training showed enhanced
synthesis of hepatic glycogen by Akt phosphorylation activating
glycogen synthase through the inhibition (phosphorylation) of
glycogen synthase kinase 3 beta (GSK3b). This pathway was blocked
and was less active in obese, sedentary mice. The control of Akt
activity in the liver is important for the control of glucose homeostasis
and also could explain the glycogen reduction after the detraining
period.

Conclusion
We verified that, after a training period of 8 weeks, the animals had

an increase in body weight after two weeks of detraining. After the
two-week detraining period, the animals showed a decrease in liver
glycogen content without alterations in the fasting glucose
concentration in their plasma. It is possible that, during exercise, the
decrease in hepatic glycogen can lead to a lower performance in this
group when resubmitted to training, because the liver plays a crucial
role in preventing hypoglycemia during exercise. These data suggest
that a short period of detraining alters some metabolic parameters
important to performance, and elite athletes must pay attention to this
effect in their strategies.
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